首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
Abstract

Twenty maize hybrids plus local were tested for their susceptibility to major pests of sorghum shootfly, Atherigona soccata Rondani under field conditions at Sohag governorate during three planting dates (20th April, 20th May and 5th July) sown during two tested years (2004 and 2005 seasons). The investigation showed that when the sowing dates were considered irrespective of the different years or the maize hybrids it was evident that during the first planting date (20th April), the maize hybrids harboured the highest levels of infestation with sorghum shootfly, Atherigona soccata Rondani. The second planting date (20th May) was the least affected while the third planting date (5th July) received moderate levels of infestation. Results also showed that the average infestation of Atherigona soccata during both seasons was a significantly negative correlation affected by the sowing dates and maize hybrids. The yield of maize hybrids negatively correlated with percentage of infestation by Atherigona soccata. The highest yield obtained from the maize hybrids was slightly infested by Atherigona soccata and sown during the planting date of 20th May. Therefore, the second sowing date (20th May) may be recommended as a proper cultivating date for maize hybrids as it brought about reduction not only in infestation but was also a good method to reduce chemical control. Our results indicated that none of the maize hybrids evaluated were found to be resistant to Atherigona soccata attack but maize hybrids were significantly different in their susceptibility and less than of a local control to the infestation with Atherigona soccata and divided into four groups, the first one was highly susceptible including Giza Baladi; the second group was susceptible including ten maize hybrids namely, Hf 155, Bionear 3062, Bionear 30k8, Nagah 18, Watania 4, HC 326, HC 327, Nafratity, Watania 1 and Bionear; the third group was low resistance including six maize hybrids namely, Hf 122, Hf 123, Hf 129, Hc314, Hc 325 and Hc 352; while the fourth group included Hf 10, Hf 124, Hc 311and Hc 324 and moderately resisted the Atherigona soccata infestation. These may serve as a good material for growing in the areas where the pest is a problem.  相似文献   

6.
    
The Korean shoot fly genus Atherigona Rondani is reviewed taxonomically. A total of five species was identified: A. (Acritochaeta) orientalis Schiner, A. (Atherigona) biseta Karl, A. (Atherigona) falcata (Thomson), A. (Atherigona) oryzae Malloch, and A. (Atherigona) bifurca sp. nov. Of these, A. (Atherigona) bifurca sp. nov. is new to science, and A. (Atherigona) biseta Karl and A. (Atherigona) falcata (Thomson) are reported for the first time in Korea. A key to Korean species and photographs of external features are provided.  相似文献   

7.
Summary

Sorghum bicolor L. (cv. Tegemeo) seedlings were grown for nine days in soil at field capacity packed to give a uniform penetration resistance (PR) of either 0.25, 1.00 or 1.75 MPa. Root biomass was not significantly affected by soil PR treatment. However, as PR increased to 1.75 MPa, the diameter of the seminal root axis increased by 52% whilst its length decreased by 30%. Shoot growth, in terms of oven dry (OD) weight and photo-synthetic area, was reduced in both the 0.25 MPa and 1.75 MPa treatments compared to the 1.00 MPa treatment. A reduced nutrient, water or oxygen supply to the roots were discounted as possible causes of the root and shoot responses to soil PR. It is suggested that the changes in root morphology between treatments were a direct result of the changes in soil PR. For shoot growth, in the 0.25 MPa treatment it is suggested that shoot growth was reduced as a result of an increase in the carbon sink strength of the roots.  相似文献   

8.
    
Soil moisture was manipulated in an attempt to control shoot fly (Atherigona soccata Rondani) incidence in irrigated post-rainy season sorghum grown under a rainout shelter (ROS) and in field conditions. After uniform irrigation at sowing, the plants were subjected to water stress at young seedling stage (7–28 days after emergence, DAE) for different lengths of time. Soil water had profound effects on the production of water droplets on the surface of the central whorl leaf of seedlings (leaf surface wetness, LSW) of sorghum genotypes. LSW, which facilitates movement of the larvae, was more drastically affected in susceptible (CSH 5) than in moderately resistant (IS 1054) sorghum genotypes. Shoot fly oviposition (infestation) and deadhearts (crop damage) were much higher in treatments with full irrigation (control) than in treatments to which less water was applied during the first 3 wk after seedling emergence. This resulted in higher plant biomass and overall grain yield in the latter treatments than in the control. Using insecticides to control shoot fly infestation, it was shown that a simple cultural practice of inducing plant stress by reduced soil moisture content during early plant growth gave the same or better control of shoot fly damage and the same or higher grain yield than insecticide-protected plots with full irrigation. Thus the costs associated with irrigation requirement and insecticide can be greatly reduced in the former management option compared with the latter. It is suggested that manipulation of soil water content during the vulnerable early stages of crop growth can reduce shoot fly damage in irrigated post-rainy season sorghum.  相似文献   

