首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Recognition that beavers are integral components of stream ecosystems has resulted in an increase in beaver‐mediated habitat restoration projects. Beaver restoration projects are frequently implemented in degraded stream systems with little or no beaver activity. However, selection of restoration sites is often based on habitat suitability research comparing well‐established beaver colonies to unoccupied stream sections or abandoned colonies. Because beavers dramatically alter areas they occupy, assessing habitat conditions at active colonies may over‐emphasize habitat characteristics that are modified by beaver activity. During 2015–2017, we conducted beaver activity surveys on streams in the upper Missouri River watershed in southwest Montana, United States, to investigate habitat selection by beavers starting new colonies in novel areas. We compared new colony locations in unmodified stream segments to unsettled segments to evaluate conditions that promoted colonization. Newly settled stream segments had relatively low gradients (β ± SE = ?0.72 ± 0.27), narrow channels (β = ?1.31 ± 0.46), high channel complexity (β = 0.76 ± 0.42), high canopy cover of woody riparian vegetation (β = 0.56 ± 0.21), and low‐lying areas directly adjacent to the stream (β = 0.36 ± 0.24), where β denotes covariate effect sizes. Habitat selection patterns differed between our new settlement site analysis and an analysis of occupied versus unoccupied stream segments, suggesting that assessing habitat suitability based on active colonies may result in misidentification of suitable site conditions for beaver restoration. Our research provides recommendations for beaver restoration practitioners to select restoration sites that will have the highest probability of successful colony establishment.  相似文献   

2.
东江河岸缓冲带景观格局变化对水体恢复的影响   总被引:11,自引:0,他引:11  
周婷  彭少麟  任文韬 《生态学报》2009,29(1):231-239
以1998年,2006年的TM遥感影像数据为基础,利用地理系统软件Arc GIS对东江主干边缘做10km的缓冲区.以Fragstats为工具,利用景观指数从类型水平和景观水平上,分析河岸带景观格局变化.重点分析了各景观相关要素及景观整体对水体恢复的影响.结果表明:经过8a的变迁,东江水体斑块面积占河岸带景观面积的比例增加,水体连通性加强,破碎化程度有所下降,体现了在景观格局上流域水体有一定的恢复成效.河岸带区域中植被斑块面积增加,表明植被覆盖率增大,会有助于流域的水土保持;区域中耕地斑块面积在整个河岸带中的比例降低,对水体水质的污染会有减缓作用;整个河岸带景观破碎化程度有所下降,空间连通性相对增加.以上3种因素都会对水体的恢复起到促进作用.河岸带地区城市化水平加剧,这可以从建成地斑块面积增加,形状更加规则等景观格局特征看出,反映了人类干扰还在增强,无疑会对水体恢复造成不利影响.综合分析东江河岸缓冲带景观格局变化可以看出,东江河岸带水体恢复有一定成效,但是恢复的力度还有待加强,特别要注重植被质量的优化,改善植被的空间配置结构和种类搭配.城市规划中对建成地的选择要考虑河岸带的特殊性.水体的恢复要在景观水平上采取恢复措施,注重多因子的协调整合,改善流域尺度的景观格局配置.  相似文献   

3.
河岸带生态系统退化机制及其恢复研究进展   总被引:25,自引:3,他引:22  
恢复和重建自然和人为干扰导致的退化河岸带生态系统是目前恢复生态学、流域生态学等学科研究的重要内容之一.对河岸带生态系统的干扰表现在河流水文特征改变、河岸带直接干扰和流域尺度干扰3个方面,分别具有不同的影响机制.河流水文特征改变通过改变河岸土壤湿度、氧化还原电位、生物生存环境以及沉积物传输规律对河岸带生态系统产生影响;河岸带直接干扰通过人类活动及外来物种入侵而直接影响河岸带植被多样性;流域尺度干扰则主要表现在河道刷深、河道淤积、河岸带地下水位降低和河流冲刷过程改变等.河岸带生态恢复评价对象包括河岸带生态系统各要素,评价指标已从单一的生态指标转向综合性指标.河岸带生态恢复应在景观或者流域尺度上进行考虑,识别对其影响的生物和物理过程以及导致其退化的干扰因子,通过植被重建与水文调控来进行.扩展研究尺度和研究对象及采用多学科的研究方法将是今后相关研究中的重要问题.  相似文献   

