首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Solid phase cytometry in conjunction with fluorescent probe was applied to rapidly quantify cellular esterase activity of Listeria monocytogenes cells. Viability of cells stressed by several treatments (starvation, NaCl, lactic acid and peracetic acid) was assessed simultaneously by their esterase activity estimated by fluorescence intensity and by their ability to multiply in liquid and solid, non-selective and selective, culture media. It was determined that cell physiological state has a significant impact on the cellular fluorescence intensity which was very dependent on the stress suffered by cells. No general relationship was observed between the bacterial populations observed by cytometry and the populations able to grow on culture media. The link between the cell culturability in non-selective and selective media and the esterase activity was always dependent on the stress suffered. Nevertheless, it was also established that solid phase cytometry is an efficient, sensitive and accurate tool to characterize the ability of non-selective and selective enrichment broths to allow the repair of stressed L. monocytogenes cells by examining the increase in the fraction of the most esterase active cells during the course of resuscitation.  相似文献   

2.
Phaeodactylum tricornutum Bohlin (Bacillariophyceae) was maintained in exponential growth under Fe‐replete and stressed conditions over a range of temperatures from 5 to 30° C. The maximum growth rate (GR) was observed at 20° C (optimal temperature) for Fe‐replete and ‐stressed cells. There was a gradual decrease in the GR decreasing temperatures below the optimum temperature; however, the growth rate dropped sharply as temperature increased above the optimum temperature. Fe‐stressed cells grew at half the growth rate of Fe‐replete cells at 20° C, whereas this difference became larger at lower temperatures. The change in metabolic activities showed a similar pattern to the change in growth rate temperature aside from their optimum temperature. Nitrate reductase activity (NRA) and respiratory electron transport system activity (ETS) per cell were maximal between 15 and 20° C, whereas cell‐specific photosynthetic rate (Pcell) was maximal at 20° C for Fe‐replete cells. These metabolic activities were influenced by Fe deficiency, which is consistent with the theoretical prediction that these activities should have an Fe dependency. The degree of influence of Fe deficiency, however, was different for the four metabolic activities studied: NRA > Pcell > ETS = GR. NRA in Fe‐stressed cells was only 10% of that in Fe‐replete cells at the same temperature. These results suggest that cells would have different Fe requirements for each metabolic pathway or that the priority of Fe supply to each metabolic reaction is related to Fe nutrition. In contrast, the order of influence of decreasing the temperature from the optimum temperature was ETS > Pcell > NRA > GR. For NRA, the observed temperature dependency could not be accounted for by the temperature dependency of the enzyme reaction rate itself that was almost constant with temperature, suggesting that production of the enzyme would be temperature dependent. For ETS, both the enzyme reactivity and the amount of enzyme accounted for the dependency. This is the first report to demonstrate the combined effects of Fe and temperature on three important metabolic activities (NRA, Pcell, and ETS) and to determine which activity is affected the most by a shortage of Fe. Cellular composition was also influenced by Fe deficiency, showing lower chl a content in the Fe‐stressed cells. Chl a per cell volume decreased by 30% as temperature decreased from 20 to 10° C under Fe‐replete conditions, but chl a decreased by 50% from Fe‐replete to Fe‐stressed conditions.  相似文献   

3.
Flow cytometric measurement of pollutant stresses on algal cells   总被引:3,自引:0,他引:3  
The lichen Usnea fulvoreagens (R?s). R?s. was treated with four pH levels (5.5, 4.5, 3.5, and 2.5) of simulated acid rain (sulfuric acid, nitric acid, and a 1:1 combination of both) and automobile exhaust. The samples were dissociated and analyzed by a Becton-Dickinson FACS 440 flow cytometer. Analyses included measurement of chlorophyll autofluorescence and fluorescence due to uptake of fluorescein diacetate (FDA) and calcofluor white M2R (CFW). Cell parameters measured were esterase activity (FDA), membrane permeability (FDA, CFW), and intracellular pH (FDA). Mean fluorescence intensity from FDA staining and numbers of events were incorporated with autofluorescence information to produce a "stress index" of relative cell stress. Results indicated that highly stressed samples (lower pH treatments and greater exposure to exhaust) exhibited a low "stress index" of FDA fluorescence.  相似文献   

