共查询到20条相似文献,搜索用时 15 毫秒
1.
Material representing the nine currently recognized species of Pogonomys and its subgenus Chiruromys was subjected to a programme of canonical correlation analysis. Results indicated that six of these species were distinct while two other groups merited subspecific rank. The holotype of another species, P. mollipilosus , appeared to bear little relation to the widespread montane rats with which it has customarily been associated and is now included in the synonomy of a lowland species, P. macrourus . Computer analysis did not suggest any close relationship between Chiruromys and Pogonomys and Chiruromys is now regarded as a separate genus. Examination of the chromosomes confirms that the division into two genera is valid and, while the karyotype of one could be derived from the other it could just as easily be derived from an independent ancestor. Therefore we postulate an independent origin for Chiruromys and Pogonomys . 相似文献
2.
Mitsuo Nunome Shumpei P. Yasuda Jun J. Sato Peter Vogel & Hitoshi Suzuki 《Zoologica scripta》2007,36(6):537-546
We examined phylogenetic relationships among six species representing three subfamilies, Glirinae, Graphiurinae and Leithiinae with sequences from three nuclear protein-coding genes (apolipoprotein B, APOB; interphotoreceptor retinoid-binding protein, IRBP; recombination-activating gene 1, RAG1). Phylogenetic trees reconstructed from maximum-parsimony (MP), maximum-likelihood (ML) and Bayesian-inference (BI) analyses showed the monophyly of Glirinae ( Glis and Glirulus ) and Leithiinae ( Dryomys , Eliomys and Muscardinus ) with strong support, although the branch length maintaining this relationship was very short, implying rapid diversification among the three subfamilies. Divergence time estimates were calculated from ML (local clock model) and Bayesian-dating method using a calibration point of 25 Myr (million years) ago for the divergence between Glis and Glirulus , and 55 Myr ago for the split between lineages of Gliridae and Sciuridae on the basis of fossil records. The results showed that each lineage of Graphiurus , Glis , Glirulus and Muscardinus dates from the Late Oligocene to the Early Miocene period, which is mostly in agreement with fossil records. Taking into account that warm climate harbouring a glirid-favoured forest dominated from Europe to Asia during this period, it is considered that this warm environment triggered the prosperity of the glirid species through the rapid diversification. Glirulus japonicus is suggested to be a relict of this ancient diversification during the warm period. 相似文献
3.
Chinese species of the genus Niviventer, predominantly distributed in the southeastern Tibetan Plateau and in Taiwan, are a diverse group and have not yet received a thorough molecular phylogenetic analysis. Here, we reconstructed the phylogenetic relationships of 32 specimens representing nine Chinese species of Niviventer, based on sequences of the complete mitochondrial cytochrome b gene. Maximum parsimony, maximum likelihood and Bayesian analysis resulted in three consistent trees, each supported by high bootstrap values. The results showed that the Niviventer species included here are monophyletic. The nine species were classified into three distinct clades: clade A with Niviventer brahma, N. confucianus, N. coxingi, N. culturatus, N. eha and N. fulvescens; clade B with N. andersoni and N. excelsior; clade C with N. cremoriventer. Our results also suggested that N. culturatus should be a valid species rather than a subspecies of N. confucianus. Divergence times among species were calibrated according to the middle-late Pleistocene (1.2-0.13 Mya) fossil records of N. confucianus. The results demonstrated that the first radiation event of the genus Niviventer occurred in early Pleistocene (about 1.66 Mya), followed by the divergence of clades A and B at about 1.46 Mya. Most of the extant Niviventer species appeared during early to middle Pleistocene (about 1.29-0.67 Mya). These divergence times are coincidental with the last uplift events of the Tibetan Plateau, Kun-Huang movement, Pleistocene glaciations and the vicariant formation of Taiwan Strait. Consequently geographical events and Pleistocene glaciations have played a great role in the diversification of Niviventer. 相似文献
4.