4.
Verdonschot  P.F.M.  Nijboer  R.C. 《Hydrobiologia》2002,478(1-3):131-148
Stream restoration is one of the answers to the lowland stream deterioration. For making proper choices in stream restoration; one firstly needs to understand the complex spatial and temporal interactions between physical, chemical and biological components in the stream ecosystem. Several ecological concepts on the four dimensions, scale and hierarchy in a stream ecosystem are integrated into the 5-S-model. This model provides the theoretical backbone of the first outline of a decision support system for stream restoration. Stream restoration is developing fast in the Netherlands. In 1991, 70 projects were counted, in 1993 there were 170, and this number increased in 1998 to 206. Positive signs in this increase in the number of stream restoration projects are the increase in the amount of money, in background studies, in improvement of the selection process of stretches to be tackled, and the broadening of the objectives and measures. Negative signs are amongst others that measures often deal only with stream hydrology and structures in-stream. The catchment takes no part. Furthermore, bottlenecks often relate to finances and agreement between people and/or organisations. Finally, the first steps towards a decision support system for stream restoration are made. The system presented provides only information based on which measures should be taken. `Where and how' these measures need to be taken remains a challenge for the future.  相似文献   

5.
Montane riparian meadows foster biodiversity and support critical ecosystem services. A history of exploitation has left most riparian meadows throughout the Mountain West of the United States with incised channels, severely compromising their functionality. Hydrologic restoration of riparian meadows aims to increase overbank flow during spring run‐off and elevate groundwater levels in the dry season. Outcome‐based evaluations of the dominant meadow restoration methods are lacking and needed to ensure objectives are being met and to guide modifications where needed. We completed 1,282 point count surveys from 2009 to 2017 at 173 sampling locations across 31 montane riparian meadows in California restored using partial channel fill techniques (e.g. pond‐and‐plug) to evaluate the expected outcome of increased abundance of meadow birds. We analyzed trends in abundance for 12 focal bird species from 1 to 18 years after hydrologic restoration, substituting space for time in our mixed effects Poisson regression models that included covariates for the amount of riparian deciduous vegetation (RDV) before restoration, stream flow, precipitation, and temperature. We found evidence for a positive effect of time since restoration on abundance for 6 of the 12 species. Although pre‐restoration RDV cover was the most frequently supported predictor of abundance, high pre‐restoration cover of RDV slowed response rates for only two species, suggesting other elements of hydrologic function are also important for meadow birds. Drawing on our results, we provide suggestions for enhancing hydrologic restoration efforts in riparian meadows so that benefits may accrue more quickly to more bird species.  相似文献   

6.
Climate change is likely to affect plants in multiple ways, but predicting the consequences for habitat suitability requires a process‐based understanding of the interactions. This is at odds with existing approaches that are mostly phenomenological and largely restricted to predicting the effects of changing temperature and rainfall on species distributions at a coarse spatial scale. We examine the multiple effects of climate change, including predicting the effects of altered flood regimes and land‐use change, on the potential distribution of the invasive riparian species lippia (Phyla canescens) across a 26 000 km2 catchment in eastern Australia. We determined habitat suitability for lippia by combining process‐understanding of experts and an eco‐physiological bioclimatic model within a Bayesian belief network. The bioclimatic model predicted substantial changes in habitat suitability by 2070 under both a wetter (Echam Mark 3) and drier (Hadley Centre Mark 2) climate change scenario, but only the more likely drier scenario reduced suitability in our test region. The area suitable for lippia was predicted to increase at least threefold with increased flooding under a wet climate scenario, although this would be partially negated by land‐use change to cultivation. The region would become unsuitable to lippia with reduced flooding under a drier scenario irrespective of land‐use changes, although existing populations would persist if grazing persisted. Independent field validation verified model structure and parameterization, and therefore the opinion of experts, but identified site‐scale deficiencies in the available environmental data layers. Model predictions suggest that adaptation options for managing lippia will be greatly reduced under a drying scenario, but identify potential restoration opportunities under either scenario. This work highlights the value of predictive models that incorporate process‐understanding at sufficiently fine spatial resolution to capture the important processes underpinning habitat suitability.  相似文献   

