首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Poor water quality is discussed as a major factor causing a decline of brown trout populations in Swiss rivers. For our study we have chosen a river in the Swiss midlands, where the brown trout population has decreased dramatically during the last 10 yr and where feral fish have shown distinctive pathological alterations. The objective of our study was to investigate whether river water may be responsible for impaired fish health leading to an increased mortality in the river. In an active monitoring program, groups of brown and rainbow trout were exposed to polluted river water for 24 mo. Fish held in tap water served as a reference. Mortality, macroscopic and histopathologic changes, and infectious agents were investigated. Compared with the reference group, high mortality rates and severe pathological alterations of the inner organs were observed in fish held in river water. Especially gills, liver and kidney of these fish showed significantly higher changes than fish from tap water. These changes were dominated by degenerative and inflammatory reactions. Additionally, several infectious agents were diagnosed in fish exposed to river water. The most important findings were furunculosis and proliferative kidney disease. Brown trout seemed to be more sensitive than rainbow trout to environmental stress and infectious agents.  相似文献   

2.
Bernet  D.  Schmidt-Posthaus  H.  Wahli  T.  Burkhardt-Holm  P. 《Hydrobiologia》2004,524(1):53-66
An active monitoring (caging experiment) and a passive monitoring (sampling of wild fish) were performed to investigate the effects of effluent from a sewage treatment works (STW) on brown trout (Salmo trutta) by histopathological examinations of the skin, gill, liver and kidney. Histopathological lesions were evaluated according to a standardised assessment tool, which allows calculation of indices for every organ. According to the results of both monitorings, trout exposed to river water supplemented with treated waste water from the STW Lyss showed higher histopathological indices than trout caught upstream of the discharge point of the STW or kept in river water only. These results indicate a negative effect of treated waste water from the STW on the histopathological status of the examined organs of brown trout. Both monitoring approaches revealed the liver to be the most affected organ compared with reference fish. However, data from the two monitoring approaches were not completely consistent: histologically the gills were the most sensitive organ to the effects of treated waste water in the active monitoring, but were not affected in the passive monitoring. The data provide relevant information about both the comparability and the pros and cons of the two monitoring approaches to assess effects of pollution on histopathological alterations in fish.  相似文献   

3.
Brown trout Salmo trutta populations of numerous Swiss rivers are declining. Sewage plant effluents are discussed as a possible cause. To investigate the influence of sewage plant effluents, brown trout as well as rainbow trout Oncorhynchus mykiss were exposed to 10% diluted waste water over a period of 12 months. The effects were compared to those on trout kept in commercial tap water. The mortality rate was low and no pathogenic bacteria or viruses were recorded in exposed and tap-water animals. Parasitological examination revealed a mild infestation with Gryodactylus sp. in all groups. Macroscopically and histologically, only minor changes in gills, skin, and kidney of exposed animals were found when compared to fish kept in tap water. Degenerative and inflammatory reactions in the liver of exposed animals were the most prominent findings. Several brown trout caught in the River Langete showed marked proliferative, degenerative and inflammatory lesions of gills, liver, and kidney. The results do not suggest that waste-water effects would explain the decrease of fish populations. However, it is conceivable that the effluents in combination with other factors in the river enhance the development of changes.  相似文献   

4.
Individual daily food intake, mass‐specific growth rate and growth efficiency in groups of juvenile brown trout Salmo trutta were compared in tank experiments with three water level regimes (fluctuating, stable high and low water levels) and two temperature regimes (fluctuating between 10 and 14° C and constant 14° C) to simulate events during hydropeaking in regulated rivers. Fish exposed to high stable water level showed higher food intake and growth rate, and higher or similar growth efficiency than fish exposed to fluctuating or stable low water level. Both groups of slow‐growing and fast‐growing individuals fed less and grew slower at stable low and fluctuating water level than at stable high water level. Furthermore, growth and growth efficiency were lower in brown trout exposed to stable low water level and fluctuating temperature, particularly for groups of fish with slow growth. Temperature did not have any effect at high water level. For groups of fast‐growing fish, there was no difference in growth efficiency between treatments. It is concluded that fluctuating water level and temperature have a potentially detrimental effect on growth in juvenile brown trout and effects are more severe in slow‐ than fast‐growing fish.  相似文献   