4.
J Dorsey  C M Yentsch  S Mayo  C McKenna 《Cytometry》1989,10(5):622-628
A standard method for the assessment of cell viability has been developed for marine phytoplankton using an inexpensive stain, fluorescein diacetate (FDA), at .75 microM for 10 min. A flow cytometer was used as the fluorescence detector, providing an assessment of viability for each individual particle. Cell size and chlorophyll fluorescence per cell were assessed simultaneously, permitting an assignment of viability to specific subpopulations, thus increasing the power of the technique. A reasonable correspondence between FDA mean fluorescence intensity per cell and an independent metabolic indicator, photosynthetic capacity measured by 14C, was found. Both FDA mean fluorescence intensity and photosynthetic capacity vary as a function of cell volume. Recovery after extended periods of darkness indicate that cells that are FDA negative may not be dead, but merely quiescent or inactive.  相似文献   

5.
Akinetes, differentiated resting cells produced by many species of filamentous, heterocystous cyanobacteria, enable the organism to survive adverse conditions, such as cold winters and dry seasons, and to maintain germination capabilities until the onset of suitable conditions for vegetative growth. Mature akinetes maintain a limited level of metabolic activities, including photosynthesis. In the present study, we have characterized changes in the photosynthetic apparatus of vegetative cells and akinetes of the cyanobacterium Aphanizomenon ovalisporum Forti (Nostocales) during their development and maturation. Photosynthetic variable fluorescence was measured by microscope‐PAM (pulse‐amplitude‐modulated) fluorometry, and the fundamental composition of the photosynthetic apparatus was evaluated by fluorescence and immunological techniques. Vegetative cells and akinetes from samples of Aphanizomenon trichomes from akinete‐induced cultures at various ages demonstrated a gradual reduction, with age, in the maximal photosynthetic quantum yield in both cell types. However, the maximal quantum yield of akinetes declined slightly faster than that of their adjacent vegetative cells. Mature akinetes isolated from 6‐ to 8‐week‐old akinete‐induced cultures maintained only residual photosynthetic activity, as indicated by very low values of maximal photosynthetic quantum yields. Based on 77 K fluorescence emission data and immunodetection of PSI and PSII polypeptides, we concluded that the ratio of PSI to PSII reaction centers in mature akinetes is slightly higher than the ratio estimated for exponentially grown vegetative cells. Furthermore, the cellular abundance of these protein complexes substantially increased in akinetes relative to exponentially grown vegetative cells, presumably due to considerable increase in the biovolume of akinetes.  相似文献   

6.
Zinc toxicity on photosynthetic activity in cells of Synechocystis aquatilis f. aquatilis Sauvageau was investigated by monitoring Hill activity and fluorescence. The oxygen‐evolving activity decreased to about 80% of the initial value after exposure to 0.1 mM ZnSO4 for 1 h. The PSII activity was inhibited by 40% in the presence of zinc concentrations ranging from 0.5 to 5.0 mM, suggesting that the metal effect is limited by zinc uptake. The fluorescence capacity (Fmax–F/Fmax) decreased from 0.57 to 0.35 and 0.20 in Zn‐treated cells for 15 and 60 min, respectively, thus providing evidence for rapid inactivation of electron transport at PSII. Zinc treatment promoted a rapid increase in PSII fluorescence that was counteracted by addition of 1,4‐benzoquinone, indicating that electron transfer at the reducing side of the PSII reaction center is arrested by zinc. Furthermore, a decline in the fluorescence yield could be observed after 1 h of zinc treatment as well as when Zn‐treated cells were excited in presence of 3‐(3′,4′‐dichlorophenyl)‐1,1‐dimethylurea. Under these conditions, zinc did not affect energy transfer from phycobilisomes to PSII, and the gradual quenching of PSII fluorescence may be due to a decrease in electron flow on the donor side of PSII. However, the 20% increase in the minimal fluorescence intensity (Fo) in parallel to the absence of changes in the maximal fluorescence intensity (Fmax), observed in the first hour of zinc treatment, could also suggest a metal‐induced decline in the energy transfer from PSII‐chl a antenna to the PSII reaction center.  相似文献   