7.
1. The restoration of native, forested riparian habitats is a widely accepted method for improving degraded streams. Little is known, however, about how the width, extent and continuity of forested vegetation along stream networks affect stream ecosystems. 2. To increase the likelihood of achieving restoration goals, restoration practitioners require quantitative tools to guide the development of restoration strategies in different catchment settings. We present an empirically based model that establishes a relationship between a ‘stress’ imposed at different locations along a stream by the spatial pattern of land cover within catchments, and the response of biologically determined ecosystem characteristics to this stress. The model provides a spatially explicit, quantitative framework for predicting the effects of changes in catchment land cover composition and spatial configuration on specific characteristics of stream ecosystems. 3. We used geospatial datasets and biological data for attached algae and benthic macroinvertebrates in streams to estimate model parameters for 40 sites in 33 distinct catchments within the mid‐Atlantic Piedmont region of the eastern U.S. Model parameters were estimated using a genetic optimisation algorithm. R2 values for the resulting relationships between catchment land cover and biological characteristics of streams were substantially improved over R2 values for spatially aggregated regression models based on whole‐catchment land cover. 4. Using model parameters estimated for the mid‐Atlantic Piedmont, we show how the model can be used to guide restoration planning in a case study of a small catchment. The model predicts the quantitative change in biological characteristics of the stream, such as indices of species diversity and species composition, that would occur with the implementation of a hypothetical restoration project.  相似文献   

8.
用芦苇恢复受损河岸生态系统的工程化方法   总被引:17,自引:1,他引:17  
我国中小河流的护岸工程只考虑工程的耐久性多采用混凝土护岸。忽略了河流的生态功能,破坏了河流的各种生态过程,导致河流污染严重,生态作用越来越小。本研究提出一种用芦苇恢复受损河岸的工程化方法,以解决恢复受损河岸时成本高,破坏了芦苇原生地的生态环境和芦苇不便于运输的问题。其优点在于:在保证能够达到防止河岸崩塌及侵蚀的同时,在河岸工程设计中纳入生态学原理.创造出动植物及微生物能够生存的多孔隙河岸工程生态结构;可以减少对芦苇原生地的破坏。并且能够快速、大量繁殖芦苇幼苗。快速恢复受损河岸的芦苇群落及其生态环境;此方法在减少劳力、时间和成本的基础上,能够更容易恢复浅水带和河岸缓冲带芦苇群落,构建出一个芦苇繁茂的水域。  相似文献   

9.
Restoration and management of riparian ecosystems: a catchment perspective   总被引:10,自引:0,他引:10  
1. We propose that strategies for the management of riparian ecosystems should incorporate concepts of landscape ecology and contemporary principles of restoration and conservation. A detailed understanding of the temporal and spatial dynamics of the catchment landscape (e.g. changes in the connectivity and functions of channel, riparian and terrestrial components) is critical. 2. This perspective is based upon previous definitions of riparian ecosystems, consideration of functional attributes at different spatial scales and retrospective analyses of anthropogenic influences on river catchments. 3. Restoration strategies must derive from a concise definition of the processes to be restored and conserved, recognition of social values and commitments, quantification of ecological circumstances and the quality of background information and determination of alternatives. 4. The basic components of an effective restoration project include: clear objectives (ecological and physical), baseline data and historical information (e.g. the hydrogeomorphic setting and the disturbance regime), a project design that recognizes functional attributes of biotic refugia, a comparison of plans and outcomes with reference ecosystems; a commitment to long-term planning, implementation and monitoring and, finally, a willingness to learn from both successes and failures. 5. Particularly important is a thorough understanding of past natural disturbances and human-induced changes on riparian functions and attributes, obtained by a historical reconstruction of the catchment.  相似文献   