5.
Early life stage (ELS) studies with brown trout(Salmo trutta f. fario L.) andstone loach (Barbatula barbatula L.)were performed between 1995 and 2000 toevaluate embryotoxic potentials in twodifferently polluted streams in southwestGermany. With both species, semistatic exposureexperiments with water samples and sedimenteluates were conducted in the laboratory.Additionally, brown trout ELS tests wereperformed in flow-through systems in thesemi-field and in the field. Thus, differentlevels of complexity of environmentalconditions were addressed which allowed thestudy of effects of xenobiotic contamination,temperature, and sediments on the success ofembryonic development. Additionally, effects ofwater from the polluted stream on fertilizationof brown trout eggs were determined. In themore polluted stream, xenobiotics caused anembryotoxic potential for both brown trout andstone loach, and viability of exposed browntrout eggs was drastically reduced by suspendedsolids in the water which covered the eggs.Additionally, fertilization rates of browntrout eggs were significantly decreased inwater of the more polluted stream. In the lesspolluted stream, low water temperature andinfestations by protozoic ectoparasites causedmortality of embryos. In this stream, pollutionand sediment effects were not observed. Resultsmade evident that in the more polluted streamrecruitment of brown trout was drasticallyimpaired.  相似文献   

6.
Habitat fragmentation is a growing problem worldwide. Particularly in river systems, numerous dams and weirs hamper the movement of a wide variety of species. With the aim to preserve connectivity for fish, many barriers in river systems are equipped with fishways (also called fish passages or fish ladders). However, few fishways provide full connectivity. Here we hypothesized that restricted seasonal opening times of fishways can importantly reduce their effectiveness by interfering with the timing of fish migration, for both spring‐ and autumn‐spawning species. We empirically tested our hypothesis, and discuss the possible eco‐evolutionary consequences of affected migration timing. We analyzed movements of two salmonid fishes, spring‐spawning European grayling (Thymallus thymallus) and autumn‐spawning brown trout (Salmo trutta), in Norway's two largest river systems. We compared their timing of upstream passage through four fishways collected over 28 years with the timing of fish movements in unfragmented river sections as monitored by radiotelemetry. Confirming our hypothesis, late opening of fishways delayed the migration of European grayling in spring, and early closure of fishways blocked migration for brown trout on their way to spawning locations during late autumn. We show in a theoretical framework how restricted opening times of fishways can induce shifts from migratory to resident behavior in potamodromous partial migration systems, and propose that this can induce density‐dependent effects among fish accumulating in lower regions of rivers. Hence, fragmentation may not only directly affect the migratory individuals in the population, but may also have effects that cascade downstream and alter circumstances for resident fish. Fishway functionality is inadequate if there is a mismatch between natural fish movements and fishway opening times in the same river system, with ecological and possibly evolutionary consequences for fish populations.  相似文献   

7.
In order to study the sensitivity of two fish species, carp (Cyprinus carpio) and rainbow trout (Oncorhynchus mykiss), to the immunomodulatory effects of ultraviolet B (UVB) radiation, the fish were exposed to a single UVB dose of 50, 250, 500 or 1,000 mJ cm(-2). These species represent different phylogenetic groups of fish, and they differ also in their behaviour inhabitating often dark and turbid (carp) or clear and transparent waters (salmonids). Immune responses were studied on day 1 post-irradiation. Unexposed fish, and fish exposed to radiation depleted of UV wavelengths served as controls. UVB irradiation markedly enhanced the blood respiratory burst and cytotoxic activity in carp, but in the head kidney these parameters were significantly suppressed. Rainbow trout respiratory burst was affected only after exposure with the highest dose of UVB. Lymphopenia and granulophilia were noted in both fish blood after exposure. This study indicates that UVB irradiation modulates immune functions in both fish species studied, and that rainbow trout is more tolerant than carp against UVB. Fish are clearly adapted to the environmental UVB levels prevailing in their usual living habitats, but are also a target of undesired effects of UVB on immune functions whenever exposed to increased radiation levels.  相似文献   

