首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim   To investigate the influence of sampling and methodological artefacts on the correlation between abundance and occupancy.
Location   Global scope.
Methods   A fixed effects weighted regression model was fitted to standardized effect size for 175 examples of correlations between abundance and occupancy. A regression tree model with standard effect size as the dependent variable was also fitted to the data.
Results   Standard effect size, and therefore the correlation between abundance and occupancy, was found to be strongly influenced by the type of abundance measure used to characterize the abundance–occupancy relationship. Local mean abundance (also referred to as ecological mean abundance) was primarily responsible for negative correlations. Negative correlations also resulted from a mismatch in the sampling extents of abundance and occupancy measures.
Main conclusions   The combination of abundance and occupancy measures selected to characterize the abundance–occupancy relationship for a given set of data has a profound impact on the sign of the correlation between the selected measures. Previous attempts to understand the processes giving rise to the pattern represented by the abundance–occupancy relationship have confounded sampling artefacts (e.g. spatial extent of abundance and occupancy information) and methodological artefacts (e.g. combining a truncated abundance measure such as local mean abundance with an untruncated occupancy measure such as proportion of occupied samples). Thus, a revision of the approach currently used to define and evaluate competing explanatory models of the abundance–occupancy relationship appears to be necessary.  相似文献   

2.
The regional occupancy and local abundance of species are affected by various species traits, but their relative effects are poorly understood. We studied the relationships between species traits and occupancy (i.e., proportion of sites occupied) or abundance (i.e., mean local abundance at occupied sites) of stream invertebrates using small‐grained data (i.e., local stream sites) across a large spatial extent (i.e., three drainage basins). We found a significant, yet rather weak, linear relationship between occupancy and abundance. However, occupancy was strongly related to niche position (NP), but it showed a weaker relationship with niche breadth (NB). Abundance was at best weakly related to these explanatory niche‐based variables. Biological traits, including feeding modes, habit traits, dispersal modes and body size classes, were generally less important in accounting for variation in occupancy and abundance. Our findings showed that the regional occupancy of stream invertebrate species is mostly related to niche characteristics, in particular, NP. However, the effects of NB on occupancy were affected by the measure itself. We conclude that niche characteristics determine the regional occupancy of species at relatively large spatial extents, suggesting that species distributions are determined by environmental variation among sites.  相似文献   

3.
Aims We have two aims: (1) to examine the relationship between local population persistence, local abundance and regional occupancy of stream diatoms and (2) to characterize the form of the species–occupancy frequency distribution of stream diatoms. Location Boreal streams in Finland. There were three spatial extents: (1) across ecoregions in Finland, (2) within ecoregions in Finland, and (3) within a single drainage system in southern Finland. Methods Diatoms were sampled from stones (epilithon), sediment (epipelon) and aquatic plants (epiphyton) in streams using standardized sampling methods. To assess population persistence, diatom sampling was conducted monthly at four stream sites from June to October. The relationships between local population persistence, local abundance and regional occupancy were examined using correlation analyses. Results There was a significant positive relationship between local persistence and abundance of diatoms in epilithon, epipelon and epiphyton. Furthermore, local abundance and regional occupancy showed a significant positive relationship at multiple spatial extents; that is, across ecoregions, within ecoregions and within a drainage system. The relationships between occupancy and abundance did not differ appreciably among impacted and near pristine‐reference sites. The occupancy–frequency distribution was characterized by a large number of satellite species which occurred at only a few sites, whereas core species that occurred at most sites were virtually absent. Main conclusions The positive relationship between local population persistence and abundance suggested that a high local abundance may prevent local extinction or that high persistence is facilitated by a high local cell density. High local persistence and local abundance may also positively affect the degree of regional occupancy in stream diatoms. The results further showed that anthropogenic effects were probably too weak to bias the relationship between occupancy and abundance, or that the effects have already modified the distribution patterns of stream diatoms. The small number of core species in the species–occupancy frequency distribution suggested that the regional distribution patterns of stream diatoms, or perhaps unicellular microbial organisms in general, may not be fundamentally different from those described previously for multicellular organisms, mainly in terrestrial environments, although average global range sizes may differ sharply between these two broad groups of organisms.  相似文献   