10.
Intact riparian zones maintain aquatic–terrestrial ecosystem function and ultimately, waterway health. Effective riparian management is a major step towards improving the condition of waterways and usually involves the creation of a ‘buffer’ by fencing off the stream and planting vegetation. Determination of buffer widths often reflects logistical constraints (e.g. private land ownership, existing infrastructure) of riparian and adjacent areas, rather than relying on rigorous science. We used published information to support riparian width recommendations for waterways in agricultural Victoria, Australia. We focused on different ecological management objectives (e.g. nutrient reduction or erosion control) and scrutinised the applicability of data across different environmental contexts (e.g. adjacent land use or geomorphology). Not surprisingly, the evidence supported variable ‘effective’ riparian widths, depending on the objective and environmental context. We used this information to develop a framework for determining riparian buffer widths to meet a variety of ecological objectives in south‐east Australia. Widths for reducing nutrient inputs to waterways were most strongly supported with quantitative evidence and varied between 20 and 38 m depending on environmental context. The environmental context was inconsistently reported, making it difficult to recommend appropriate widths, under different land‐use and physiographic scenarios. The evidence to guide width determination generally had high levels of uncertainty. Despite the considerable amount of published riparian research, there was insufficient evidence to demonstrate that implemented widths achieved ecological objectives. We emphasise the need for managers to clearly articulate the objectives of proposed riparian management and carefully consider the environmental context. Monitoring ecological responses associated with different riparian buffer widths is essential to support future management decisions.  相似文献   

11.
Ecological restoration involves a dual uncertainty or disagreement, one connected to changes in the environment and in human expertises, and another related to changes in views of acceptability over time and underlying value disagreements. While the former often is attended to under the notion of adaptive management, the latter is less often considered. The aim of this article is to investigate how a continuous involvement process can facilitate adjustments of ecological restoration, taking into account the values of all parties involved. Using a combination of a survey distributed to stakeholders in the involvement process and content analysis of the minutes from the series of meetings of the involvement process, the concerns and views of stakeholders, and the kinds of adjustment, which took place, were identified. Stakeholders were generally positive about being involved but expressed various concerns about the restoration approach itself, especially the open‐endedness, and about specific interventions. Three types of adjustment were identified: (1) project managers adjusted activities based on stakeholders' raised concerns and values; (2) stakeholders modified views in response to project managers as the restoration project proceeded; and (3) shifts in views took place within the stakeholder group based on exchanges with other stakeholders involved in the project. Mutual benefits and a higher level of mutual understanding were reached through the approach we call “adjustive ecological restoration.” This approach depends on the ability to work with stakeholders, willingness to adjust, high levels of trust, and the leveling of expectations at the beginning of the process.  相似文献   

12.
Summary With limited evidence linking Australia's Murray‐Darling Basin fish species and flooding, this study assessed annual variation in abundance and recruitment levels of a small‐bodied, threatened floodplain species, the Southern Pygmy Perch (Nannoperca australis), in floodplain habitats (creeks, lakes and wetlands) in the Barmah‐Millewa Forest, Murray River, Australia. Spring and summer sampling over a 5‐year period encompassed large hydrological variation, including 1 year of extended floodplain inundation which was largely driven by an environmental water release, and 2 years of severe regional drought. Recruitment and dispersal of Southern Pygmy Perch significantly increased during the floodplain inundation event compared with the other examined years. This study provides valuable support for an environmental water allocation benefiting a native species, and explores the link between flooding and its advantages to native fish. This suggests that the reduced flooding frequency and magnitude as a result of river regulation may well be a major contributing factor in the species’ decline in the Murray‐Darling Basin.  相似文献   

13.
The use of a bird community index that characterizes ecosystem integrity is very attractive to conservation planners and habitat managers, particularly in the absence of any single focal species. In riparian areas of the western USA, several attempts at arriving at a community index signifying a functioning riparian bird community have been made previously, mostly resorting to expert opinions or national conservation rankings for species weights. Because extensive local and regional bird monitoring data were available for Nevada, we were able to develop three different indices that were derived empirically, rather than from expert opinion. We formally examined the use of three species weighting schemes in comparison with simple species richness, using different definitions of riparian species assemblage size, for the purpose of predicting community response to changes in vegetation structure from riparian restoration. For the three indices, species were weighted according to the following criteria: (1) the degree of riparian habitat specialization based on regional data, (2) the relative conservation ranking of landbird species, and (3) the degree to which a species is under-represented compared to the regional species pool for riparian areas. To evaluate the usefulness of these indices for habitat restoration planning and monitoring, we modeled them using habitat variables that are expected to respond to riparian restoration efforts, using data from 64 sampling sites in the Walker River Basin in Nevada and California. We found that none of the species-weighting schemes performed any better as an index for evaluating overall habitat condition than using species richness alone as a community index. Based on our findings, the use of a fairly complete list of 30–35 riparian specialists appears to be the best indicator group for predicting the response of bird communities to the restoration of riparian vegetation.  相似文献   