8.
While most studies have focused on the timing and nature of ontogenetic niche shifts, information is scarce about the effects of community structure on trophic ontogeny of top predators. We investigated how community structure affects ontogenetic niche shifts (i.e., relationships between body length, trophic position, and individual dietary specialization) of a predatory fish, brown trout (Salmo trutta). We used stable isotope and stomach content analyses to test how functional characteristics of lake fish community compositions (competition and prey availability) modulate niche shifts in terms of (i) piscivorous behavior, (ii) trophic position, and (iii) individual dietary specialization. Northern Scandinavian freshwater fish communities were used as a study system, including nine subarctic lakes with contrasting fish community configurations: (i) trout‐only systems, (ii) two‐species systems (brown trout and Arctic charr [Salvelinus alpinus] coexisting), and (iii) three‐species systems (brown trout, Arctic charr, and three‐spined sticklebacks [Gasterosteus aculeatus] coexisting). We expected that the presence of profitable small prey (stickleback) and mixed competitor–prey fish species (charr) supports early piscivory and high individual dietary specialization among trout in multispecies communities, whereas minor ontogenetic shifts were expected in trout‐only systems. From logistic regression models, the presence of a suitable prey fish species (stickleback) emerged as the principal variable determining the size at ontogenetic niche shifts. Generalized additive mixed models indicated that fish community structure shaped ontogenetic niche shifts in trout, with the strongest positive relationships between body length, trophic position, and individual dietary specialization being observed in three‐species communities. Our findings revealed that the presence of a small‐sized prey fish species (stickleback) rather than a mixed competitor–prey fish species (charr) was an important factor affecting the ontogenetic niche‐shift processes of trout. The study demonstrates that community structure may modulate the ontogenetic diet trajectories of and individual niche specialization within a top predator.  相似文献   

9.
10.
1. Upstream and downstream migrating anadromous brown trout Salmo trutta were monitored daily in fish traps in the River Imsa in south-western Norway for 24 years, from 1976 to 1999. One-third of the fish descended to sea during spring (February–June) and two-thirds during autumn (September–January).
2. In spring, high water temperature appeared to influence the downstream descent. Large brown trout (> 30 cm, chiefly two or more sea sojourns) descended earlier and appeared less dependent on high water temperature than smaller and younger fish. The spring water flow was generally low and of little importance for the descent.
3. In autumn, the daily number of descending brown trout correlated positively with flow and negatively with water temperature.
4. Brown trout ascended from the sea between April and December, but more than 70% ascended between August and October. The number of ascending trout increased significantly with both decreasing temperature and flow during the autumn. This response to flow appeared to be the result of the autumn discharge which is generally high and most fish ascended at an intermediate flow of 7.5–10 m3 s−1 (which is low for the season).
5. In a river like the Imsa with low spring and high autumn flows, water temperature appears to be the main environmental factor influencing the timing and rate of spring descent, while both water temperature and flow seemed to influence the timing and rate of the autumn descent and ascent. These relationships make sea trout migrations susceptible to variation in climate and human impacts of the flow regime in rivers.  相似文献   