4.
Species distribution models are the tool of choice for large-scale population monitoring, environmental association studies and predictions of range shifts under future environmental conditions. Available data and familiarity of the tools rather than the underlying population dynamics often dictate the choice of specific method – especially for the case of presence–absence data. Yet, for predictive purposes, the relationship between occupancy and abundance embodied in the models should reflect the actual population dynamics of the modelled species. To understand the relationship of occupancy and abundance in a heterogeneous landscape at the scale of local populations, we built a spatio-temporal regression model of populations of the Glanville fritillary butterfly Melitaea cinxia in a Baltic Sea archipelago. Our data comprised nineteen years of habitat surveys and snapshot data of land use in the region. We used variance partitioning to quantify relative contributions of land use, habitat quality and metapopulation covariates. The model revealed a consistent and positive, but noisy relationship between average occupancy and mean abundance in local populations. Patterns of abundance were highly variable across years, with large uncorrelated random variation and strong local population stochasticity. In contrast, the spatio-temporal random effect, habitat quality, population connectivity and patch size explained variation in occupancy, vindicating metapopulation theory as the basis for modelling occupancy patterns in fragmented landscapes. Previous abundance was an important predictor in the occupancy model, which points to a spillover of abundance into occupancy dynamics. While occupancy models can successfully model large-scale population structure and average occupancy, extinction probability estimates for local populations derived from occupancy-only models are overconfident, as extinction risk is dependent on actual, not average, abundance.  相似文献   

5.
Positive abundance–occupancy relationships (AORs) are among the most general macroecological patterns: locally common species are regionally widespread, locally rare species are regionally restricted. In a recent contribution, Wilson (Global Ecology and Biogeography, 2011, 20 , 193–202) made three claims: (1) that AORs are critically dependent on the method used to calculate average abundance; (2) averaging abundance over occupied sites tends to lead to a very high incidence of negative relationships; (3) this represents a statistical artefact that should be considered in studies of AORs. Here we show that this outcome arises in Wilson's simulations purely due to an arbitrary choice of occupancy models and parameter ranges. The resulting negative relationships are not statistical artefacts, but are easily interpreted in terms of spatial aggregation in abundant species. The fact that empirical evidence fails to support a high prevalence of negative AORs suggests, however, that such parameter combinations arise only rarely in nature. We conclude that simulations that are based on untested assumptions, and that produce patterns unsupported by empirical evidence, have limited use in characterizing AORs, and add little to understanding of the processes driving important relationships between local population size and regional occupancy.  相似文献   

6.
Although acknowledged to be common, intraspecific relationships between local abundance and site occupancy have been examined in detail for few species. Here we report such analyses for six widespread species of breeding birds in Britain, using data from the Common Birds Census. These exhibit a range of temporal trends, including different combinations of increase and decrease in abundance and occupancy. Overall, two species have a statistically significant positive abundance–occupancy relationship on farmland but no relationship in woodland (collared dove, tree sparrow), one a significant positive relationship on farmland and in woodland (magpie), two a significant positive relationship on farmland and a negative one in woodland (redstart, song thrush), and one a significant negative abundance–occupancy relationship on farmland but no relationship in woodland (sparrowhawk). The population dynamics associated with these patterns are used to discern their underlying mechanisms.  相似文献   

7.
Occupancy has several important advantages over abundance methods and may be the best choice for monitoring sparse populations. Here we use simulations to evaluate competing designs (number of sites vs. number of surveys) for occupancy monitoring, with emphasis on sparse populations of the endangered Karner blue butterfly (Lycaeides melissa samuelis Nabokov). Because conservation planning is usually abundance-based, we also ask whether detection/non-detection data may reliably convert to abundance, hypothesizing that occupancy provides a more dependable shortcut when populations are sparse. Count-index and distance sampling were conducted across 50 habitat patches containing variably sparse Karner blue populations. We used occupancy-detection model estimates as simulation inputs to evaluate primary replication tradeoffs, and used peak counts and population densities to evaluate the occupancy-abundance relationship. Detection probability and therefore optimal design of occupancy monitoring was strongly temperature dependent. Assuming a quality threshold of 0.075 root-mean square error for the occupancy estimator, the minimum allowable effort was 360 (40 sites?×?9 surveys) for spring generation and 200 (20 sites?×?10 surveys) for summer generation. A mixture model abundance estimator for repeated detection/non-detection data was biased low for high-density and low-density populations, suggesting that occupancy may not provide a reliable shortcut in abundance-based conservation planning for sparse butterfly populations.  相似文献   