14.
河岸带研究及其退化生态系统的恢复与重建   总被引:97,自引:9,他引:97  
河岸带是指水陆交界处的两边,直至河水影响消失为止的地带。河岸带是湿地的重要组成部分,在流域生态系统中发挥着重要的作用,具有较大的生态、社会、经济和旅游价值。河岸带研究以生态学、水文学和地貌学炎基础,涉及多种学科和技术方法。由于自然和人为因素的影响,退化河岸带的生态恢复与重建较为复杂,通过安徽潜山县潜水退化河岸带滩地近6a的生态恢复与重建试验,研究结果表明:恢复与重建后的河岸带滩地生态系统的生物多样性和稳定性增加;土训结构和养分条件得到改善,其中,小于0.002mm的粘粒含量的平均值由恢复前的4.53%,上升到恢复后的11.71%,土壤容重由恢复前的1.455g/cm^2下降到恢复后的1.2g/cm^2,土壤有机质的平均值由恢复前的1.25g/kg上升到恢复后的9.44g/kg;河滩地泥沙淤积量增加;植物抗风浪作用增强,有效地保护了河岸,改善了河岸带地区的小气候。河岸带研究在我国起步较晚,因此,今后应加强河岸带的管理和对退化河岸带生态系统的恢复与重建工作,使河岸带生态系统可持续地为人类提供丰富多样的生产、生活和观光旅游产品。  相似文献   

15.
16.
The Njoro River riparian vegetation species composition, distribution, disturbances and uses are presented and discussed. Montane Juniperus procera-Olea europaea spp. africana and submontane Acacia abyssinica forests were identified as the main riparian vegetation groups. Approximately 55% of the riparian vegetation species are used for herbal medicine, treating more than 330 health problems, and only 11% of the plants are edible. Albizzia gummifera in the Syzygium cordatum-Pittosporum abyssinicum-Hibiscus diversifolius forest is cut selectively for herbal medicine preparations. Disturbances on the riparian vegetation zone are broadly classified as those induced by man, livestock and wildlife. Comprehensive effects of disturbance included loss of vegetation vertical strata, increase/decrease of species diversity, introduction of alien plant species, and reduction of plant sizes and vegetation hectarage. The effects of grazing on the vegetation were severe around livestock watering points. Grazing and browsing by wildlife were the main disturbances of the vegetation near the Njoro River estuary at the Lake Nakuru National Park. Periodic flooding, as a natural disturbance, regulates growth and survival of vegetation at the Lake Nakuru drawdown. Quantification of species diversity and the extent of disturbance by humans and livestock is important for future management of the vegetation and, consequently, the river.  相似文献   

17.
In 2009, a group of practitioners took action to restore 175 miles of riparian habitat impaired by invasive plants along the Dolores River in southwestern Colorado and eastern Utah. Recognizing the magnitude of ecological, jurisdictional, and management challenges associated with this large‐scale initiative, this group of managers built trust and relationships with key partners to foster collaboration across boundaries and cultivate consensus of a variety of perspectives and forms of knowledge. What emerged was a network of individuals, organizations, and agencies dedicated to restoring the Dolores River riparian corridor while sharing information and learning from one another. This public–private collaboration, called the Dolores River Restoration Partnership (DRRP), has been successful in creating a process by which financial, technical, and human resources are shared across boundaries to restore a riparian corridor. Specifically, the DRRP developed effective planning documents, a responsive governance structure, monitoring protocols, and a shared mindset for extracting lessons learned that have been instrumental in making progress toward its shared restoration goals and addressing a wide variety of restoration challenges. The tools developed by the partnership and lessons learned from their utility are outlined in this case study as a means to inform other collaborative restoration efforts.  相似文献   

