首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 327 毫秒
1.
Honey bee workers will perform vibration signals on adult drones, which respond by increasing the time spent receiving trophallaxis. Because trophallaxis provides the proteins for sexual maturation, workers could direct vibration signals towards drones showing certain physical characteristics, potentially influencing drone development and colony reproductive output. We examined the influence of drone condition on the likelihood of receiving vibration signals by comparing body weight, protein concentrations, and hemolymph juvenile hormone (JH) titers between drones that received the vibration signal and same-age, non-vibrated controls. Vibrated and control drones did not differ in total body weight, abdomen weight, abdomen-to-body weight ratio, total protein concentrations, or hemolymph JH titers. In contrast, vibrated drones had significantly lower thorax weight and smaller thorax-to-body weight ratios compared with controls. Because relative thorax weight may affect flight ability and mating success, workers could use the vibration signal to increase the care received by less developed drones, potentially contributing to the production of greater numbers of competitive males. However, the differences in thorax weights, while significant, were very small, and it is unknown how such slight differences might be assessed by workers or affect drone performance. Nevertheless, vibration signals performed on drones may provide opportunities for exploring the effect of the quality of reproductive individuals on caste interactions in honey bees.  相似文献   

2.
We investigated the influence of drone size and potential reproductive quality on caste interactions by adding large drones reared in drone cells (DC drones; considered to be of higher quality) and small drones reared in worker cells (WC drones; of lower quality) to two observation colonies and monitoring worker–drone interactions and acceptance by workers. When initially introduced into the colonies more DC drones received trophallaxis, whereas more WC drones received aggression and eviction attempts from workers. Nevertheless, WC and DC drones were equally likely to be accepted by workers. For both drone types accepted individuals had slightly, but significantly greater weights than rejected males. Thus, workers discriminated between drones of different sizes and potential quality upon initial encounter, although these discriminations were not strongly associated with acceptance decisions. After drones were accepted, workers either showed no preference for interacting with WC or DC drones, or if a preference was shown it tended to favor WC drones. Compared to accepted DC drones, significantly more WC drones received grooming for longer periods of time and also spent more time engaged in all interactions with workers combined. DC and WC drones did not differ in the likelihood of receiving trophallaxis or the vibration signal, although for both interactions slightly more WC drones were recipients. Thus, workers may bias some interactions with accepted drones to favor smaller individuals with potential developmental deficiencies, in a manner that could contribute to the production of a greater total number of competitive males and increased colony reproductive output.  相似文献   

3.
Honey bees adjust cooperative activities to colony needs, based in part on information acquired through interactions with the nest and nest mates. We examined the role of the vibration signal in these interactions by investigating the influence of the signal on the movement rates, cell inspection activity, and trophallaxis behavior of workers in established and newly founded colonies of the honey bee, Apis mellifera. Compared to non-vibrated control bees, vibrated recipients in both colony types exhibited increased movement through the nest and greater cell inspection activity, which potentially increased contact with stimuli that enhanced task performance. Also, compared to controls, recipients in both colony types showed increased rates of trophallactic interactions and spent more time engaged in trophallaxis, which potentially further increased the acquisition of information about colony needs. The vibration signal may therefore help to organize labor in honey bees in part by increasing the rate at which workers obtain information about their colony. Vibrated recipients in the established and newly founded colonies did not differ in any aspect of behavior examined, suggesting that colony developmental state did not influence the degree to which individual workers responded to the signal. However, previous work has demonstrated that newly founded colonies have increased levels of vibration signal behavior. Thus, the vibration signal may help to adjust worker activity to colony conditions partly by stimulating greater numbers of bees to acquire information about colony needs, rather than by altering the level at which individual recipients react to the signal. Received 23 October 2006; revised 15 January 2007; accepted 7 February 2007.  相似文献   

4.

Background

Honey bee (Apis mellifera) drones and workers show differences in morphology, physiology, and behavior. Because the functions of drones are more related to colony reproduction, and those of workers relate to both survival and reproduction, we hypothesize that the microclimate for worker brood is more precisely regulated than that of drone brood.

Methodology/Principal Findings

We assessed temperature and relative humidity (RH) inside honey bee colonies for both drone and worker brood throughout the three-stage development period, using digital HOBO® Data Loggers. The major findings of this study are that 1) both drone and worker castes show the highest temperature for eggs, followed by larvae and then pupae; 2) temperature in drones are maintained at higher precision (smaller variance) in drone eggs and larvae, but at a lower precision in pupae than the corresponding stages of workers; 3) RH regulation showed higher variance in drone than workers across all brood stages; and 4) RH regulation seems largely due to regulation by workers, as the contribution from empty honey combs are much smaller compared to that from adult workers.