7.
Phase contrast microscopy cannot give sufficient information on bacterial metabolic activity, or if a cell is dead, it has the fate to die or it is in a viable but non-growing state. Thus, a reliable sensing of the metabolic activity helps to distinguish different categories of viability. We present a non-invasive instantaneous sensing method using a fluorogenic substrate for online monitoring of esterase activity and calcein efflux changes in growing wild type bacteria. The fluorescent conversion product of calcein acetoxymethyl ester (CAM) and its efflux indicates the metabolic activity of cells grown under different conditions at real-time. The dynamic conversion of CAM and the active efflux of fluorescent calcein were analyzed by combining microfluidic single cell cultivation technology and fluorescence time lapse microscopy. Thus, an instantaneous and non-invasive sensing method for apparent esterase activity was created without the requirement of genetic modification or harmful procedures. The metabolic activity sensing method consisting of esterase activity and calcein secretion was demonstrated in two applications. Firstly, growing colonies of our model organism Corynebacterium glutamicum were confronted with intermittent nutrient starvation by interrupting the supply of iron and carbon, respectively. Secondly, bacteria were exposed for one hour to fatal concentrations of antibiotics. Bacteria could be distinguished in growing and non-growing cells with metabolic activity as well as non-growing and non-fluorescent cells with no detectable esterase activity. Microfluidic single cell cultivation combined with high temporal resolution time-lapse microscopy facilitated monitoring metabolic activity of stressed cells and analyzing their descendants in the subsequent recovery phase. Results clearly show that the combination of CAM with a sampling free microfluidic approach is a powerful tool to gain insights in the metabolic activity of growing and non-growing bacteria.  相似文献   

8.
Summary Photosynthetic capacity at several levels of illuminance was investigated in cells of the successive developmental stages of the high temperature strain, Chlorella 7-11-05. The saturating light intensity, rates of photosynthesis at light saturation and at half-saturation, and the slope of the light dependent portion of the light intensity curves were proved to be bound with the developmental status of cells. The effect of the choosing of the basis for calculations of photosynthetic activity — whether packed cell volume, dry weight, nitrogen, or chlorophyll content—was discussed. The fact was stressed that with the available synchronization technique the observable amplitude of changes in metabolic activity in the course of cell development is a minimal one and the actual fluctuations in photosynthetic rates in non-synchronized suspensions in the course of the life cycle of the individual cells are expected to be higher than those recorded for synchronized populations.  相似文献   

9.
Functional features of Scenedesmus obliquus: wild type 276–6 strain (WT) and its two mutants reported as photosystem I‐deficient (mutant 56.80) and photosystem II‐deficient (mutant 57.80) were characterized. Algae were cultured aseptically under continuous light or in darkness on mineral bold basal medium (BBM), yeast extract‐enriched BBM and yeast extract to evaluate the physiology of algal cells under photoautotrophic, mixotrophic and heterotrophic conditions. Growth, superoxide dismutase activity and photosynthetic parameters, including polyphasic fluorescence rise during the first seconds of chlorophyll a illumination (OJIP), were analyzed to find relationships between the photosynthetic/respiratory activity of the cells, occurrence of oxidative stress and trophic conditions applied to PSs‐deficient algae. Despite the highest superoxide dismutase activity, indicating the presence of oxidative stress, mixotrophic conditions appeared to be optimal for S. obliquus WT and mutant strains kept in non‐aerated cultures. OJIP analysis indicated that in mutant 56.80 part of photosystem (PS) I was functional and in mutant 57.80 residual PS II activity was found.  相似文献   