Graomys griseoflavus (Waterhouse 1837) is a phyllotine murid rodent with a Robertsonian autosomal polymorphism, having been described 2n = 42, 41, 38, 37, 36, 35 and 34 karyomorphs, and proposed a chromosomal divergence pathway accounted by four sequential Robertsonian fusions. Sequences of a fragment (422 bp long) of the cytochrome b (cyt b) mitochondrial gene and its 5' flanking region (tRNA Glu) were obtained for 19 Graomys griseoflavus from different karyomorphs to infer phylogenetic relationships by using maximum parsimony. Outgroups considered for this analysis were the phyllotine rodents Phyllotis xanthopygus and Eligmodontia typus cyt b sequences. Three trees were produced showing the 2n = 38-34 karyomorphs grouped in a single clade while the 2n = 42-41 animals formed a different one. This is in agreement with a hypothesis of a single origin for 2n = 38-34 Robertsonian karyomorphs from the ancestral 2n = 42. 相似文献
5.
Using the data on complete sequences of cytochrome b gene, phylogenetic relationships were studied among the Stenocephalemys s. lat. (Stenocephalemys ssp. + Praomys albipes) murine rodents, inhabiting adjacent altitudinal belts of the isolated Ethiopian mountain massifs, and among the related Praomys s. lat. species. Extremely low resolution of the relationships among the main Praomys s. lat. lineages hampered identification of the nearest sister group for the Stenocephalemys s. lat. "Ethiopian" clade, monophyly of which was strongly supported. Sister relationships between P. albipes and S. griseicauda (implying "accelerated" morphological and chromosomal evolution upon the formation of the former species), as well as between S. albocaudata and the recently described novel chromosomal form of Stenocephalemus sp. A (2n = 50; NFa = 56) were demonstrated. Definite discordance between the rates of their molecular, chromosomal, and morphological evolution was revealed. Based on phylogenetic reconstructions and the estimates of the divergence time, obtained by use of molecular clock method, an attempt to draw a phylogenetic scenario for the group examined was made. The obtained data were compared to those for analogous Sigmodontinae species complexes, distributed across a marked altitudinal gradient on the Andean slopes. It was shown that molecular genetic data on the rodents from mountain tropics did not support the gradient model of diversification, based on the possibility of morphological diversification prior to their achievement of the species status (without interruption of the gene flow between the forms) due to differently directed selection across a strong environmental gradient. 相似文献
6.
Contrasting phylogeographic signatures in two Australo‐Papuan bowerbird species complexes (Aves: Ailuroedus) 下载免费PDF全文
Martin Irestedt Henrique Batalha‐Filho Cees S. Roselaar Les Christidis Per G. P. Ericson 《Zoologica scripta》2016,45(4):365-379
The Australo‐Papuan catbird genus Ailuroedus has a complex distribution and a contested taxonomy. Here, we integrate phylogenetic analysis of DNA data and morphology to study the group's biogeography and to re‐examine its taxonomy. We couple phylogeographic and abiotic data to examine differences between the major groups defined in our phylogenetic analysis. Our results are consistent with Ailuroedus catbirds being divided into two species complexes, one distributed in humid forests in the lowlands on New Guinea and another in comparably drier and colder forests mainly in mid‐mountains on New Guinea and Australia. Vicariant events during the Pliocene are surmised to have been the major force in shaping the contemporary phylogeographical signature of this genus. Several previously suggested vicariant events, such as fragmentation of xeric forests in Australia and the uplift of the central mountain range on New Guinea, are reinforced as important Pliocene barriers for tropical forest taxa in this region. Interaction between Pleistocene climatic fluctuations and differences in habitat requirements may explain a higher and more recent population structures in the mid‐mountain catbird complex and the lack of representatives from the lowland clade in the comparably drier Australia. Phylogeographical patterns in both catbird complexes, respectively, both comply and deviate from other lowland and mid‐mountain taxa in the region. This highlights that taxon‐specific properties, such as their historical spatial and ecological distributions, capacity to disperse and tolerance to habitat changes, affect the phylogeographical histories of organisms. Within both species complexes, the genetic differentiation between several geographically isolated populations was found to exceed those commonly observed for avian sister species. As these genetically distinct taxa also were found to be morphological diagnosable, we suggest a revised classification of the genus Ailuroedus, where we recognize three species within the lowland complex and seven species within the mid‐mountain complex. 相似文献
7.