9.
Sorghum genotypes known to be resistant or susceptible to shoot fly, Atherigona soccata Rondani were examined by scanning electron microscopy for differences in epicuticular wax structure and wetness of the central leaf whorl. Two major types of wax structures were observed: shoot fly resistant and moderately resistant genotypes were characterised by a smooth amorphous wax layer and sparse wax crystals while susceptible genotypes possessed a dense meshwork of crystalline epicuticular wax. The density of wax crystals decreased from the third leaf to the seventh leaf stage and was related to both seedling age and leaf position. Water droplets on susceptible genotypes with dense wax crystals showed spreading at the edges indicating a tendency to wet easily. In resistant genotypes with less dense wax crystals the droplets remained intact and did not spread.  相似文献   

10.
11.
    
Leaves and stalks of many sorghum genotypes accumulate dark red or purple pigments upon wounding while some plants, called ‘tan,’ do not. Grains with unpigmented ‘white’ pericarps grown on tan plants are more desirable for food. The hypothesis tested was that pigments in plants protected grain against the panicle diseases grain mould and head smut. Near‐isogenic tan or purple plant colour genotypes with white grain were planted at Lincoln and Ithaca, NE and Corpus Christi, TX. The field grown grain was plated onto semi‐selective media to detect the presence of grain colonisation by mould genera Alternaria, Fusarium and Curvularia. More Fusarium and Curvularia spp. were recovered from grain grown at Corpus Christi than the Nebraska locations; however, there was no indication that the grain from purple plants was more resistant to the three fungal genera. Most fungi were identified morphologically as Alternaria alternata. Molecular identification of Fusarium species, using translation elongation factor 1‐α gene sequences, showed that Fusarium thapsinum and Fusarium proliferatum infected grain at all three locations. Head smut disease of panicles, caused by the fungus Sporisorium reilianum, was assessed at Corpus Christi; surprisingly, purple plants had significantly greater disease incidence than tan plants. We propose that the tan plant colour lines with white grain are promising for development of food‐grade sorghums not more susceptible than pigmented lines to grain mould and head smut.  相似文献   

12.
The susceptibility of sorghum to the shoot fly Atherigona soccata Rondani, (Diptera: Muscidae) is affected by seedling age and is highest when seedlings are 8–12 days old. This corresponds with high moisture accumulation on the central leaf which is the path of newly hatched larva as it moves downwards from the oviposition site, towards the growing apex. Studies showed that leaf surface wetness (LSW) of the central shoot leaf was higher in 10-day old seedlings than in seedlings of other ages. Similarly, LSW was much higher in the susceptible sorghum genotype CSH 1 than in the resistant genotype IS 2146. Larvae moved faster towards the growing point and produced deadhearts much earlier in CSH 1 than in IS 2146. They also moved faster in 10-day old seedlings than in seedlings of other ages. It was also shown that the leaf surface wetness of the central shoot leaf is a more reliable parameter of resistance than the glossy leaf trait or trichome density.
L'influence de la humidité de la surface foliaire sur le comportement de la mouche des pousses du sorgho
Résumé La sensibilité du sorgho à la mouche des pousses du sorgho, Atherigona soccata Rondani, est liée à l'âge de la plantule. Elle est plus forte lorsque la plantule est âgée de 8 à 12 jours et la sensibilité est maximale à 10 jours. A ce stade de croissance on observe une forte accumulation d'humidité sur la feuille centrale de la tige. Les jeunes larves traversent cette zone humide lorsqu'elles descendent vers la zone de croissance à partir des pontes déposées sur la face ventrale des feuilles déroulées.Des études ont été menées à l'ICRISAT (Inde) sur la relation entre l'humidité de la feuille centrale de la tige des plantules du sorgho et les dégâts provoqués par la mouche des pousses. L'humidité de la surface des feuilles (HSF) a été estimée grâce à une échelle visuelle graduée 1 à 5 où, 1 = pas d'humidité apparente et 5 = surface de la feuille recouverte de gouttes d'eau. La HSF est plus élevée sur des pousses de sorgho âgées de 10 j que sur les pousses appartenant à d'autres classes d'âge. Les valeurs observées sont également plus fortes pour les variétés non résistantes à ce ravageur (CSH 1,4.8) que pour les variétés résistantes (IS 2146, (2)). La vitesse du déplacement larvaire entre le cornet et la zone de la croissance varie en fonction de l'âge de la plante et des cultivars. Les larves migrent plus rapidement vers la zone de croissance et provoquent la mort du coeur du sorgho plus tôt dans la variété CSH 1 que dans IS 2146. Les larves se déplacent plus rapidement dans les pousses âgées de 10 j que dans les pousses appartenant à d'autres classes d'âge.Des études ont également démontré que la HSF n'est pas directement liée au caractère feuille lisse où à la densité des trichomes. La HSF est faible pour les génotypes résistants présentent où non le caractère feuille lisse. Par contre la HSF est élevée pour les génotypes non résistants présentant le caractère feuille lisse ou non. Aucune relation directe entre la densité des trichomes et les dégâts provoqués par la mouche des pousses n'a pu être mise en évidence. L'analyse des correlations établie pour les caractères de surface des feuilles avec la mort du cur des sorghos indique que les correlations sont faibles et non-significatives pour le caractère feuille lisse (0.49) et la densité des trichomes (0.39 et 0.2). Par contre les correlations sont fortes et significatives pour la HSF (0.82).On conclue que la HSF de la feuille centrale de la tige est un facteur important dans le déterminisme de la résistance du sorgho vis à vis de la mouche des pousses. Les relations entre les processus physiologiques de la plante et les facteurs impliquées dans l'accumulation d'eau sur la surface des feuilles font actuellement l'objet d'études détaillées.
  相似文献   