11.
12.
In this study, radio telemetry was used to examine the upstream spawning migration behaviour of anadromous brown trout (sea trout), Salmo trutta L., in a boreal river system, the River Isojoki, western Finland. The aim was to study the movement activity and migration characteristics of trout during the upstream spawning migration, as well as to locate the important spawning habitats and study the spawning characteristics. Furthermore, the authors analysed how flow conditions and a hydropower dam, with adjacent fishways, affected the upstream spawning migration. Tagged trout spawned in both the main stem and four tributaries, with spawning taking place from early October to November. The movement activity of radio-tagged trout was influenced by a hydropower dam (Perus dam), with spring migrators spending prolonged periods at the dam area, postponing the migration upstream. Flow conditions affected the total time spent at the dam area, as well as the movement activity in the free-flowing sections above the dam, with increasing flow stimulating activity. In addition, time of river ascent and location of spawning area had a significant effect on the movement activity of tagged trout. These results are further evidence that synergistic effects of flow and migratory obstacles can negatively influence migrations of anadromous fish, regardless of constructed fishways. The management of flow regimes and the efficiency of fishways are vital, as climate change will likely influence the flow and increase the water temperature of boreal river systems, further aggravating issues caused by obstacles.  相似文献   

13.
Municipal sewage effluents are complex mixtures that are known to compromise the health condition of aquatic organisms. The aim of this study was to evaluate the impacts of various wastewater disinfection processes on the immune system of juvenile rainbow trout (Oncorhynchus mykiss). The trout were exposed to a primary-treated effluent for 28 days before and after one of each of the following treatments: ultraviolet (UV) radiation, ozonation and peracetic acid. Immune function was characterized in leucocytes from the anterior head kidney by the following three parameters: phagocytosis activity, natural cytotoxic cells (NCC) function and lymphocyte (B and T) proliferation assays. The results show that the fish mass to length ratio was significantly decreased for the primary-treated and all three disinfection processes. Exposure to the primary-treated effluent led to a significant increase in macrophage-related phagocytosis; the addition of a disinfection step was effective in removing this effect. Both unstimulated and mitogen-stimulated T lymphocyte proliferation in fish decreased dramatically in fish exposed to the ozonated effluent compared to fish exposed to either the primary-treated effluent or to aquarium water. Stimulation of T lymphocytes proliferation was observed with the peracetic acid treatment group. In conclusion, the disinfection strategy used can modify the immune system in fish at the level of T lymphocyte proliferation but was effective to remove the effects on phagocytosis activity.  相似文献   

14.
Huge efforts have been made during the past decades to improve the water quality and to restore the physical habitat of rivers and streams in western Europe. This has led to an improvement in biological water quality and an increase in fish stocks in many countries. However, several rheophilic fish species such as brown trout are still categorized as vulnerable in lowland streams in Flanders (Belgium). In order to support cost‐efficient restoration programs, habitat suitability modeling can be used. In this study, we developed an ensemble of habitat suitability models using metaheuristic algorithms to explore the importance of a large number of environmental variables, including chemical, physical, and hydromorphological characteristics to determine the suitable habitat for reintroduction of brown trout in the Zwalm River basin (Flanders, Belgium), which is included in the Habitats Directive. Mean stream velocity, water temperature, hiding opportunities, and presence of pools or riffles were identified as the most important variables determining the habitat suitability. Brown trout mainly preferred streams with a relatively high mean reach stream velocity (0.2–1 m/s), a low water temperature (7–15°C), and the presence of pools. The ensemble of models indicated that most of the tributaries and headwaters were suitable for the species. Synthesis and applications. Our results indicate that this modeling approach can be used to support river management, not only for brown trout but also for other species in similar geographical regions. Specifically for the Zwalm River basin, future restoration of the physical habitat, removal of the remaining migration barriers and the development of suitable spawning grounds could promote the successful restoration of brown trout.  相似文献   

