首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The profile of secondary metabolites in plants reflects the balance of biosynthesis, degradation and storage, including the availability of precursors and products that affect the metabolic equilibrium. We investigated the impact of the precursor–product balance on the carotenoid pathway in the endosperm of intact rice plants because this tissue does not normally accumulate carotenoids, allowing us to control each component of the pathway. We generated transgenic plants expressing the maize phytoene synthase gene (ZmPSY1) and the bacterial phytoene desaturase gene (PaCRTI), which are sufficient to produce β‐carotene in the presence of endogenous lycopene β‐cyclase. We combined this mini‐pathway with the Arabidopsis thaliana genes AtDXS (encoding 1‐deoxy‐D‐xylulose 5‐phosphate synthase, which supplies metabolic precursors) or AtOR (the ORANGE gene, which promotes the formation of a metabolic sink). Analysis of the resulting transgenic plants suggested that the supply of isoprenoid precursors from the MEP pathway is one of the key factors limiting carotenoid accumulation in the endosperm and that the overexpression of AtOR increased the accumulation of carotenoids in part by up‐regulating a series of endogenous carotenogenic genes. The identification of metabolic bottlenecks in the pathway will help to refine strategies for the creation of engineered plants with specific carotenoid profiles.  相似文献   

2.
3.
Biosynthesis of asymmetric carotenoids such as α‐carotene and lutein in plants and green algae involves the two enzymes lycopene β‐cyclase (LCYB) and lycopene ε‐cyclase (LCYE). The two cyclases are closely related and probably resulted from an ancient gene duplication. While in most plants investigated so far the two cyclases are encoded by separate genes, prasinophyte algae of the order Mamiellales contain a single gene encoding a fusion protein comprised of LCYB, LCYE and a C‐terminal light‐harvesting complex (LHC) domain. Here we show that the lycopene cyclase fusion protein from Ostreococcus lucimarinus catalyzed the simultaneous formation of α‐carotene and β‐carotene when heterologously expressed in Escherichia coli. The stoichiometry of the two products in E. coli could be altered by gradual truncation of the C‐terminus, suggesting that the LHC domain may be involved in modulating the relative activities of the two cyclase domains in the algae. Partial deletions of the linker region between the cyclase domains or replacement of one or both cyclase domains with the corresponding cyclases from the green alga Chlamydomonas reinhardtii resulted in pronounced shifts of the α‐carotene‐to‐β‐carotene ratio, indicating that both the relative activities of the cyclase domains and the overall structure of the fusion protein have a strong impact on the product stoichiometry. The possibility to tune the product ratio of the lycopene cyclase fusion protein from Mamiellales renders it useful for the biotechnological production of the asymmetric carotenoids α‐carotene or lutein in bacteria or fungi.  相似文献   

4.
Column and thin‐layer chromatography revealed the presence of the following carotenoids in thalli of Dirinaria applanata from 13 different sites: α‐carotene, β‐carotene, β‐cryptoxanthin, lutein, 3′‐epilutein, zeaxanthin, antheraxanthin, canthaxanthin, astaxanthin, violaxanthin, mutatoxanthin, neoxanthin, capsochrome, fucoxanthinol, paracentrone and apo‐6′‐lycopenal. In the thalli of all 13 specimens of Dirinaria applanata β‐carotene, lutein, astaxanthin and violaxanthin were found as constant carotenoids. The total content of carotenoids ranged from 21.0 (from Mexico) to 54.9 μg g−1 dry weight (from Antilles).  相似文献   

5.
The diverse colours of mature pepper (Capsicum spp.) fruit result from the accumulation of different carotenoids. The carotenoid biosynthetic pathway has been well elucidated in Solanaceous plants, and analysis of candidate genes involved in this process has revealed variations in carotenoid biosynthetic genes in Capsicum spp. However, the allelic variations revealed by previous studies could not fully explain the variation in fruit colour in Capsicum spp. due to technical difficulties in detecting allelic variation in multiple candidate genes in numerous samples. In this study, we uncovered allelic variations in six carotenoid biosynthetic genes, including phytoene synthase (PSY1, PSY2), lycopene β‐cyclase, β‐carotene hydroxylase, zeaxanthin epoxidase and capsanthin‐capsorubin synthase (CCS) genes, in 94 pepper accessions by single‐molecule real‐time (SMRT) sequencing. To investigate the relationship between allelic variations in the candidate genes and differences in fruit colour, we performed ultra‐performance liquid chromatography analysis using 43 accessions representing each allelic variation. Different combinations of dysfunctional mutations in PSY1 and CCS could explain variation in the compositions and levels of carotenoids in the accessions examined in this study. Our results demonstrate that SMRT sequencing technology can be used to rapidly identify allelic variation in target genes in various germplasms. The newly identified allelic variants will be useful for pepper breeding and for further analysis of carotenoid biosynthesis pathways.  相似文献   