18.
汤浩  张卉  谢斐  徐驰  王磊  刘茂松 《应用生态学报》2012,23(6):1671-1676
离岸消浪堰式湖滨生态修复工程系采用离湖岸线一定距离的桩基消浪堰,在湖堤硬质化、湖滨植被带缺失的湖滨带实现控浪促淤,形成半封闭型的人工湖湾以恢复湖滨植被带的工程措施.修复工程形成了堰内挺水植物区、堰内沉水植物区和堰外开阔水体3个生境梯度带.本文以无锡市太湖贡湖湾离岸消浪堰式生态修复工程为研究对象,于2010年6月至2011年5月对工程区3个生境梯度带的水质状况进行了研究.结果表明:消浪堰内亚硝态氮与硝态氮总体上低于堰外,但铵态氮和总氮总体上高于堰外.秋冬季磷素指标堰内浓度低于堰外,但春夏季多高于堰外.堰内水体亚硝态氮和正磷酸盐浓度的变异系数减小,硝态氮、亚硝态氮和正磷酸盐的年最高浓度值低于堰外;但铵态氮和总氮的变异系数增加,且堰内铵态氮、总氮的年最高浓度值高于堰外.修复工程在生长季末期可在一定程度上加剧铵态氮、总氮等水质指标的恶化.  相似文献   

19.
Agricultural pollution, especially phosphorus (P) can cause eutrophication of freshwater quality. Riparian buffers are best management practices (BMPs) which intercept agricultural pollution. However, they are frequently degraded by reduced biodiversity. P mitigation in riparian buffers can be enhanced through mycorrhizal inoculation and cyclical coppicing. We report on a myco-phytoremediation project that investigates mycorrhizae's effect on vegetation's ability to lower legacy soil P, soil water P, and increase woody biomass P uptake. It also aimed to restore pollinator habitat through planting a diverse, native plant palette (32 species), blooming from February to November. Planting and offering culturally relevant plant materials to the Abenaki contributes to their land rematriation process. The study was located on unceded Abenaki territory at Shelburne Farms, within 300 m of Lake Pitawbagw (Lake Champlain) which is impacted increasingly by P pollution from colonial and conventional agricultural practices. Along a drainage way three treatment plots were installed: buckthorn vegetation (OIV) left in place as the control, and two restored diverse multi-synusium plant communities, consisting of either uninoculated (RV) or inoculated with 19 mycorrhizal species (RVM). After 2 years, soil water soluble reactive P extracted from lysimeter samples was not affected by treatment but varied over time. However, water extractable SRP (WEP-SRP) and TP (WEP-TP) followed this trend RV > OIV > RVM which was inversely and linearly related to mycorrhizal density. Plants are best harvested in late summer when P concentrations are highest. Restoration science can flourish through reciprocally partnering with Original Peoples who hold expertise in ecological reconciliation.  相似文献   

20.
Riparian ecosystems are among the most degraded systems in the landscape, and there has been substantial investment in their restoration. Consequently, monitoring restoration interventions offers opportunities to further develop the science of riparian restoration, particularly how to move from small‐scale implementation to a broader landscape scale. Here, we report on a broad range of riparian revegetation projects in two regions of south‐western Victoria, the Corangamite and Glenelg‐Hopkins Catchment Management Areas. The objectives of restoration interventions in these regions have been stated quite broadly, for example, to reinstate terrestrial habitat and biodiversity, control erosion and improve water quality. This study reports on tree and shrub composition, structure and recruitment after restoration works compared with remnant vegetation found regionally. Within each catchment, a total of 57 sites from six subcatchments were identified, representing three age‐classes: <4, 4–8 and >8–12 years after treatment, as well as untreated (control) sites. Treatments comprised fencing to exclude stock, spraying or slashing to reduce weed cover, followed by planting with tube stock. Across the six subcatchments, 12 reference (remnant) sites were used to provide a benchmark for species richness, structural and recruitment characteristics and to aid interpretation of the effects of the restoration intervention. Vegetation structure was well developed in the treated sites by 4–8 years after treatment. However, structural complexity was higher at remnant sites than at treated or untreated sites due to a higher richness of small shrubs. Tree and shrub recruitment occurred in all remnant sites and at 64% of sites treated >4 years ago. Most seedling recruitment at treatment sites was by Acacia spp. This assessment provides data on species richness, structure and recruitment characteristics following restoration interventions. Data from this study will contribute to longitudinal studies of vegetation processes in riparian landscapes of south‐western Victoria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号