共查询到20条相似文献,搜索用时 0 毫秒
1.
Jenson Lim Aurélien G. Dupuy David R. Critchley Emmanuelle Caron 《Journal of cellular biochemistry》2010,111(4):999-1009
The small GTPase Rap1 and the cytoskeletal protein talin regulate binding of C3bi‐opsonised red blood cells (RBC) to integrin αMβ2 in phagocytic cells, although the mechanism has not been investigated. Using COS‐7 cells transfected with αMβ2, we show that Rap1 acts on the β2 and not the αM chain, and that residues 732–761 of the β2 subunit are essential for Rap1‐induced RBC binding. Activation of αMβ2 by Rap1 was dependent on W747 and F754 in the β2 tails, which are required for talin head binding, suggesting a link between Rap1 and talin in this process. Using talin1 knock‐out cells or siRNA‐mediated talin1 knockdown in the THP‐1 monocytic cell line, we show that Rap1 acts upstream of talin but surprisingly, RIAM knockdown had little effect on integrin‐mediated RBC binding or cell spreading. Interestingly, Rap1 and talin influence each other's localisation at phagocytic cups, and co‐immunoprecipitation experiments suggest that they interact together. These results show that Rap1‐mediated activation of αMβ2 in macrophages shares both common and distinct features from Rap1 activation of αIIbβ3 expressed in CHO cells. J. Cell. Biochem. 111: 999–1009, 2010. © 2010 Wiley‐Liss, Inc. 相似文献
2.
Linshan Shang Haibin Zhou Yu Xia Hui Wang Guimin Gao Bingxi Chen Qiji Liu Changshun Shao Yaoqin Gong 《Journal of cellular and molecular medicine》2009,13(10):4176-4184
SIRT1, a nicotinamide adenine dinucleotide (NAD+)‐dependent histone/protein deacetylase, has been extensively studied recently for its critical role in the regulation of physiology, calorie restriction and aging. Studies on laboratory mice showed that expression of SIRT1 can be induced by starvation in a p53‐dependent manner and requires the p53‐binding sites present in the Sirt1 promoter. However, it remains to be determined whether these findings based on rodents apply to human beings. In this paper, we characterized a putative p53‐binding element in the human SIRT1 promoter that might be required for the up‐regulation of SIRT1 in response to nutritional stress. The p53‐binding site in the promoter of human SIRT1 is more deviant from the consensus sequence than the corresponding sequence in the mouse Sirt1. There is a C to A change at the second half site in human SIRT1, thus disrupting the core‐binding element CWWG in the canonical RRRCWWGYYY. To test whether such sequence change would affect its binding with p53 and the SIRT1 expression under stress, we studied various human cell lines with different p53 status and cells with ectopic expression of functionally distinct p53. We found that serum withdrawal also up‐regulates human SIRT1 gene expression in a p53‐dependent manner and that the p53‐binding element in SIRT1 is required for the up‐regulation. Thus, the mechanism responsible for the regulation of SIRT1 expression by p53 is conserved between mice and human beings. 相似文献
3.
Antibiotic‐dependent perturbations of extended spectrum beta‐lactamase producing Klebsiella pneumoniae proteome 下载免费PDF全文
Extended spectrum beta‐lactamase producing Klebsiella pneumoniae (ESBL‐KP) causes life‐threatening infections in susceptible and immuno‐compromised individuals. Because of the emergence of multidrug resistance and tolerance, it is crucial to better understand the mechanisms by which ESBL‐KP can adapt to antibiotic stress. The aim of this study was to provide an overview of the global proteome changes occurring in ESBL‐KP in response to sub‐lethal concentrations of the antibiotics doxycycline (DC, bacteriostatic) and streptomycin (SM, bactericidal), which both impair ribosomal synthesis of bacterial proteins. These results represent the greatest experimental coverage of the ESBL‐KP proteome yet described. The 1538 proteins, representing 30% of the 5126 predicted KP gene products were identified from the combined experimental groups. Antibiotic stress resulted in significantly elevated levels of 42 proteins for DC and 55 for SM treatments, whereas 53 proteins were reduced for DC‐ and six for SM‐treated bacteria. Specifically, the ESBL‐KP response to DC was accompanied by the reduced levels of the porins LamB, CirA, FepA, and OmpC. In contrast to DC, the stress response to SM demonstrated a dramatic increase in the peroxidase detoxification pathway proteins PutA, KatG, KatE, and Dps, which prevent harmful hydroxyl radical formation. The results from this proteomic study are important for understanding adaptive responses to antibiotics, and may provide novel targets for the development of new therapeutic strategies. 相似文献
4.
5.
6.
7.