Phenetic relationships among four Apodemus species (Rodentia, Muridae) inferred from skull variation
Vida Joji? Jelisaveta Nenadovi?Jelena Blagojevi? Milan Paunovi?Dragana Cvetkovi? Mladen Vujoševi? 《Zoologischer Anzeiger》2012,251(1):26-37
Phenetic relationships among four Apodemus species (A. agrarius, A. epimelas, A. flavicollis and A. sylvaticus) inferred from skull (mandible and cranium) variation were explored using landmark-based geometric morphometrics. Analysis of size variation revealed that mandibles and crania of A. epimelas were the largest, followed by those of A. flavicollis, while A. agrarius and A. sylvaticus had the smallest ones. Phenetic relationships inferred from mandible shape variation better reflected phylogenetic relationships among the analyzed Apodemus species than those inferred from cranial differences. Concerning cranial shape variation, the most differentiated species was A. epimelas, whose ecology clearly differs from the other three species. Thus, differentiation of the mandible provided a pattern fully concordant with the phylogeny, while the cranium differentiation was in agreement with ecology expectations. The most evident shape changes of mandible and cranium involved the angular process and facial region, respectively. We also found that allometry had a significant influence on shape variation and that size-dependent shape variation differed among the analyzed species. Moreover, mandible and cranium are differently influenced by allometric changes. Different phenetic relationships inferred from mandible and cranium shape variation imply that phylogeny, ecology, together with factors related to size differences are all involved in the observed morphological divergence among the analyzed Apodemus species. 相似文献
8.
Phylogenetic relationships among species of the Neotropical genus Graomys (Rodentia: Cricetidae): contrasting patterns of skull morphometric variation and genetic divergence 下载免费PDF全文
Juan J. Martínez Cristina N. Gardenal 《Biological journal of the Linnean Society. Linnean Society of London》2016,118(3):648-667
Subtle differences of external traits characterize species of rodents in the Neotropical genus Graomys. On the other hand, the species differ markedly in chromosome number. In the present study, we evaluate the possible evolutionary forces involved in the evolution of the genus by assessing the degree of intra‐ and interspecific genetic and morphological variation. A phylogenetic analysis demonstrates the existence of at least three species with high levels of genetic distance (10%), which diverged between 1 and 1.5 Mya. Neither Graomys griseoflavus, nor Graomys chacoensis present marked phylogeographical structure. Regarding morphological characters, these species show shape differences in the skull that could be attributable to differences in the local conditions they inhabit, being more marked in G. griseoflavus than in G. chacoensis. The skull shape of G. chacoensis could have evolved under genetic drift, whereas evidence reported in the present study indicates that this character could be under selective pressures in G. griseoflavus. Reconstruction of the ancestral area suggests that G. griseoflavus originated in the central Monte desert, whereas G. chacoensis originated in the Chaco ecoregion surrounding the austral extreme of the Yungas rainforest. Subsequently, both species would have undergone demographic and geographical expansions almost simultaneously, starting approximately 150 000–175 000 years ago. The complex evolutionary history of the genus could be partly explained by the decoupling of morphological, karyological and molecular traits. 相似文献
9.
Based on molecular data for mitochondrial (Cyt b, COI) and nuclear (IRBP, GHR) genes, and morphological examinations of museum specimens, we examined diversity, species boundaries, and relationships within and between the murine genera Chiromyscus and Niviventer. Phylogenetic patterns recovered demonstrate that Niviventer sensu lato is not monophyletic but instead includes Chiromyscus
chiropus, the only previously recognized species of Chiropus. To maintain the genera Niviventer and Chiropus as monophyletic lineages, the scope and definition of the genus Chiromyscus is revised to include at least three distinct species: Chiromyscus
chiropus (the type species of Chiromyscus), Chiromyscus
langbianis (previously regarded as a species of Niviventer), and a new species, described in this paper under the name Chiromyscus
thomasi
sp. n. 相似文献
10.