13.
以紫背天葵为供试材料,采用LED灯精量调控光质和光强,研究相同光照强度(350±5 μmol·m-2·s-1)下,白光(W)、红光(R)、蓝光(B)、黄光(Y)、红蓝混合光(RB)、红蓝黄混合光(RBY)对紫背天葵生长、次生代谢和氧化胁迫抗性的影响.结果表明:与白光(W)相比,红光(R)能够显著促进紫背天葵植株的生长以及干物质和可溶性糖含量的积累;而蓝光(B)则抑制紫背天葵的生长;叶绿素含量在有色光处理下均显著降低;虽然红蓝黄混合光(RBY)未能显著提升紫背天葵的干物质含量,但总酚、类黄酮和花青素含量显著提升,这些还原态物质的积累有利于提高紫背天葵的抗氧化能力,在增强自身抗逆性的同时提升营养价值.本研究为光质调控紫背天葵的多样化生产提供了理论依据.  相似文献   

14.
ABSTRACT. Daily rhythms controlling oviposition, egg-hatching and adult eclosion in the sorghum shootfly, Atherigona soccata Rondani, were investigated. Eggs were laid only during the photophase of a LD 12:12 cycle, in two peaks. Under continuous light, this oviposition was considerably attenuated but not made immediately arrhythmic. Egg-hatching and adult eclosion both commenced just before dawn. Some feature of the scotophase during or immediately after black-head formation apparently acts as a signal for hatching. Eclosion was controlled by light but its timing in the field was modified by temperature. The last 2–3 days of the pupal period constituted the most sensitive stage, and light signals received during this period determined the time of eclosion. Ecological advantages of these rhythms to the shootfly are discussed.  相似文献   

15.
Jones  M.  Sinclair  F.L.  Grime  V.L. 《Plant and Soil》1998,201(2):197-207
Soil cores were taken to estimate root length prior to transplanting and after 60 days growth of a dry season sorghum crop in an agroforestry experiment in a semi-arid region of north-east Nigeria. The experiment compared sorghum grown alone and with two tree species (Acacia nilotica subsp adstringens and Prosopis juliflora) and one management treatment (pruning of tree crowns). Data on soil water content were collected from 6 days before and 20, 60 and 110 days after sorghum transplanting. The main findings were: (i) Per unit root length, A. nilotica had a more negative effect on sorghum above and below ground than P. juliflora. This appeared to be correlated with greater rates of water extraction from layers of soil shared with crop roots; (ii) Crown pruning substantially reduced the competitive effect of P. juliflora on crop yield but did not affect the impact of A. nilotica on intercropped sorghum. Since the impact of pruning on tree-crop competition varies with species, tree species selection and management will be a key factor in determining the feasibility of dryland agroforestry systems.  相似文献   

16.
Studies were conducted on components of resistance to sorghum midge on four resistant (DJ 6514, AF 28, TAM 2566 and IS 15107) and two susceptible cultivars (CSH 1 and Swarna). Data were recorded on the numbers of eggs, larvae, emerged adults and grain damage in panicles of different genotypes infested with 60 midge females/panicle under no-choice conditions. The size of floral parts (glume, lemma, palea, lodicule, stigma, style, ovary and anther), rate of grain development and tannin content of grain were measured. The lengths of glume gl and 82, lemma L1 and L2, palea, lodicule, anther, style and stigma were positively associated with susceptibility to sorghum midge. Rate of grain development (between 3rd and 7th day after anthesis) was negatively associated with susceptibility to sorghum. Tannin content of grain was also negatively correlated with midge susceptibility, although there were distinct exceptions (e.g. DJ 6514 is highly resistant bur has a low tannin content).  相似文献   