8.
Alessandra F. Perna MD PhD Immacolata Sepe Diana Lanza Rosanna Capasso Silvia Zappavigna Giovambattista Capasso Michele Caraglia Diego Ingrosso 《Journal of cellular biochemistry》2013,114(7):1536-1548
H2S is the third endogenous gaseous mediator, after nitric oxide and carbon monoxide, possessing pleiotropic effects, including cytoprotection and anti‐inflammatory action. We analyzed, in an in vitro model entailing monocyte adhesion to an endothelial monolayer, the changes induced by H2S on various potential targets, including cytokines, chemokines, and proteases, playing a crucial role in inflammation and cell adhesion. Results show that H2S prevents the increase in monocyte adhesion induced by tumor necrosis factor‐α (TNF‐α). Under these conditions, downregulation of monocyte chemoattractant protein‐1 (MCP‐1), chemokine C‐C motif receptor 2, and increase of cluster of differentiation 36 could be detected in monocytes. In endothelial cells, H2S treatment reduces the increase in MCP‐1, inter‐cellular adhesion molecule‐1, vascular cell adhesion molecule‐1, and of a disintegrin and metalloproteinase metallopeptidase domain 17 (ADAM17), both at the gene expression and protein levels. Cystathionine γ‐lyase and 3‐mercaptopyruvate sulfurtransferase, the major H2S forming enzymes, are downregulated in endothelial cells. In addition, H2S significantly reduces activation of ADAM17 by PMA in endothelial cells, with consequent reduction of both ADAM17‐dependent TNF‐α ectodomain shedding and MCP‐1 release. In conclusion, H2S is able to prevent endothelial activation by hampering endothelial activation, triggered by TNF‐α. The mechanism of this protective effect is mainly mediated by down‐modulation of ADAM17‐dependent TNF‐converting enzyme (TACE) activity with consequent inhibition of soluble TNF‐α shedding and its relevant MCP‐1 release in the medium. These results are discussed in the light of the potential protective role of H2S in pro‐inflammatory and pro‐atherogenic processes, such as chronic renal failure. J. Cell. Biochem. 114: 1536–1548, 2013. © 2013 Wiley Periodicals, Inc. 相似文献
9.
10.
Protein aggregation is problematic in various fields, where aggregation can frequently occur during routine experiments. This study showed that tetraethylene glycol (TEG) and tetraethylene glycol dimethyl ether (TEGDE) act as aggregation suppressors that have different unique properties from typical additives to prevent protein aggregation, such as arginine (Arg) and NaCl. Thermal aggregation of α‐chymotrypsin was well suppressed with the addition of both TEG and TEGDE. Interestingly, the suppressive effects of Arg and NaCl on thermal aggregation were almost unchanged when temperature was shifted from 65°C to 85°C, whereas both TEG and TEGDE significantly decreased the aggregation rate with increasing temperature. Note that the effects of TEG and TEGDE were higher than Arg above 75°C. This temperature‐dependent behavior of TEG and TEGDE provides a novel design guideline to develop aggregation suppressors for use at high temperature, i.e., the importance of the ethylene oxide group. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1325–1330, 2013 相似文献
11.
Foam cell‐derived 4‐hydroxynonenal induces endothelial cell senescence in a TXNIP‐dependent manner 下载免费PDF全文
Yael Riahi Nurit Kaiser Guy Cohen Ihab Abd‐Elrahman Galia Blum Oz M. Shapira Tomer Koler Maya Simionescu Anca V. Sima Neven Zarkovic Kamelija Zarkovic Marica Orioli Giancarlo Aldini Erol Cerasi Gil Leibowitz Shlomo Sasson 《Journal of cellular and molecular medicine》2015,19(8):1887-1899
Vascular endothelial cell (VEC) senescence is considered an early event in the development of atherosclerotic lesions. Stressful stimuli, in particular oxidative stress, have been linked to premature senescence in the vasculature. Foam cells are a major source of reactive oxygen species and may play a role in the induction of VEC senescence; hence, we investigated their involvement in the induction of VEC senescence in a co‐culture transwell system. Primary bovine aortic endothelial cells, exposed to the secretome of THP‐1 monocyte‐derived foam cells, were analysed for the induction of senescence. Senescence associated β‐galactosidase activity and the expression of p16 and p21 were increased, whereas phosphorylated retinoblastoma protein was reduced. This senescent phenotype was mediated by 4‐hydroxnonenal (4‐HNE), a lipid peroxidation product secreted from foam cells; scavenging of 4‐HNE in the co‐culture medium blunted this effect. Furthermore, both foam cells and 4‐HNE increased the expression of the pro‐oxidant thioredoxin‐interacting protein (TXNIP). Molecular manipulation of TXNIP expression confirmed its involvement in foam cell‐induced senescence. Previous studies showed that peroxisome proliferator‐activated receptor (PPAR)δ was activated by 4‐hydroalkenals, such as 4‐HNE. Pharmacological interventions supported the involvement of the 4‐HNE‐PPARδ axis in the induction of TXNIP and VEC senescence. The association of TXNIP with VEC senescence was further supported by immunofluorescent staining of human carotid plaques in which the expression of both TXNIP and p21 was augmented in endothelial cells. Collectively, these findings suggest that foam cell‐released 4‐HNE activates PPARδ in VEC, leading to increased TXNIP expression and consequently to senescence. 相似文献
12.