15.
The influence of pulsed discharges associated with hydroelectric power generation (i.e. hydropeaking) on feeding activity and diet composition of adult brown trout (Salmo trutta) was studied during the summer by comparing two sites: upstream (control site) and downstream from a power plant (hydropeaking site). Twenty fish were captured from each study site by electrofishing at 4‐hour intervals for two consecutive days and stomach contents were collected with pulsed gastric lavage. Hydropeaking events affected brown trout feeding behaviour as well as prey availability. Feeding intensity, measured by the stomach Fullness Index, showed pronounced variations with maximum values after flow pulses, which were linked to variations in prey availability because of increased drift rates of invertebrates. In contrast, brown trout living at the control site showed smoother variations in feeding activity not linked to invertebrate drift. Overall, brown trout at the hydropeaking site had higher food consumption rates and a more generalist and heterogeneous diet than trout from the control site, indicating an opportunistic feeding behaviour during flow pulses. Therefore, the hydrological disturbance caused by hydropeaking did not appear to cause direct negative impacts on feeding of adult brown trout. However, reduced trout density and imbalanced size structure in the hydropeaking site were detected, requiring further research to clarify the spatial influence of hydropeaking on other factors that could negatively affect brown trout populations.  相似文献   

16.
The susceptibility of rainbow trout Oncorhynchus mykiss and brown trout Salmo trutta to Myxobolus cerebralis, the cause of salmonid whirling disease, was assessed following dosed exposures to the infectious stages (triactinomyxons). Parallel groups of age-matched brown trout and rainbow trout were exposed to 10, 100, 1000 or 10,000 triactinomyxons per fish for 2 h and then placed in aquaria receiving single pass 15 degrees C well water. Severity of infection was evaluated by presence of clinical signs (whirling and/or black tail), prevalence of infection, severity of microscopic lesions, and spore counts 5 mo after exposure. Clinical signs of whirling disease, including a darkened caudal region (black tail) and radical tail chasing swimming (whirling), occurred first among rainbow trout at the highest dose at 6 to 7 wk post exposure. Black tail and whirling occurred among rainbow trout receiving 1000 and 100 triactinomyxons per fish at 8 to 9 wk post exposure. Only 1 of 20 fish had a black tail among rainbow trout receiving 10 triactinomyxons per fish, although 30% of the fish were infected at 5 mo post exposure. Black tails were observed in brown trout at 1000 and 10,000 triactinomyxons per fish beginning at 11 and 7 wk post exposure, respectively. There was no evidence of the tail chasing swimming (whirling) in any group of brown trout. The prevalence of infection, spore numbers, and severity of microscopic lesions due to M. cerebralis among brown trout were less at each exposure dose when compared to rainbow trout. Infections were found among rainbow trout at all doses of exposure but only among brown trout exposed to doses of 100 triactinomyxons per fish or greater. Risk of infection analyses showed that rainbow trout were more apt to be infected at each exposure dose than brown trout. Spore counts reached 1.7 x 10(6) per head among rainbow trout at the highest dose of exposure compared to 1.7 x 10(4) at the same exposure dose among brown trout. Spore numbers increased with dose of exposure in rainbow trout but not in brown trout. As microscopic lesion scores increased from mild to moderate, spore numbers increased in rainbow trout but not brown trout. The mechanisms by which brown trout resist infections with M. cerebralis were not determined. Cellular immune functions, including those of eosinophilic granular leukocytes that were more prominent in brown trout than rainbow trout, may be involved.  相似文献   

17.
Changes in abiotic and biotic factors between seasons in subarctic lake systems are often profound, potentially affecting the community structure and population dynamics of parasites over the annual cycle. However, few winter studies exist and interactions between fish hosts and their parasites are typically confined to snapshot studies restricted to the summer season whereas host‐parasite dynamics during the ice‐covered period rarely have been explored. The present study addresses seasonal patterns in the infections of intestinal parasites and their association with the diet of sympatric living Arctic charr (Salvelinus alpinus) and brown trout (Salmo trutta) in Lake Takvatn, a subarctic lake in northern Norway. In total, 354 Arctic charr and 203 brown trout were sampled from the littoral habitat between June 2017 and May 2018. Six trophically transmitted intestinal parasite taxa were identified and quantified, and their seasonal variations were contrasted with dietary information from both stomachs and intestines of the fish. The winter period proved to be an important transmission window for parasites, with increased prevalence and intensity of amphipod‐transmitted parasites in Arctic charr and parasites transmitted through fish prey in brown trout. In Arctic charr, seasonal patterns in parasite infections resulted mainly from temporal changes in diet toward amphipods, whereas host body size and the utilization of fish prey were the main drivers in brown trout. The overall dynamics in the community structure of parasites chiefly mirrored the seasonal dietary shifts of their fish hosts.  相似文献   