10.
Interactions between Microcystis aeruginosa and Chlorella pyrenoidosa were analyzed by flow cytometry and by phytoplankton pulse‐amplitude‐modulated fluorimetry (Phyto‐PAM) in joint cultures as well as in cultures separated by dialysis membranes. Results showed that the growth of C. pyrenoidosa was greater than that of M. aeruginosa, and that the growth of M. aeruginosa but not the growth of C. pyrenoidosa was significantly inhibited by the interactions between M. aeruginosa and C. pyrenoidosa. Culture filtrates of these two algae showed no apparent effects on the growth of the competing species. For M. aeruginosa, decreases in esterase activity, chlorophyll a fluorescence, and maximum quantum yield were observed in joint cultures, indicating that the metabolic activity and photosynthetic capacity of M. aeruginosa were suppressed. Light limitation from the shading effect of C. pyrenoidosa may be the main reason for such inhibition. For C. pyrenoidosa, esterase activity was suppressed in membrane‐separated and joint cultures, suggesting that C. pyrenoidosa was probably affected by allelopathic substances secreted by M. aeruginosa. However, no significant difference was observed in the chlorophyll a fluorescence and maximum quantum yield of C. pyrenoidosa in the two cultures. In addition, interspecific interactions induced a reduction in size in both M. aeruginosa and C. pyrenoidosa, which may contribute to the development of C. pyrenoidosa dominance in the present study. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Species of the genus Ulva (Chlorophyta) are regarded as opportunistic organisms, which efficiently adjust their metabolism to the prevailing environmental conditions. In this study, changes in chlorophyll‐a fluorescence‐based photoinhibition of photosynthesis, electron transport rates, photosynthetic pigments, lipid peroxidation, total phenolic compounds, and antioxidant metabolism were investigated during a diurnal cycle of natural solar radiation in summer (for 12 h) under two treatments: photosynthetically active radiation (PAR: 400–700 nm) and PAR+ ultraviolet (UV) radiation (280–700 nm). In the presence of PAR alone, Ulva rigida showed dynamic photoinhibition, and photosynthetic parameters and pigment concentrations decreased with the intensification of the radiation. On the other hand, under PAR+UV conditions a substantial decline up to 43% was detected and an incomplete fluorescence recovery, also, P‐I curve values remained low in relation to the initial condition. The phenolic compounds increased their concentration only in UV radiation treatments without showing a correlation with the antioxidant activity. The enzimatic activity of superoxide dismutase (SOD) and ascorbate peroxidase (APX) increased over 2‐fold respect at initial values during the onset of light intensity. In contrast, catalase (CAT) increased its activity rapidly in response to the radiation stress to reach maxima at 10 a.m. and decreasing during solar. The present study suggests that U. rigida is capable of acclimating to natural radiation stress relies on a concerted action of various physiological mechanisms that act at different times of the day and under different levels of environmental stress.  相似文献   

12.
Sea ice is the dominant feature of polar oceans and contains significant quantities of microalgae. When sea ice forms and melts, the microalgal cells within the ice matrix are exposed to altered salinity and irradiance conditions, and subsequently, their photosynthetic apparatuses become stressed. To simulate the effect of ice formation and melting, samples of sea‐ice algae from Cape Hallett (Antarctica) were exposed to altered salinity conditions and incubated under different levels of irradiance. The physiological condition of their photosynthetic apparatuses was monitored using fast and slow fluorescence‐induction kinetics. Sea‐ice algae exhibited the least photosynthetic stress when maintained in 35‰ and 51‰ salinity, whereas 16, 21, and 65‰ treatments resulted in significant photosynthetic stress. The greatest photosynthetic impact appeared on PSII, resulting in substantial closure of PSII reaction centers when exposed to extreme salinity treatments. Salinity stress to sea‐ice algae was light dependent, such that incubated samples only suffered photosynthetic damage when irradiance was applied. Analysis of fast‐induction curves showed reductions in J, I, and P transients (or steps) associated with combined salinity and irradiance stress. This stress manifests itself in the limited capacity for the reduction of the primary electron receptor, QA, and the plastoquinone pool, which ultimately inhibited effective quantum yield of PSII and electron transport rate. These results suggest that sea‐ice algae undergo greater photosynthetic stress during the process of melting into the hyposaline meltwater lens at the ice edge during summer than do microalgae cells during their incorporation into the ice matrix during the process of freezing.  相似文献   