13.
14.
15.
16.
Yun‐Zhen Xu Ni‐Ni Guo Zong‐Ming Zheng Xian‐Jin Ou Hong‐Juan Liu De‐Hua Liu 《Biotechnology and bioengineering》2009,104(5):965-972
Klebsiella pneumoniae HR526, a new isolated 1,3‐propanediol (1,3‐PD) producer, exhibited great productivity. However, the accumulation of lactate in the late‐exponential phase remained an obstacle of 1,3‐PD industrial scale production. Hereby, mutants lacking D ‐lactate pathway were constructed by knocking out the ldhA gene encoding fermentative D ‐lactate dehydrogenase (LDH) of HR526. The mutant K. pneumoniae LDH526 with the lowest LDH activity was studied in aerobic fed‐batch fermentation. In experiments using pure glycerol as feedstock, the 1,3‐PD concentrations, conversion, and productivity increased from 95.39 g L?1, 0.48 and 1.98 g L?1 h?1 to 102. 06 g L?1, 0.52 mol mol?1 and 2.13 g L?1 h?1, respectively. The diol (1,3‐PD and 2,3‐butanediol) conversion increased from 0.55 mol mol?1 to a maximum of 0.65 mol mol?1. Lactate would not accumulate until 1,3‐PD exceeded 84 g L?1, and the final lactate concentration decreased dramatically from more than 40 g L?1 to <3 g L?1. Enzymic measurements showed LDH activity decreased by 89–98% during fed‐batch fermentation, and other related enzyme activities were not affected. NADH/NAD+ enhanced more than 50% in the late‐exponential phase as the D ‐lactate pathway was cut off, which might be the main reason for the change of final metabolites concentrations. The ability to utilize crude glycerol from biodiesel process and great genetic stability demonstrated that K. pnemoniae LDH526 was valuable for 1,3‐PD industrial production. Biotechnol. Bioeng. 2009; 104: 965–972. © 2009 Wiley Periodicals, Inc. 相似文献
17.
18.
Stress‐induced OMA1 activation and autocatalytic turnover regulate OPA1‐dependent mitochondrial dynamics 下载免费PDF全文
Diana Stojanovski Anne Korwitz Ruchika Anand Takashi Tatsuta Thomas Langer 《The EMBO journal》2014,33(6):578-593
The dynamic network of mitochondria fragments under stress allowing the segregation of damaged mitochondria and, in case of persistent damage, their selective removal by mitophagy. Mitochondrial fragmentation upon depolarisation of mitochondria is brought about by the degradation of central components of the mitochondrial fusion machinery. The OMA1 peptidase mediates the degradation of long isoforms of the dynamin‐like GTPase OPA1 in the inner membrane. Here, we demonstrate that OMA1‐mediated degradation of OPA1 is a general cellular stress response. OMA1 is constitutively active but displays strongly enhanced activity in response to various stress insults. We identify an amino terminal stress‐sensor domain of OMA1, which is only present in homologues of higher eukaryotes and which modulates OMA1 proteolysis and activation. OMA1 activation is associated with its autocatalyic degradation, which initiates from both termini of OMA1 and results in complete OMA1 turnover. Autocatalytic proteolysis of OMA1 ensures the reversibility of the response and allows OPA1‐mediated mitochondrial fusion to resume upon alleviation of stress. This differentiated stress response maintains the functional integrity of mitochondria and contributes to cell survival. 相似文献
19.
c‐Abl induces stabilization of histone deacetylase 1 (HDAC1) in a kinase activity‐dependent manner 下载免费PDF全文
Kazumasa Aoyama Noritaka Yamaguchi Ryuzaburo Yuki Mariko Morii Sho Kubota Kensuke Hirata Kohei Abe Takuya Honda Takahisa Kuga Yuuki Hashimoto Takeshi Tomonaga Naoto Yamaguchi 《Cell biology international》2015,39(4):446-456