18.
To assess the impact of a sewage plant on fish, brown trout Salmo trutta were kept in two cages for 55 days in a moderately polluted river upstream of a sewage plant. In one of the cages, undiluted treated waste water of the sewage plant (WWE) was added at an average concentration of 5%, whereas the other cage received river water (R) only. A high mortality occurred in the WWE group. In comparison to control trout held in tap water, the skin structure and ultrastructure were altered clearly in both groups exposed to river water, including necrosis, apoptosis, decreased number of mucous cells, decrease in epidermal thickness, invasion of leucocytes, extension of melanocytes into the epidermis, being gradually more prominent in the WWE group. The most obvious difference between the two exposed groups was found in structure, size and electron density of the secretory vesicles of the filament cells. This and the observed vacuolation of Golgi saccules are indicative for disturbances in the secretory pathway of the filament cells. Certain toxins were suspected to cause the decompaction of myelin sheaths demonstrated in both groups. Reasons for the rather minor overall differences between the exposed groups are discussed. The extremely high mortality rate in the WWE group supports the importance of reducing the load of pollutants in the effluent of the waste-water management plant.  相似文献   

19.
Discocotyle sagittata oncomiracidia were rapidly killed when incubated in na?ve plasma and immune sera from both rainbow trout (Oncorhynchus mykiss) and brown trout (Salmo trutta), the killing proceeding at a faster rate with blood material from the latter fish species. The lethal activity of na?ve plasma and immune sera was comparable. This was abolished after incubation at 45 degrees C for 30 min and by the addition of EDTA but not EGTA supplemented with Mg(2+), indicating that complement acting via the alternative pathway is responsible for the parasiticidal effect observed. Scanning electron micrographs showed varying degrees of surface disruption in larvae exposed to fish plasma, suggesting that complement acts by breaching the oncomiracidial tegument. Control (untreated) oncomiracidia showed no damage. Ultrastructural damage was more extensive in oncomiracidia exposed to brown trout plasma than to rainbow trout plasma for equal periods, suggesting that the complement cascade may be involved in mediating host susceptibility.  相似文献   

20.
Substratum quality and oxygen supply to the interstitial zone are crucial for the reproductive success of salmonid fishes. At present, degradation of spawning grounds due to fine sediment deposition and colmation are recognized as main factors for reproductive failure. In addition, changes in water temperatures due to climate change, damming, and cooling water inlets are predicted to reduce hatching success. We tested the hypothesis that the biological effects of habitat degradation depend strongly on the species‐specific spawning seasons and life‐history strategies (e.g., fall‐ vs. spring‐spawners, migratory vs. resident species) and assessed temperature as an important species‐specific factor for hatching success within river substratum. We studied the species‐specific differences in their responses to such disturbances using egg‐to‐fry survival of Danube Salmon (Hucho hucho), resident brown trout (Salmo trutta fario), and migratory brown trout (Salmo trutta lacustris) as biological endpoint. The egg incubation and hatching success of the salmonids and their dependence on temperature and stream substratum quality were compared. Hatching rates of Danube salmon were lower than of brown trout, probably due to higher oxygen demands and increased interstitial respiration in spring. Increases in maximum water temperature reduced hatching rates of resident and migratory brown trout (both fall‐spawners) but were positively correlated with hatching rates of Danube salmon (a spring‐spawner). Significantly longer incubation periods of resident and migratory brown trout coincided with relatively low stream substratum quality at the end of the egg incubation. Danube salmon seem to avoid low oxygen concentrations in the hyporheic zone by faster egg development favored by higher water temperatures. Consequently, the prediction of effects of temperature changes and altered stream substratum properties on gravel‐spawning fishes and biological communities should consider the observed species‐specific variances in life‐history strategies to increase conservation success.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号