Raúl E. González‐Ittig Jorge Salazar‐Bravo Rubén M. Barquez Cristina N. Gardenal 《Zoologica scripta》2010,39(6):511-526
González‐Ittig, R. E., Salazar‐Bravo, J., Barquez, R. M. & Gardenal, C. N. (2010). Phylogenetic relationships among species of the genus Oligoryzomys (Rodentia, Cricetidae) from Central and South America. —Zoologica Scripta, 39, 511–526. The genus Oligoryzomys includes several species very similar in external morphology, which has resulted in a confusing specific taxonomy. Accurate species identification is particularly important because several species of Oligoryzomys act as natural hosts of hantaviruses affecting humans. Here, we assign specific status to individuals from a wide geographical area of Argentina and Chile using sequences of the mtDNA control region. We also compare cytochrome b sequences of 14 species recognized from Central and South America to infer the phylogenetic relationships within the genus. In addition, the results were analysed using available data on chromosome numbers, and the host–parasite relationships reported for the genus Hantavirus. We confirm the geographical distribution of Oligoryzomys longicaudatus (Argentina, Chile), Oligoryzomys nigripes (Argentina, Paraguay, Brazil), Oligoryzomys chacoensis (Argentina, Bolivia, Paraguay), Oligoryzomys fornesi (Argentina, Paraguay), Oligoryzomys destructor (Argentina, Bolivia) and Oligoryzomys microtis (Bolivia, Brazil). Oligoryzomys longicaudatus is strongly related to the Oligoryzomys flavescens complex, which comprises four clades; O. nigripes is closely related to Oligoryzomys stramineus, and Oligoryzomys vegetus, to Oligoryzomys fulvescens from Central America. Oligoryzomys chacoensis, O. destructor, O. fornesi, O. longicaudatus, O. microtis, O. nigripes, O. stramineus, Oligoryzomys moojeni, Oligoryzomys rupestris, O. fulvescens and O. vegetus are confirmed as valid species, whereas O. flavescens, Oligoryzomys magellanicus, Oligoryzomys griseolus, Oligoryzomys victus, Oligoryzomys andinus and Oligoryzomys arenalis need exhaustive revision. The sister species to all the remaining entities of the genus was O. microtis, suggesting an Amazonian origin for the genus. 相似文献
11.
In species acting as hosts of infectious agents, the extent of gene flow between populations is of particular interest because
the expansion of different infectious diseases is usually related to the dispersal of the host. We have estimated levels of
gene flow among populations of the sigmodontine rodent Oligoryzomys flavescens, in which high titers of antibodies have been
detected for a Hantavirus in Argentina that produces a severe pulmonary syndrome. Enzyme polymorphism was studied by means
of starch gel electrophoresis in 10 populations from the area where human cases of Hantavirus have occurred. Genetic differentiation
between populations was calculated from FST values with the equation Nm = [(1/FST−1]/4. To assess the relative importance of current gene flow and historical associations between populations, the relationship
of population pairwise log Nm and log geographic distance was examined. Low FST (mean = 0.038) and high Nm (15.27) values suggest high levels of gene flow among populations. The lack of an isolation by
distance pattern would indicate that this species has recently colonized the area. The northernmost population, located on
the margin of a great river, shows very high levels of gene flow with the downstream populations despite the large geographic
distances. Passive transport of animals down the river by floating plants would promote unidirectional gene flow. This fact
and the highest mean heterozygosity of that northernmost population suggest it is a center of dispersal within the species'
range.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
12.
13.