8.
1. We examined whether the local abundance of stream bryophytes in a boreal drainage basin (Koutajoki system in northeastern Finland) correlated with their: (i) regional occupancy; (ii) provincial distribution in northwestern Europe; and (iii) global range size. We specifically tested whether aquatic and semi‐aquatic species differ in their distribution–abundance relationships. We also analysed the frequency distributions of occupancy at two spatial scales: within the focal drainage system and across provinces of northwestern Europe. 2. Regional occupancy and mean local abundance of stream bryophytes were positively correlated, and the relationship was rather strong in aquatic species but very weak in semi‐aquatic species. Local abundance was related neither to provincial distribution nor global distribution. 3. Species frequency distributions differed between regional occupancy and provincial distribution. While most species were rare with regard to their regional occupancy within the focal drainage system, most of the same set of species were common and occurred in most provinces in northwestern Europe. 4. The results indicate the presence of dominants (core species) and transients/subordinates (satellite species) among stream bryophytes, highlighting marked differentiation in life‐history strategies and growth form. The observed abundance–occupancy relationships suggest that dispersal limitation and metapopulation processes may govern the dynamics of obligatory aquatic stream bryophytes. In semi‐aquatic species, however, habitat availability may be more important in contributing to regional occupancy.  相似文献   

9.
We correlated percentage of occurrence (local occupancy) of 1069 plant species and 155 bird species across 16 non-reclaimed mining sites in a brown coal district of eastern Germany to regional range size and life history traits. To control for possible confounding effects of phylogeny we used a cross-species as well as a phylogenetically controlled approach. Although life history traits showed significant correlations to local occupancy in univariate analyses, hierarchical partitioning suggested that these variables were only of minor importance to explain local occupancy across non-reclaimed mining sites. The most robust and consistent relationship, however, was found between local occupancy and regional range size. A greater proportion of bird species than plant species from the available species pool colonized the mining sites, possibly due to the active search for suitable habitats by birds. Thus, although the two groups have different ways of colonizing a habitat, the general importance of regional distribution is the same. Overall, the results of our study underline the importance of regional patterns to understand local community composition.  相似文献   

10.
Many marine benthic invertebrates pass through a planktonic larval stage whereas others spend their entire lifetimes in benthic habitats. Recent studies indicate that non‐planktonic species show relatively greater fine‐scale patchiness than do planktonic species, but the underlying mechanisms remain unknown. One hypothesis for such a difference is that larval dispersal enhances the connectivity of populations and buffers population fluctuations and reduces local extinction risk, consequently increasing patch occupancy rate and decreasing spatial patchiness. If this mechanism does indeed play a significant role, then the distribution of non‐planktonic species should be more aggregated – both temporally and spatially – than the distribution of species with a planktonic larval stage. To test this prediction, we compared 1) both the spatial and the temporal abundance–occupancy relationships and 2) both the spatial and the temporal mean–variance relationships of population size across species of rocky intertidal gastropods with differing dispersive traits from the Pacific coast of Japan. We found that, compared to planktonic species, non‐planktonic species exhibited 1) a smaller occupancy rate for any given level of mean population size and 2) greater variations in population size, both spatially and temporally. This suggests that the macroecological patterns observed in this study (i.e. the abundance–occupancy relationships and mean–variance relationships of population size across species) were shaped by the effect of larval dispersal dampening population fluctuation, which works over both space and time. While it has been widely assumed that larval dispersal enhances population fluctuations, larval dispersal may in fact enhance the connectively of populations and buffer population fluctuations and reduce local extinction risks.  相似文献   