17.
The cadmium (Cd) uptake characteristics by Sorghum bicolor cv. Nengsi 2# and Cowley from the acidic sandy loam soil (pH = 6.1) during the entire growth period (100 days) were investigated in pot outdoors in a tropical district of southern China, Hainan Island. The Cd-spiked levels in soil were set as 3 and 15 mg/kg. Correspondingly, the available Cd levels in soil extracted by Mehlich III solution were 2.71 and 9.41 mg/kg, respectively. Basically, two varieties in a full growth period (100 days) did not show a significant difference in their growth and Cd uptake. Under high Cd stress, the plant growth was inhibited and its biomass weight and height decreased by 38.7–51.5% and 27.6–28.5%, respectively. However, S. bicolor showed higher bioaccumulation capability of Cd from soil to plant [bioconcentration factor (BCF)>4], and higher transfer capability of Cd from roots to shoots [translocation factor (TF)>1] under high Cd stress; Cd contents in the roots, stems, and leaves of S. bicolor reached 43.79–46.07, 63.28–70.60, and 63.10–66.06 mg/kg, respectively. S. bicolor exhibited the potential phytoextraction capability for low or moderate Cd-contamination in acidic sandy loam soil.  相似文献   

18.
蔗糖转运蛋白(sucrose transporters,SUTs)属于跨膜转运蛋白,大多数参与蔗糖的吸收和转运。迄今为止,对高粱蔗糖转运蛋白知之甚少,为进一步研究高粱蔗糖转运蛋白家族(SbSUTs),本研究利用生物信息学方法对SbSUTs的6个成员(编号SbSUT1~SbSUT6)进行蛋白理化性质、基因结构、蛋白结构、同源性及系统进化树构建等分析。结果表明:SbSUTs是一种无信号肽、定位于质膜和叶绿体类囊膜上的疏水性膜蛋白;SbSUTs均具有GPH结构功能域,是高度保守的蛋白;α-螺旋和无规卷曲是主要的二级结构元件,其三级结构较为相似。本研究为探究SbSUTs蛋白家族在高粱的蔗糖吸收及转运中的功能提供理论依据。  相似文献   

19.
为了解凋落物分解过程中土壤节肢动物与土壤酶活性的相互联系,以川西亚高山森林箭竹(Fargesia spathacea)凋落叶为对象,通过原位控制实验,于2016年4月至2018年4月研究了土壤节肢动物对凋落叶分解过程中碳、氮和磷转化相关酶活性的影响。结果表明:生物抑制剂施用降低了分解袋中土壤节肢动物49.7%~66.8%的个体密度和19.2%~46.3%的类群数量;对照和处理分解袋中凋落叶碳、氮和磷转化相关酶活性随分解过程呈现相似的动态;与处理相比,土壤节肢动物参与(对照)显著提高了凋落叶分解过程中蔗糖酶、β-葡聚糖苷酶、纤维素酶、多酚氧化酶、过氧化物酶、N-乙酰-β-D-氨基葡萄糖苷酶和酸性磷酸酶活性;土壤节肢动物对凋落叶分解过程中酶活性的贡献率在达到一个明显的峰值后快速降低;土壤温度和土壤节肢动物类群数量与蔗糖酶活性呈显著正相关,与β-葡聚糖苷酶、纤维素酶、多酚氧化酶、过氧化物酶、N-乙酰-β-D-氨基葡萄糖苷酶和酸性磷酸酶活性呈显著负相关。土壤节肢动物对凋落叶分解过程中酶活性促进效应随酶类型和分解时间变化存在差异,与土壤节肢动物群落结构和分解环境密切相关。  相似文献   

20.
从高粱(Sorghum bicolor L.var.R111)幼苗中提取总RNA,利用RT-PCR和cDNA的3′末端的快速扩增方法(3′RACE),第一次克隆了高粱隐花色素2基因(CRY2)的cDNA序列。该序列包括了一个完整的开放阅读框,编码大小为690个氨基酸残基的蛋白质,与水稻、番茄和拟南芥CRY2蛋白质的同源性分别为87%、57%和45.5%。高粱CRY2基因组DNA含有3个内含子和4个外显子。RT-PCR检测结果表明,高粱CRY2基因在根、茎和叶中都有转录。Western blotting结果显示CRY2蛋白在根、茎和叶中表达,并在黑暗中积累,蓝光下降解。高粱CRY2可能在蓝光诱导的幼苗去黄化反应中起作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号