6.
7.
8.
Why Is Golden Rice Golden (Yellow) Instead of Red?   总被引:6,自引:0,他引:6       下载免费PDF全文
The endosperm of Golden Rice (Oryza sativa) is yellow due to the accumulation of beta-carotene (provitamin A) and xanthophylls. The product of the two carotenoid biosynthesis transgenes used in Golden Rice, phytoene synthase (PSY) and the bacterial carotene desaturase (CRTI), is lycopene, which has a red color. The absence of lycopene in Golden Rice shows that the pathway proceeds beyond the transgenic end point and thus that the endogenous pathway must also be acting. By using TaqMan real-time PCR, we show in wild-type rice endosperm the mRNA expression of the relevant carotenoid biosynthetic enzymes encoding phytoene desaturase, zeta-carotene desaturase, carotene cis-trans-isomerase, beta-lycopene cyclase, and beta-carotene hydroxylase; only PSY mRNA was virtually absent. We show that the transgenic phenotype is not due to up-regulation of expression of the endogenous rice pathway in response to the transgenes, as was suggested to be the case in tomato (Lycopersicon esculentum) fruit, where CRTI expression resulted in a similar carotenoid phenomenon. This means that beta-carotene and xanthophyll formation in Golden Rice relies on the activity of constitutively expressed intrinsic rice genes (carotene cis-trans-isomerase, alpha/beta-lycopene cyclase, beta-carotene hydroxylase). PSY needs to be supplemented and the need for the CrtI transgene in Golden Rice is presumably due to insufficient activity of the phytoene desaturase and/or zeta-carotene desaturase enzyme in endosperm. The effect of CRTI expression was also investigated in leaves of transgenic rice and Arabidopsis (Arabidopsis thaliana). Here, again, the mRNA levels of intrinsic carotenogenic enzymes remained unaffected; nevertheless, the carotenoid pattern changed, showing a decrease in lutein, while the beta-carotene-derived xanthophylls increased. This shift correlated with CRTI-expression and is most likely governed at the enzyme level by lycopene-cis-trans-isomerism. Possible implications are discussed.  相似文献   

9.
Carotenoids have drawn much attention recently because of their potentially positive benefits to human health as well as their utility in both food and animal feed. Previous work in canola (Brassica napus) seed over-expressing the bacterial phytoene synthase gene (crtB) demonstrated a change in carotenoid content, such that the total levels of carotenoids, including phytoene and downstream metabolites like beta-carotene, were elevated 50-fold, with the ratio of beta- to alpha-carotene being 2:1. This result raised the possibility that the composition of metabolites in this pathway could be modified further in conjunction with the increased flux obtained with crtB. Here we report on the expression of additional bacterial genes for the enzymes geranylgeranyl diphosphate synthase (crtE), phytoene desaturase (crtI) and lycopene cyclase (crtY and the plant B. napus lycopene beta-cyclase) engineered in conjunction with phytoene synthase (crtB) in transgenic canola seed. Analysis of the carotenoid levels by HPLC revealed a 90% decrease in phytoene levels for the double construct expressing crtB in conjunction with crtI. The transgenic seed from all the double constructs, including the one expressing the bacterial crtB and the plant lycopene beta-cyclase showed an increase in the levels of total carotenoid similar to that previously observed by expressing crtB alone but minimal effects were observed with respect to the ratio of beta- to alpha-carotene compared to the original construct. However, the beta- to alpha-carotene ratio was increased from 2:1 to 3:1 when a triple construct consisting of the bacterial phytoene synthase, phytoene desaturase and lycopene cyclase genes were expressed together. This result suggests that the bacterial genes may form an aggregate complex that allows in vivo activity of all three proteins through substrate channeling. This finding should allow further manipulation of the carotenoid biosynthetic pathway for downstream products with enhanced agronomic, animal feed and human nutritional values.  相似文献   