13.
Regulations for ballast water treatment specify limits on the concentrations of living cells in discharge water. The vital stains fluorescein diacetate (FDA) and 5‐chloromethylfluorescein diacetate (CMFDA) in combination have been recommended for use in verification of ballast water treatment technology. We tested the effectiveness of FDA and CMFDA, singly and in combination, in discriminating between living and heat‐killed populations of 24 species of phytoplankton from seven divisions, verifying with quantitative growth assays that uniformly live and dead populations were compared. The diagnostic signal, per‐cell fluorescence intensity, was measured by flow cytometry and alternate discriminatory thresholds were defined statistically from the frequency distributions of the dead or living cells. Species were clustered by staining patterns: for four species, the staining of live versus dead cells was distinct, and live‐dead classification was essentially error free. But overlap between the frequency distributions of living and heat‐killed cells in the other taxa led to unavoidable errors, well in excess of 20% in many. In 4 very weakly staining taxa, the mean fluorescence intensity in the heat‐killed cells was higher than that of the living cells, which is inconsistent with the assumptions of the method. Applying the criteria of ≤5% false negative plus ≤5% false positive errors, and no significant loss of cells due to staining, FDA and FDA+CMFDA gave acceptably accurate results for only 8–10 of 24 species (i.e., 33%–42%). CMFDA was the least effective stain and its addition to FDA did not improve the performance of FDA alone.  相似文献   

14.
The metabolic activity of suspension cultures of Sonneratia alba cells was quantified by measurement of the hydrolysis of fluorescein diacetate (FDA). FDA is incorporated into live cells and is converted into fluorescein by cellular hydrolysis. Aliquots (0.1–0.75 g) of S. alba cells were incubated with FDA at a final concentration of 222 μg/ml suspension for 60 min. Hydrolysis was stopped, and fluorescein was extracted by the addition of acetone and quantified by measurement of absorbance at 490 nm. Fluorescein was produced linearly with time and cell weight. Cells of S. alba are halophilic and proliferated well in medium containing 50 and 100 mM NaCl. Cells grown in medium containing 100 mM NaCl showed 2- to 3-fold higher FDA hydrolysis activity than those grown in NaCl-free medium. When S. alba cells grown in medium supplemented with 50 mM NaCl were transferred to fresh medium containing 100 mM mannitol, cellular FDA hydrolysis activity was down-regulated after 4 days of culture, indicating that the moderately halophilic S. alba cells were sensitive to osmotic stress. Quantification of cellular metabolic activity via the in vivo FDA hydrolysis assay provides a simple and rapid method for the determination of cellular activity under differing culture conditions.  相似文献   

15.
Photosynthesis is one of the most important metabolic processes of algae; which is altered as a stress response. During mass cultivation of algae, temperature rise and high light are major factors that affect biomass productivity. High temperature affects photosystem II (PSII) complex irreversibly, damaging intermolecular interactions in it. However, the impact of high temperature on photosynthesis is highly variable among different algal species, depending on the prior acclimation to environmental conditions they were exposed to. The acclimation plays an important role in combating high temperature stress via regulation of photosynthetic responses. Chlorophyll a fluorescence is a highly sensitive, non‐destructive and reliable tool for such measurements of photosynthetic parameters, which provides information about algal photosynthetic performance under given conditions. To understand the effect of heat stress on the responses of high light acclimated alga Chlorella saccharophila, chlorophyll a fluorescence transients were measured after heat exposure at 40°C. Our study demonstrates that rise in temperature for short duration; during open field cultivation reversibly affects the efficiency of PSII in light acclimated alga C. saccharophila. The effects of heat stress on chlorophyll a fluorescence in this alga, grown under high light (max‐1600 μmol photons m?2 s?1) are presented here; they are used to infer changes in photosynthetic process during its exposure to heat, as well as their recovery after 72 h. We speculate that heat resistance may have been acquired due to prior exposures to high light.  相似文献   