11.
Aim The majority of studies concerning positive interspecific abundance–occupancy relationships have used broad‐scale and microcosm data to test the occurrence and correlates of the relationship to determine which of the proposed mechanisms give rise to it. It has been argued recently that studying the residual variation about abundance–occupancy relationships is a more logical analysis and may yield faster progress in identifying the relative roles of the mechanisms. However, to date this approach has been largely unsuccessful. Here we test if fundamental species traits such as the status (native and introduced), habitat and trophic group of mammal and bird species may explain any of the residual variation about their respective abundance–occupancy relationships. Location The study used British mammal and bird species. Methods We tested if species traits explained any of the variation about abundance–occupancy relationships using linear regression techniques both treating species as independent data points for analysis and controlling for phylogenetic association. Results None of the species traits could explain any residual variation about the positive interspecific abundance–occupancy relationships of British mammals and birds. This applied both when treating species as independent data points and after controlling for phylogenetic association. Conclusions Given the lack of explanatory power of the species traits here and in other studies using this approach it seems that the variation about positive interspecific abundance–occupancy relationships is not explicable in a simple fashion. Predicting the likely influence of traits that are independent of phylogeny is also problematic. Therefore, the general utility of this approach and its future role in understanding the mechanisms causing positive interspecific abundance–occupancy relationships is doubtful.  相似文献   

12.
Variations in cone photoreceptor abundance and the visual ecology of birds   总被引:3,自引:0,他引:3  
The relative abundance and topographical distribution of retinal cone photoreceptors was measured in 19 bird species to identify possible correlations between photoreceptor complement and visual ecology. In contrast to previous studies, all five types of cone photoreceptor were distinguished, using bright field and epifluorescent light microscopy, in four retinal quadrants. Land birds tended to show either posterior dorsal to anterior ventral or anterior dorsal to posterior ventral gradients in cone photoreceptor distribution, fundus coloration and oil droplet pigmentation across the retina. Marine birds tended to show dorsal to ventral gradients instead. Statistical analyses showed that the proportions of the different cone types varied significantly across the retinae of all species investigated. Cluster analysis was performed on the data to identify groups or clusters of species on the basis of their oil droplet complement. Using the absolute percentages of each oil droplet type in each quadrant for the analysis produced clusters that tended to reflect phylogenetic relatedness between species rather than similarities in their visual ecology. Repeating the analysis after subtracting the mean percentage of a given oil droplet type across the whole retina (the 'eye mean') from the percentage of that oil droplet type in each quadrant, i.e. to give a measure of the variation about the mean, resulted in clusters that reflected diet, feeding behaviour and habitat to a greater extent than phylogeny.  相似文献   

13.
We investigate the patterns of abundance‐spatial occupancy relationships of adult parasite nematodes in mammal host populations (828 populations of nematodes from 66 different species of terrestrial mammals). A positive relationship between mean parasite abundance and host occupancy, i.e. prevalence, is found which suggests that local abundance is linked to spatial distribution across species. Moreover, the frequency distribution of the parasite prevalence is bimodal, which is consistent with a core‐satellite species distribution. In addition, a strong positive relationship between the abundance (log‐transformed) and its variance (log‐transformed) is observed, the distribution of worm abundance being lognormally distributed when abundance values have been corrected for host body size.
Hanski et al. proposed three distinct hypotheses, which might account for the positive relationship between abundance and prevalence in free and associated organisms: 1) ecological specialisation, 2) sampling artefact, and 3) metapopulation dynamics. In addition, Gaston and co‐workers listed five additional hypotheses. Four solutions were not applicable to our parasitological data due to the lack of relevant information in most host‐parasite studies. The fifth hypothesis, i.e. the confounded effects exerted by common history on observed patterns of parasite distributions, was considered using a phylogeny‐based comparison method. Testing the four possible hypotheses, we obtained the following results: 1) the variation of parasite distribution across host species is not due to phylogenetic confounding effects; 2) the positive relationship between mean abundance and prevalence of nematodes may not result from an ecological specialisation, i.e. host specificity, of these parasites; 3) both a positive abundance‐prevalence relationship and a negative coefficient of variation of abundance‐prevalence relationship are likely to occur which corroborates the sampling model developed by Hanski et al. We argue that demographic explanations may be of particular importance to explain the patterns of bimodality of prevalence when testing Monte‐Carlo simulations using epidemiological modelling frameworks, and when considering empirical findings. We conclude that both the bimodal distribution of parasite prevalence and the mean‐variance power function simply result from demographic and stochastic patterns (highlighted by the sampling model), which present compelling evidence that nematode parasite species might adjust their spatial distribution and burden in mammal hosts for simple epidemiological reasons.  相似文献   