Conclusions/Significance

We conclude that honey bee colonies maintain both temperature and humidity actively; that the microclimate for sealed drone brood is less precisely regulated than worker brood; and that combs with honey contribute very little to the increase of RH in honey bee colonies. These findings increase our understanding of microclimate regulation in honey bees and may have implications for beekeeping practices.  相似文献   

5.
The vibration signal is one of the most commonly occurring communication displays in honey bee (Apis mellifera) colonies. It may function in a ‘modulatory’ manner, because it causes a nonspecific increase in activity that enhances a variety of behaviors depending upon the age and caste of the recipient. We examined honey bee workers that performed vibration signals on other workers in three observation hives, each containing a population of marked bees of known age. In all three colonies, the mean age of the first performance of the vibration signal was significantly different from the mean age at which workers first performed waggle dances, carried pollen loads, or attended the queen. However, workers of all ages, except those less than 3 d old, could perform vibration signals. In older workers of foraging age, signal performance was most closely associated with recent foraging success. Younger workers that vibrated did not appear to be early-maturing foragers and thus their signals were probably not influenced by food collection. Rather, for these preforaging-age workers, signal performance was associated more with periods of orientation flight, during which younger bees learn the location of the nest and surrounding landmarks. Thus, the vibration signal may be triggered by different stimuli in different worker age classes. Because it elicits a general increase in activity in all recipients, the signal may help adjust many different colony behaviors simultancously to changes in foraging success and colony development.  相似文献   

6.
Normally, worker honey bees (Apis mellifera) only lay eggs when their colony is queenless. When a queen is present, worker egg-laying is controlled by mutual “policing” behavior in which any rare worker-laid eggs are eaten by other workers. However, an extremely rare behavioral phenotype arises in which workers develop functional ovaries and lay large numbers of eggs despite the presence of the queen. In this study, microsatellite analysis was used to determine the maternity of drones produced in such a colony under various conditions. One subfamily was found to account for about 90% of drone progeny, with the remainder being laid by other subfamilies or the queen. No evidence of queen policing was found. After a one-month period of extreme worker oviposition in spring, the colony studied reverted to normal behavior and showed no signs of worker oviposition. However, upon removal of the queen, workers commenced oviposition very quickly. Significantly, the subfamily that laid eggs when the queen was present did not contribute to the drone production when the colony was queenless. However, another subfamily contributed a disproportionately large number of drones. The frequency of worker oviposition appears to be determined by opposing selective forces. Individual bees benefit from personal reproduction, whereas other bees and the colony are disadvantaged by it. Thus a behavioral polymorphism can be maintained in the population in which some workers can escape worker policing, with balancing selection at the colony level to detect and eliminate these mutations.  相似文献   

7.
We investigated worker regulation of queen activity during reproductive swarming by examining the rates at which workers performed vibration signals and piping on queens during the different stages of the swarming process. Worker–queen interactions were first examined inside observation hives during the 2–3 wk that preceded the issue of the swarm (pre‐swarming period) and then inside the swarm clusters during the period that preceded liftoff and relocation to a new nest site (post‐swarming period). Queen court size did not differ between the pre‐ and post‐swarming periods, but workers fed the queens less inside the swarm clusters. Workers performed vibration signals on the queens at increasing rates throughout the pre‐swarming period inside the natal nest, but rarely or never vibrated the queen inside the swarm. Piping was performed on the queens during both the pre‐ and post‐swarming periods and always reached a peak immediately before queen flight. During the final 2–4 h before swarm liftoff, queens were increasingly contacted by waggle dancers for nest sites, some of which piped the queen. The vibration signal may operate in a modulatory manner to gradually prepare the queen for flight from the natal nest, and the cumulative effects of the signal during the pre‐swarming period may make further vibrations on the queen unnecessary when inside the swarm cluster. In contrast, worker piping may function in a more immediate manner to trigger queen takeoff during both the pre‐ and post‐swarming periods. Workers that vibrate and pipe the queen tend to be older, foraging‐age bees. The regulation of queen activity during colony reproduction may therefore be controlled largely by workers that normally have little contact with queens, but help to formulate colony reproductive and movement decisions.  相似文献   