16.
Bacterial growth under oxygen‐limited (microaerobic) conditions is often accompanied by phenomena of great interest for fundamental research and industrial application. The microaerobic lifestyle of anoxygenic photosynthetic bacteria like Rhodospirillum rubrum harbors such a phenomenon, as it allows the formation of photosynthetic membranes and related interesting products without light. However, due to the technical difficulties in process control of microaerobic cultivations and the limited sensitivity of available oxygen sensors, the analysis of microaerobic growth and physiology is still underrepresented in current research. The main focus of the present study was to establish an experimental set‐up for the systematic study of physiological processes, associated with the growth of R. rubrum under microaerobic conditions in the dark. For this purpose, we introduce a robust and reliable microaerobic process control strategy, which applies the culture redox potential (CRP) for assessing different degrees of oxygen limitation in bioreactor cultivations. To describe the microaerobic growth behavior of R. rubrum cultures for each of these defined CRP reduction steps, basic growth parameters were experimentally determined. Flux variability analysis provided an insight into the metabolic activity of the TCA cycle and implied its connection to the respiratory capacity of the cells. In this context, our results suggest that microaerobic growth of R. rubrum can be described as an oxygen‐activated cooperative mechanism. The present study thus contributes to the investigation of metabolic and regulatory events responsible for the redox‐sensitive formation of photosynthetic membranes in facultative photosynthetic bacteria. Furthermore, the introduced microaerobic cultivation setup should be generally applicable for any microbial system of interest which can be cultivated in common stirred‐tank bioreactors. Biotechnol. Bioeng. 2013; 110: 573–585. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
Aims: Using a flow cytometry (FC)‐based approach in combination with four selected fluorescent probes, the biochemical pathway activated following the adaptation of Cronobacter spp. to lethal heat stress was investigated. This approach assessed the physiological changes induced in four strains of Cronobacter spp. Methods and Results: Using the commercially available live/dead viability assessment fluorescence probes, live, injured or dead bacterial cells were studied. Cellular respiration and membrane potential were evaluated using the dye‐labelled probe 3,3′‐dihexylocarbocyanine iodide, metabolic activity was evaluated using a fluorescein diacetate (FDA) probe, intracellular pH changes were measured using a carboxy‐fluorescein diacetate succinimidyl ester probe, and reactive oxygen species were measured using a hydroethidine fluorescent probe. Adaptation to lethal heat stress induced physiological changes that potentially improve the survival of Cronobacter spp. Conclusions: These data showed that in situ assessment of physiological behaviour of lethally stressed cells using multiparameter FC is a useful, rapid and sensitive tool to study and assess the viability and physiological state of Cronobacter cells. Significance and Impact of the Study:  This study shows that FC is a valuable tool in the study of physiological aspects of increased survival because of sublethal adaptation to heat.  相似文献   

18.
Olive (Olea europea L) is one of the most valuable and widespread fruit trees in the Mediterranean area. To breed olive for resistance to salinity, an environmental constraint typical of the Mediterranean, is an important goal. The photosynthetic limitations associated with salt stress caused by irrigation with saline (200 mm ) water were assessed with simultaneous gas‐exchange and fluorescence field measurements in six olive cultivars. Cultivars were found to possess inherently different photosynthesis when non‐stressed. When exposed to salt stress, cultivars with inherently high photosynthesis showed the highest photosynthetic reductions. There was no relationship between salt accumulation and photosynthesis reduction in either young or old leaves. Thus photosynthetic sensitivity to salt did not depend on salt exclusion or compartmentalization in the old leaves of the olive cultivars investigated. Salt reduced the photochemical efficiency, but this reduction was also not associated with photosynthesis reduction. Salt caused a reduction of stomatal and mesophyll conductance, especially in cultivars with inherently high photosynthesis. Mesophyll conductance was generally strongly associated with photosynthesis, but not in salt‐stressed leaves with a mesophyll conductance higher than 50 mmol m?2 s?1. The combined reduction of stomatal and mesophyll conductances in salt‐stressed leaves increased the CO2 draw‐down between ambient air and the chloroplasts. The CO2 draw‐down was strongly associated with photosynthesis reduction of salt‐stressed leaves but also with the variable photosynthesis of controls. The relationship between photosynthesis and CO2 draw‐down remained unchanged in most of the cultivars, suggesting no or small changes in Rubisco activity of salt‐stressed leaves. The present results indicate that the low chloroplast CO2 concentration set by both low stomatal and mesophyll conductances were the main limitations of photosynthesis in salt‐stressed olive as well as in cultivars with inherently low photosynthesis. It is consequently suggested that, independently of the apparent sensitivity of photosynthesis to salt, this effect may be relieved if conductances to CO2 diffusion are restored.  相似文献   