14.
Reeve et al. (2016, Ecography, 39 , 990‐997) found that ecologically flexible endemics dominate Indo‐Pacific bird communities. This negative relationship between local abundance and global range size contrasts strongly with the positive range size‐abundance relationship “rule,” which would predict community dominance by globally widespread species. Theuerkauf et al. (2017, Journal of Biogeography, 44 , 2161–2163) provide new data from New Caledonia which they claim invalidate our study. They find positive relationships between local abundance and local range size, which they attribute to endemic species having narrower habitat niches than globally widespread species. We reanalysed their data using global range sizes, corroborating the pattern we originally reported: negative relationships between local abundance and global range size, driven by a subset of adaptable endemic species. We stress the importance of being explicit about the scale of ecological mechanisms, and ensuring that the scale of analysis matches the scale of interpretation.  相似文献   

15.
The relationships between rarity (i.e., range-size, local abundance) and niche-breadth can be important to assess the risks the species face under global change, namely those resulting from fire regime change. In fire areas, germination is critical for establishing after fire for many species. We examined the relationships between rarity and germination niche-breadth for 53 plant species of two life-forms (chamaephytes and hemicryptophytes) growing in Eastern Spain. Rarity was measured as geographic range-size and as local abundance. Local abundance was evaluated at two sites differing in their post-fire successional status (a recently burned area and a long-unburned one). Germination niche-breadth was measured as the mean germination evenness index from four germination experiments that subjected the seeds to various germinating conditions characteristics of fire environments. Correlations between rarity (range-size, local abundance) and niche-breadth were calculated in cross-species mode or by way of phylogenetically independent contrasts, and either for the 53 species (all-species set) or for each of two life-form groups (chamaephytes, hemicryptophytes). In general, no significant correlations were found between the rarity measures and germination niche-breadth for the all-species set. However, significant correlations emerged when the analyses were done separating species by life-forms. Germination niche-breadth was positively correlated with range-size for chamaephytes, and negatively for hemicryptophytes. In addition, germination niche-breadth was uncorrelated, or negatively so, with local abundance for chamaephytes and hemicryptophytes, respectively. While no correlation between range-size and local abundance was found for chamaephytes, a negative one was obtained for hemicryptophytes. We conclude that rarity/germination-niche relationships varied by life-form. This pattern of relationships was obscured when all species were joined in a single group. Based on the contrasting patterns of correlations obtained for each life-form we argue that the changes in the germinating environment caused by alterations in fire regime are likely to differentially affect these two groups of species.  相似文献   

16.
17.
The single-species spatially realistic patch occupancy metapopulation model is, in this study, extended to a metacommunity of many competing species. Competition is assumed to reduce the local carrying capacity (effective patch area), which in turn increases local extinction rates and reduces colonization rates because of smaller population sizes. Each species is described by three parameters: pre-competitive abundance (equilibrium incidence of patch occupancy, which reflects the rate of colonization in relation to extinction rate), the spatial range of migration, and competitive ability. The model ignores spatio–temporal correlations caused by interspecific interactions, because in metacommunities of unequal competitors inhabiting heterogeneous landscapes, correlations in the occurrence of species are driven more by patch heterogeneity than by competition. The model allows the calculation of multispecies equilibria in patchy habitats without simulations. In general, the number of coexisting species in the metacommunity increases with decreasing strength of competition, increasing rate of colonization, and decreasing range of migration. Habitat heterogeneity in the form of spatial variation in patch areas tends to facilitate coexistence. Poor competitors may coexist with superior competitors in the patch network if the former have higher colonization rates (competition–colonization trade-off). When migration distances are short, competition leads to spatial pattern formation: Species tend to have restricted spatial distributions in the network, but contrary to intuitive expectations, often the distributions of many species are nested. Having more dispersive species enhances both local and global diversity, whereas more local migration decreases local but increases global diversity.  相似文献   