8.
Sex-related differences in susceptibility to pathogens are a common phenomenon in animals. In the eusocial Hymenoptera the two female castes, workers and queens, are diploid and males are haploid. The haploid susceptibility hypothesis predicts that haploid males are more susceptible to pathogen infections compared to females. Here we test this hypothesis using adult male (drone) and female (worker) honey bees (Apis mellifera), inoculated with the gut endoparasite Nosema ceranae and/or black queen cell virus (BQCV). These pathogens were chosen due to previously reported synergistic interactions between Nosema apis and BQCV. Our data do not support synergistic interactions between N. ceranae and BQCV and also suggest that BQCV has limited effect on both drone and worker health, regardless of the infection level. However, the data clearly show that, despite lower levels of N. ceranae spores in drones than in workers, Nosema-infected drones had both a higher mortality and a lower body mass than non-infected drones, across all treatment groups, while the mortality and body mass of worker bees were largely unaffected by N. ceranae infection, suggesting that drones are more susceptible to this pathogen than workers. In conclusion, the data reveal considerable sex-specific differences in pathogen susceptibility in honey bees and highlight the importance of ultimate measures for determining susceptibility, such as mortality and body quality, rather than mere infection levels.  相似文献   

9.
Field and laboratory bioassays were used to test the preference of the honey bee tracheal mite,Acarapis woodi (Rennie), for drones versus workers. Groups of newly-emerged drones and workers were marked and introduced into either heavily infested colonies (field bioassays) or into the cages of infested bees obtained from the field colonies (laboratory bioassays). Seven days later all of the marked bees in each bioassay were removed. The numbers of mites of each life stage in each drone or worker target bee of each experiment were quantified. Mite prevalence values for the two castes were not found to differ significantly for either experiment. However, the caste of the target bee was shown to influence the migration of the adult female mites. Drones contained a greater number of migratory female mites and greater total numbers of all mite stages as compared to workers. These results indicate that migrating female mites preferentially infest drones and suggest that the role of drones in the dissemination and population dynamics of the tracheal mite needs to be examined further.  相似文献   

10.
ABSTRACT. 1. The effects of colony size and time of reproduction on the survival and size of offspring colonies and on drone production were examined for honey bees, Apis mellifera L. Drone and worker production and survival of parental and offspring colonies were monitored following swarming. Also, the temporal patterns of drone emergence and availability of unmated queens were examined.
2. Colony size at swarming was positively correlated with the number of workers invested in offspring colonies and the number of queens produced. However, colony size at swarming was not correlated with the number of offspring colonies produced.
3. Swarm size was positively correlated with drone and worker production after swarms were hived. Worker production of hived swarms was positively correlated with colony survival. Offspring queens which inherited a parental nest survived longer than queens in either primary swarms or afterswarms, presumably due to the advantage of inheriting a nest.
4. Drone emergence peaked just prior to swarming, the time when unmated queens were available. High drone production by colonies initiated by swarms probably reflected an attempt to reproduce prior to winter. The probabilities of a second swarming cycle within the same year and of surviving the winter were low for colonies initiated from swarms.  相似文献   

11.
Reproduction in species of eusocial insects is monopolized by one or a few individuals, while the remaining colony tasks are performed by the worker caste. This reproductive division of labor is exemplified by honey bees (Apis mellifera L.), in which a single, polyandrous queen is the sole colony member that lays fertilized eggs. Previous work has revealed that the developmental fate of honey bee queens is highly plastic, with queens raised from younger worker larvae exhibiting higher measures in several aspects of reproductive potential compared to queens raised from older worker larvae. Here, we investigated the effects of queen reproductive potential (“quality”) on the growth and winter survival of newly established honey bee colonies. We did so by comparing the growth of colonies headed by “high-quality” queens (i.e., those raised from young worker larvae, which are more queen-like morphologically) to those headed by “low-quality” queens (i.e., those raised from older worker larvae, which are more worker-like morphologically). We confirmed that queens reared from young worker larvae were significantly larger in size than queens reared from old worker larvae. We also found a significant positive effect of queen grafting age on a colony’s production of worker comb, drone comb, and stored food (honey and pollen), although we did not find a statistically significant difference in the production of worker and drone brood, worker population, and colony weight. Our results provide evidence that in honey bees, queen developmental plasticity influences several important measures of colony fitness. Thus, the present study supports the idea that a honey bee colony can be viewed (at least in part) as the expanded phenotype of its queen, and thus selection acting predominantly at the colony level can be congruent with that at the individual level.  相似文献   