Opazo JC Wildman DE Prychitko T Johnson RM Goodman M 《Molecular phylogenetics and evolution》2006,40(1):274-280
Orthologous sequences of six nuclear genes were obtained for all recognized genera of New World monkeys (Primates: Platyrrhini) and outgroups to evaluate the phylogenetic relationships and to estimate divergence times. Phylogenetic relationships were reconstructed by maximum parsimony, maximum likelihood, and Bayesian approaches. All methods resolved with 100% branch support genus-level relationships, except for the grouping of Aotus as a sister taxa of Cebus and Saimiri, which was supported by low bootstrap percentages and posterior probability. All approaches depict three monophyletic New World monkey families: Atelidae, Cebidae, and Pitheciidae; also within each family, all approaches depict the same branching topology. However, the approaches differ in depicting the relationships of the three families to one another. Maximum parsimony depicts the Atelidae and Cebidae as sister families next joined by the Pitheciidae. Conversely, likelihood and Bayesian phylogenetic trees group families Atelidae and Pitheciidae together to the exclusion of Cebidae. Divergence time estimations using both local molecular clock and Bayesian approaches suggest the families diverged from one another over a short period of geological time in the late Oligocene-early Miocene. 相似文献
14.
M. B. CHIAPPERO G. B. DE SOUSA A. BLANCO & C. N. GARDENAL 《Journal of Zoological Systematics and Evolutionary Research》2002,40(1):1-7
Rodents of the tribe Phyllotini represents one of the main radiations of South American Sigmodontini. Phylogenetic relationships among species of this highly diversified group are poorly known. In this paper we analyse evolutionary relationships among eight phyllotine species belonging to the genera Calomys , Graomys , Phyllotis and Eligmodontia , on the basis of allozymic polymorphisms. Most of the differences among species were in allele frequencies and not of allele class. Neighbour-joining and maximum likelihood methods place P. xanthopygus in the same group as E. typus and G. griseoflavus , in agreement with results obtained by several authors on the basis of morphological characters. Parsimony analysis of 0–9 coded data suggest that the genus Calomys is paraphyletic, but with a low bootstrap support. In the tree based on genetic distance data, the genus also appears as paraphyletic. The maximum likelihood method yields a tree where Calomys is monophyletic, but this phylogeny is supported by only two out of 78 alleles analysed. Calomys hummelincki and C. venustus occupy a basal position among Calomys species. Calomys musculinus and C. lepidus are the most closely related species of the genus, with C. laucha as sister to them. These relationships are strongly supported by bootstrap percentages. 相似文献
15.
The phylogenetic relationships of 14 species of Stilestrongylus were analyzed using the comparative morphology of 21 characters. We obtained 2 shortest trees of 50 steps, with a consistency index of 0.540 and 25 apomorphic character states. Ingroup monophyly was supported on these trees by 2 and 3 synapomorphies, respectively, and the ingroup was defined by the following characters: greater number of ventral ridges relative to the number of ridges dorsally, asymmetric bursa, and externodorsal rays differing in size. Sister-group relationships among Stilestrongylus and the other genera designated as outgroups are relatively consistent with those postulated by Durette-Desset's in a classification of the Nippostrongylinae. The ancestor of the species groups comprising Hassalstrongylus, Guerrerostrongylus, and Stilestrongylus originated and diversified in murids in the Neotropical region. Species of Hassalstrongylus occur in rodents between southeastern North America and the eastern part of South America (Brazil and Argentina), whereas species of Guerrerostrongylus and Stilestrongylus diversified exclusively in rodents in the Neotropics. 相似文献
16.
Genetic diversity and phylogenetic relationships in the zokor subfamily myospalacinae (Rodentia,Muridae) inferred from RAPD-PCR 总被引:1,自引:0,他引:1
Zokors (Myospalacinae) is a group of rodents specialized for underground life, endemics of eastern Asia, which is taxonomically and evolutionarily poorly studied. We examined genetic diversity and phylogenetic relationships among zokors (Myospalax myospalax, Myospalax aspalax, Myospalax armandii, Myospalax psilurus, Myospalax smithii) using RAPD-PCR. The subfamily Myospalacinae was shown to be monophyletic and contain four evolutionary branches: M. myospalax, M. aspalax-M. armandii, M. smithii and M. psilurus. Genetic differences and high differentiation were found among the species and between two geographic forms of Manchurian zokor M. psilurus from the marginal parts of the range, Transbaikalia and Primorye. The psiluris phylogroup was shown to be dichotomically divided into two clades according to the geographical distribution of animals from Transbaikalia and Primorye. The genetic differentiation between the geographic forms of M. psilurus corresponded to the differentiation between morphologically similar species M. aspalax and M. armandii. M. armandii is a sister taxon with regard to M. aspalax. This new evidence on the evolutionary relationships among zokors does not contradict the traditional views inferred from morphological, karyological, and allozyme data, on apartness of M. myospalax and the character of evolution in this group. The species status of Myospalax psilurus Milne-Edwards, 1874, M. epsilanus Thomas, 1912, and M. armandii Milne-Edwards, 1867, which had been suggested earlier on the basis of biochemical and karyological data, was confirmed. 相似文献
17.