18.
Accurate estimates of the distribution and abundance of endangered species are crucial to determine their status and plan recovery options, but such estimates are often difficult to obtain for species with low detection probabilities or that occur in inaccessible habitats. The Puaiohi (Myadestes palmeri) is a cryptic species endemic to Kaua?i, Hawai‘i, and restricted to high elevation ravines that are largely inaccessible. To improve current population estimates, we developed an approach to model distribution and abundance of Puaiohi across their range by linking occupancy surveys to habitat characteristics, territory density, and landscape attributes. Occupancy per station ranged from 0.17 to 0.82, and was best predicted by the number and vertical extent of cliffs, cliff slope, stream width, and elevation. To link occupancy estimates with abundance, we used territory mapping data to estimate the average number of territories per survey station (0.44 and 0.66 territories per station in low and high occupancy streams, respectively), and the average number of individuals per territory (1.9). We then modeled Puaiohi occupancy as a function of two remote-sensed measures of habitat (stream sinuosity and elevation) to predict occupancy across its entire range. We combined predicted occupancy with estimates of birds per station to produce a global population estimate of 494 (95% CI 414–580) individuals. Our approach is a model for using multiple independent sources of information to accurately track population trends, and we discuss future directions for modeling abundance of this, and other, rare species.  相似文献   

19.
At broad spatial scales, species richness is strongly related to climate. Yet, few ecological studies attempt to identify regularities in the individual species distributions that make up this pattern. Models used to describe species distributions typically model very complex responses to climate. Here, we test whether the variability in the distributions of birds and mammals of the Americas relates to mean annual temperature and precipitation in a simple, consistent way. Specifically, we test if simple mathematical models can predict, as a first approximation, the geographical variation in individual species’ probability of occupancy for 3277 non‐migratory bird and 1659 mammal species. We find a Gaussian model, where the probability of occupancy of a 104 km2 quadrat decreases symmetrically and gradually around a species ‘optimal’ temperature and precipitation, was generally the best model, explaining an average of 35% of the deviance in probability of occupancy. The inclusion of additional terms had very small and idiosyncratic effects across species. The Gaussian occupancy–climate relationship appears general among species and taxa and explains nearly as much deviance as complex models including many more parameters. Therefore, we propose that hypotheses aiming to explain the broad‐scale distribution of species or species richness must also predict generally Gaussian occupancy–climate relationships. Synthesis Science aims to identify regularities in a complex natural world. General patterns should be identified before one searches for potential mechanisms and contingencies. However, species geographic distributions are often modelled as complex (sometimes black box), species‐specific, functions of their environment. We asked whether a simple model could account for as much of the geographic variation in a species' probability of occupancy, and be widely applicable across thousands of species. As a first approximation, we found that a simple Gaussian occupancy‐climate relationship is very common in Nature, whether it be causal or not.  相似文献   

20.
1. Abundance-occupancy relationships comprise some of the most general and well-explored patterns in macro-ecology. The theory governing these relationships predicts that species will exhibit a positive interspecific and intraspecific relationship between regional occupancy and local abundance. Abundance-occupancy relationships have important implications in using distributional surveys, such as atlases, to understand and document large-scale population dynamics and the consequences of environmental change. A basic need for interpreting such data bases is a better understanding of whether changes in regional occupancy reflect changes in local abundance across species of varying life-history characteristics. 2. Our objective was to test the predictions of the abundance-occupancy rule using two independent data sets, the New York State Breeding Bird Atlas and the North American Breeding Bird Survey. The New York State Breeding Bird Atlas consists of 5332 25-km(2) survey blocks and is one of the first atlases in the USA to be completed for two time periods (1980-85 and 2000-05). The North American Breeding Survey is a large-scale annual survey intended to document the relative abundance and population change of songbirds throughout the USA. 3. We found that regional occupancy was positively correlated with relative abundance across 98 (beta = 0.60 +/- 0.11 SE, P < 0.001, R(2) = 0.60) and 85 species (beta = 0.67 +/- 0.06 SE, P < 0.001, R(2) = 0.57) in two separate time periods. This relationship proved stable over time and was notably consistent between breeding habitat groups and migratory guilds. 4. Between 1980 and 2005, changes in regional occupancy were highly correlated with long-term abundance trend estimates for 75 species (beta = 5.73 +/- 0.24 SE, P < 0.001, R(2) = 0.88). Over a 20-year period, woodland and resident birds showed an increase in occupancy while grassland species showed the greatest decline; these patterns were mirrored by changes in local abundance. 5. Although exceptions existed, we found most changes in occupancy parallel changes in local abundance. These findings support the basic predictions of the abundance-occupancy rule and demonstrate its consistency and stability in species and groups of varying life-history characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号