12.
13.
Female mites of the genus Varroa reproduce on the immature stages of Apis cerana F. and A. mellifera L. Mites are found more often in drone brood than worker brood, and while evolutionary explanations for this bias are well supported, the proximate mechanisms are not known. In one experiment, we verified that the proportion of hosts with one or more mites (MPV, mite prevalence value) was significantly greater for drones (0.763 +/- 0.043) (lsmean +/- SE) than for workers (0.253 +/- 0.043) in populations of mites and bees in the United States. Similar results were found for the average number of mites per host. In a second experiment, using a cross-fostering technique in which worker and drone larvae were reared in both worker and drone cells, we found that cell type, larval sex, colony and all interactions affected the level of mites on a host. Mite prevalence values were greatest in drone larvae reared in drone cells (0.907 +/- 0.025), followed by drone larvae reared in worker cells (0.751 +/- 0.025), worker larvae reared in worker cells (0.499 +/- 0.025), and worker larvae reared in drone cells (0.383 +/- 0.025). Similar results were found for the average number of mites per host. Our data show that mite levels are affected by environmental factors (cell type), by factors intrinsic to the host (sex), and by interactions between these factors. In addition, colony-to-colony variation is important to the expression of intrinsic and environmental factors.  相似文献   

14.
To test the hypothesis that colonies of honey bees composedof workers with faster rates of adult behavioral developmentare more defensive than colonies composed of workers with slowerbehavioral development, we determined whether there is a correlationbetween genetic variation in worker temporal polyethism andcolony defensiveness. There was a positive correlation for thesetwo traits, both for European and Africanized honey bees. Thecorrelation was larger for Africanized bees, due to differencesbetween Africanized and European bees, differences in experimentaldesign, or both. Consistent with these results was the findingthat colonies with a higher proportion of older bees were moredefensive than colonies of the same size that had a lower proportionof older bees. There also was a positive correlation betweenrate of individual behavioral development and the intensityof colony flight activity, and a negative correlation betweencolony defensiveness and flight activity. This suggests thatthe relationship between temporal polyethism and colony defensivenessmay vary with the manner in which foraging and defense dutiesare allocated among a colony's older workers. These resultsindicate that genotypic differences in rates of worker behavioraldevelopment can influence the phenotype of a honey bee colonyin a variety of ways.  相似文献   

15.
The honey bee, Apis mellifera, is an ideal system for investigating ontogenetic changes in the immune system, because it combines holometabolous development within a eusocial caste system. As adults, male and female bees are subject to differing selective pressures: worker bees (females) exhibit temporal polyethism, while the male drones invest in mating. They are further influenced by changes in the threat of pathogen infection at different life stages. We investigated the immune response of workers and drones at all developmental phases, from larvae through to late stage adults, assaying both a constitutive (phenoloxidase, PO activity) and induced (antimicrobial peptide, AMP) immune response. We found that larval bees have low levels of PO activity. Adult workers produced stronger immune responses than drones, and a greater plasticity in immune investment. Immune challenge resulted in lower levels of PO activity in adult workers, which may be due to the rapid utilisation and a subsequent failure to replenish the constitutive phenoloxidase. Both adult workers and drones responded to an immune challenge by producing higher titres of AMPs, suggesting that the cost of this response prohibits its constant maintenance. Both castes showed signs of senescence in immune investment in the AMP response. Different sexes and life stages therefore alter their immune system management based on the combined factors of disease risk and life history.  相似文献   

16.
Effects of insemination quantity on honey bee queen physiology   总被引:1,自引:0,他引:1  
Mating has profound effects on the physiology and behavior of female insects, and in honey bee (Apis mellifera) queens, these changes are permanent. Queens mate with multiple males during a brief period in their early adult lives, and shortly thereafter they initiate egg-laying. Furthermore, the pheromone profiles of mated queens differ from those of virgins, and these pheromones regulate many different aspects of worker behavior and colony organization. While it is clear that mating causes dramatic changes in queens, it is unclear if mating number has more subtle effects on queen physiology or queen-worker interactions; indeed, the effect of multiple matings on female insect physiology has not been broadly addressed. Because it is not possible to control the natural mating behavior of queens, we used instrumental insemination and compared queens inseminated with semen from either a single drone (single-drone inseminated, or SDI) or 10 drones (multi-drone inseminated, or MDI). We used observation hives to monitor attraction of workers to SDI or MDI queens in colonies, and cage studies to monitor the attraction of workers to virgin, SDI, and MDI queen mandibular gland extracts (the main source of queen pheromone). The chemical profiles of the mandibular glands of virgin, SDI, and MDI queens were characterized using GC-MS. Finally, we measured brain expression levels in SDI and MDI queens of a gene associated with phototaxis in worker honey bees (Amfor). Here, we demonstrate for the first time that insemination quantity significantly affects mandibular gland chemical profiles, queen-worker interactions, and brain gene expression. Further research will be necessary to elucidate the mechanistic bases for these effects: insemination volume, sperm and seminal protein quantity, and genetic diversity of the sperm may all be important factors contributing to this profound change in honey bee queen physiology, queen behavior, and social interactions in the colony.  相似文献   