19.
Aims: To identify and understand the presence of metabolites responsible for the variation in the metabolic profile of Vibrio coralliilyticus under extreme conditions. Methods and Results: Multiple batches of V. coralliilyticus were grown under normal conditions. Four samples in one batch were subjected to extreme conditions via a freeze‐thaw cycle during lyophilization. Polar metabolites were extracted using a combination of methanol, water and heat. Nuclear magnetic resonance (NMR)‐based metabolic profiles indicated significant differences between the normal and stressed samples. Three compounds identified in the stressed metabolome were maltose, ethanolamine, and the bioplastic‐type compound (BTC) 2‐butenoic acid, 2‐carboxy‐1‐methylethyl ester. This is the first report of the production of this BTC by V. coralliilyticus. Conclusions: The presence of maltose and ethanolamine indicates a state of acute nutrient limitation; therefore, we hypothesize that the cell’s metabolism turned to its own cell wall, or perhaps neighbouring cells, for sources of carbon and nitrogen. The presence of the BTC also supports the acute nutrient limitation idea because of the parallels with polyhydroxyalkanoate (PHA) production in other gram‐negative bacteria, including other Vibrio species. Significance and Impact of the Study: Recent metabolomics research on the temperature‐dependent coral pathogen V. coralliilyticus has led to the discovery of several compounds produced by the organism as a response to high density, low nutrient conditions. The three metabolites, along with 1H NMR metabolic fingerprints of the nutrient limited samples, are proposed to serve as metabolic markers for extremely stressful conditions of V. coralliilyticus.  相似文献   

20.
A flow-cytometric method was developed and evaluated as a rapid ecotoxicological tool using cultures of the microalga Chlamydomonas reinhardtii (Chlorophyceae) under cadmium exposure. Three staining protocols were developed to assess the toxicological impact of this trace metal on algal physiology. Algal cells were exposed to total nominal cadmium concentrations of 5 and 100 µM. After 48 and 72 h exposure the fluorescent probes, fluorescein diacetate (FDA), dihydrorhodamine 123 (DHR123) and tetramethylrhodamine methyl ester (TMRM), were used to assess esterase activity, presence of reactive oxygen species and membrane potential, respectively. Results indicated that cell size, cell granularity and internal complexity were influenced by cadmium, confirming earlier findings on ultrastructural changes in microalgae exposed to trace metals. An increase was observed in the percentage of DHR123 positive cells as well as in their mean fluorescence intensity, on increasing cadmium concentration, confirming that this metal exerts its toxicity through the generation of reactive oxygen species. Furthermore, cadmium exposure resulted in an increase in esterase activity, as reflected in fluorescein fluorescence. We suggest this observation was linked to possible detoxification activity and defence mechanisms. Measurements of control samples during protocol optimization for TMRM proved not to be reproducible, leading us to defer any judgment on results of exposed samples and to conclude that TMRM does not seem suitable for flow cytometric use in algae. Our results demonstrate that although very rarely used in ecotoxicology, flow cytometry is a quick and convenient technique to assess toxic effects that can generate mechanistic information on the mode of action of contaminants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号