18.
Microsatellite loci were developed for the giant white‐tailed rat (Uromys caudimaculatus) to aid in assigning paternity and to subsequently investigate their mating system and sex‐biased dispersal characteristics. Twenty‐two primer sets were originally developed and of these, 11 were polymorphic with between five and 10 alleles per locus. In addition, two primer sets designed for Hydromys chyrsogaster also amplified in this species despite an evolutionary divergence of 15 million years (Myr). 相似文献
19.
The family Lemuridae includes four genera: Eulemur, Hapalemur, Lemur,Varecia. Taxonomy and phylogenetic relationships between L. catta, Eulemur and Hapalemur, and of Varecia to these other lemurids, continue to be hotly debated. Nodal relationships among the five Eulemur species also remain contentious. A mitochondrial DNA sequence dataset from the ND 3, ND 4 L, ND 4 genes and five tRNAs (Gly, Arg, His, Ser, Leu) was generated to try to clarify phylogenetic relationships w ithin the Lemuridae. Samples (n=39) from all ten lemurid species were collected and analysed. Three Daubentonia madagascariensis were included as outgroup taxa. The approximately 2400 bp sequences were analysed using maximum parsimony, neighbor-joining and maximum likelihood methods. The results support monophyly of Eulemur, a basal divergence of Varecia, and a sister-group relationship for Lemur/Hapalemur. Based on tree topology, bootstrap values, and pairwise distance comparisons, we conclude thatVarecia and Eulemur both represent distinct genera separate from L. catta. H. griseus andH. aureus form a clade with strong support, but the sequence data do not permit robust resolution of the trichotomy involving H. simus, H. aureus/H. griseus and L. catta. Within Eulemur there is strong support for a clade containing E. fulvus, E. mongoz and E. rubriventer. However, analyses failed to clearly resolve relationships among those three species or with the more distantly related E. coronatus and E. macaco. Our sequencing data support the current subspecific status of E.m. macaco and E.m. flavifrons, and that of V.v. variegata and V.v. rubra. However, tree topology and relatively large genetic distances among individual V.v. variegata indicate that there may be more phylogenetic structure within this taxon than is indicated by current taxonomy. 相似文献
20.
R. EDUARDO PALMA ENRIQUE RODRÍGUEZ‐SERRANO ERIC RIVERA‐MILLA CRISTIAN E. HERNANDEZ JORGE SALAZAR‐BRAVO MARIA I. CARMA SEBASTIAN BELMAR‐LUCERO PABLO GUTIERREZ‐TAPIA HORACIO ZEBALLOS TERRY L. YATES 《Zoological Journal of the Linnean Society》2010,160(3):551-566
Sequences from two mitochondrial genes (cytochrome b and NADH1) were used to produce a molecular phylogeny for 12 named and two undescribed species of the genus Oligoryzomys. All analyses placed Oligoryzomys microtis as the most basal taxon, a finding consistent with previous studies that suggested the west‐central Amazon as a centre of origin for the tribe Oryzomyini to which Oligoryzomys belongs. Biogeographically, this suggests that Oligoryzomys had a South American origin, and later advanced northwards, entering Central America and Mexico more recently. Different analyses have provided consistent support for several additional clades that did not necessarily agree with the species groups hypothesized by previous studies. A molecular clock derived for these data suggests an origin for the genus of 6.67 Mya, with most speciation within the genus occurring between 3.7 and 1.5 Mya. © 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 160 , 551–566. 相似文献