17.
ABSTRACT. Worker bees recently denied access to their colony expose their Nasonov glands, thereby releasing pheromone, at the entrance to their hive. Odours of the following induced this response: empty comb, purified beeswax, honey, pollen, propolis, a live queen, the (E)-9-hydroxy-2-decenoic acid component of a queen's mandibular glands, live drones and workers, inert material on which workers had walked inside the hive, and synthetic Nasonov pheromone. The total odour of a foreign colony also induced worker bees to expose their Nasonov glands but was less effective than the odour of their own colony. Odours of the following were not effective: the (E)-9-oxo-2-decenoic acid component of a queen's mandibular glands, recently killed drones and workers, worker brood (eggs, larvae, pupae).  相似文献   

18.
The role of the worker honey bee Apis mellifera L. changes depending on age after eclosion (age polyethism): young workers (nurse bees) take care of their brood by synthesizing and secreting brood food (royal jelly), while older workers (foragers) forage for nectar and process it into honey. Previously, we showed that the major proteins synthesized in the hypopharyngeal gland of the worker change from brood food proteins to alpha-glucosidase at the single secretory cell level in parallel with this age polyethism [Kubo et al., J. Biochem. 119, 291-295 (1996); Ohashi et al., Eur. J. Biochem. 249, 797-802 (1997)]. Here, we examined whether the function of the hypopharyngeal gland has flexibility depending on the colony conditions, by creating a dequeened colony in which the older workers were compelled to feed the drone larvae. It was found that most of the older workers in the dequeened colony synthesized brood food proteins as did nurse bees. Furthermore, the percentage of workers that synthesized brood food proteins was maintained at 80-90% of the total workers for at least two months, as in a normal colony. These results indicate that the function of the hypopharyngeal gland cells of the worker has flexibility and can, if necessary, be maintained as that of the nurse bee, depending on the condition of the colony.  相似文献   

19.
Summary Different-aged honey bees were either kept in a cage together with young sisters for eight days or lived in their colony. Following an injection of14C-phenylalanine (Phe) we measured incorporation of14C-Phe into head protein and total protein, as well as the size of the hypopharyngeal glands. While confined in a cage for four hours, injected bees (from colony or cage) dispensed the14C-labelled protein-rich products of their hypopharyngeal glands to recipients. Eight-day-old colony bees had well developed hypopharyngeal glands, whereas at the age of sixteen days the glands had already decreased in size. Young caged bees had smaller hypopharyngeal glands. Colony bees had higher incorporation rates into total protein and head protein than bees living in a cage. Bees of different age classes, irrespective of caging, fed the same number of recipients; but the amount of14C-labelled protein-rich jelly distributed by caged bees was significantly smaller than that distributed by colony bees. Our results indicate that trophallaxis between young donor workers and newly emerged recipient worker bees is not the key factor for regular development and activity of the hypopharyngeal glands.Dedicated to Achim Lass's daughter Katrin.  相似文献   

20.
In most species of social insects, when a queen departs from her parental nest to found a new colony, she leaves on her own. In some species, however, the departing queen leaves accompanied by a portion of the parental colony’s workers and there is a permanent fissioning of the worker force. Little is known about how the adult workers in colonies of fissioning species distribute themselves between the old and the new colonies. We examined this problem, building on Bulmer’s (J Theor Biol 100: 329–339, 1983) model for the optimal splitting of a colony’s adult workforce during colony reproduction. We first created an inclusive fitness model of optimal colony fissioning that applies to species in which fissioning gives rise to two autonomous colonies. The model predicts the optimal “swarm fraction”, which we define as the proportion of the adult workers in a fissioning colony that join the departing queen. We then tested the model by comparing the predicted and observed swarm fractions in honey bees. We found a close match between predicted (0.76–0.77) and observed (0.72 ± 0.04) swarm fractions. Evidently, worker honey bees distribute themselves between the old and new colonies in a way that jointly maximizes the inclusive fitness of each worker. We conclude by discussing additional ways to test the model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号