10.
Carotenoid composition is very diverse in Rhodophyta. In this study, we investigated whether this variation is related to the phylogeny of this group. Rhodophyta consists of seven classes, and they can be divided into two groups on the basis of their morphology. The unicellular group (Cyanidiophyceae, Porphyridiophyceae, Rhodellophyceae, and Stylonematophyceae) contained only β‐carotene and zeaxanthin, “ZEA‐type carotenoids.” In contrast, within the macrophytic group (Bangiophyceae, Compsopogonophyceae, and Florideophyceae), Compsopogonophyceae contained antheraxanthin in addition to ZEA‐type carotenoids, “ANT‐type carotenoids,” whereas Bangiophyceae contained α‐carotene and lutein along with ZEA‐type carotenoids, “LUT‐type carotenoids.” Florideophyceae is divided into five subclasses. Ahnfeltiophycidae, Hildenbrandiophycidae, and Nemaliophycidae contained LUT‐type carotenoids. In Corallinophycidae, Hapalidiales and Lithophylloideae in Corallinales contained LUT‐type carotenoids, whereas Corallinoideae in Corallinales contained ANT‐type carotenoids. In Rhodymeniophycidae, most orders contained LUT‐type carotenoids; however, only Gracilariales contained ANT‐type carotenoids. There is a clear relationship between carotenoid composition and phylogenetics in Rhodophyta. Furthermore, we searched open genome databases of several red algae for references to the synthetic enzymes of the carotenoid types detected in this study. β‐Carotene and zeaxanthin might be synthesized from lycopene, as in land plants. Antheraxanthin might require zeaxanthin epoxydase, whereas α‐carotene and lutein might require two additional enzymes, as in land plants. Furthermore, Glaucophyta contained ZEA‐type carotenoids, and Cryptophyta contained β‐carotene, α‐carotene, and alloxanthin, whose acetylenic group might be synthesized from zeaxanthin by an unknown enzyme. Therefore, we conclude that the presence or absence of the four enzymes is related to diversification of carotenoid composition in these three phyla.  相似文献   

11.
12.
13.
Insects are known to be poor sources of preformed vitamin A, leading to the speculation that insectivorous species, including reptiles, may be able to convert carotenoid precursors to meet dietary requirements for this nutrient. This study was conducted to indirectly evaluate carotenoid and vitamin A metabolism in the panther chameleon (Furcifer pardalis). Eggs were obtained from females in Madagascar that were yolked either early or later in the breeding season, and carotenoid (α‐ and β‐carotene, cryptoxanthin, lutein/zeaxanthin, and lycopene), vitamin A, and vitamin E concentrations were measured in egg contents in early, middle, or late embryonic development. An overall trend of decreased nutrient concentration as eggs matured (from egg period 1 (yolks) to egg period 3 (embryos)) was seen within both clutch groups. The season of clutch deposition was a significant influence on egg weight, α‐carotene, and lutein/zeaxanthin concentrations, but on no other nutrients. Chameleon yolks contained considerably higher levels of carotenoids than levels previously reported from two viviparous lizard species, and β‐carotene concentrations were of the same magnitude as reported in grazing tortoises. β‐Carotene and β‐cryptoxanthin were the predominant carotenoids in yolk and embryos, comprising about 95% of total carotenoids detected. Measurable concentrations of retinol at all stages of egg development in the chameleons suggests effective conversion from carotenoid precursors, with concentrations similar to those measured in other lizard eggs. Information from eggs obtained in native habitats may provide baseline data on nutrient interactions to improve and optimize captive dietary management; preliminary data suggest that micronutrient environments may vary over the protracted breeding season, with possible implications for embryo health and survival. Zoo Biol 21:295–303, 2002. © 2002 Wiley‐Liss, Inc.  相似文献   

14.
Carotenoids are health‐promoting organic molecules that act as antioxidants and essential nutrients. We show that chickens raised on a diet enriched with an engineered corn variety containing very high levels of four key carotenoids (β‐carotene, lycopene, zeaxanthin and lutein) are healthy and accumulate more bioavailable carotenoids in peripheral tissues, muscle, skin and fat, and more retinol in the liver, than birds fed on standard corn diets (including commercial corn supplemented with colour additives). Birds were challenged with the protozoan parasite Eimeria tenella and those on the high‐carotenoid diet grew normally, suffered only mild disease symptoms (diarrhoea, footpad dermatitis and digital ulcers) and had lower faecal oocyst counts than birds on the control diet. Our results demonstrate that carotenoid‐rich corn maintains poultry health and increases the nutritional value of poultry products without the use of feed additives.  相似文献   

15.
Various thermozeaxanthins are the end products of the carotenoid biosynthetic pathway of the thermophilic eubacterium Thermus thermophilus. These compounds are zeaxanthin glucoside esters. Carotenoid analysis and inhibitory studies led to the identification of most of the intermediates of the pathway: β-carotene, β-cryptoxanthin, zeaxanthin, and several new carotenoids. The intermediates, identified by various spectroscopic methods as β-cryptoxanthin glucoside esters carrying fatty acid moieties of different chain lengths, were designated as thermocryptoxanthins. The use of the inhibitors diphenylamine and 2-(4-chlorophenylthio)-triethylamine-HCl resulted in the accumulation of the intermediates phytoene, lycopene, and γ-carotene derivatives, which normally are present in amounts below the detection limit. The levels of non-esterified glycosides were extremely low. The results presented were used to establish the complete carotenoid biosynthetic pathway of T. thermophilus. Received: 9 September 1995 / Accepted: 14 February 1996  相似文献   

16.
Flowers are the defining feature of angiosperms, and function as indispensable organs for sexual reproduction. Flower colour typically plays an important role in attracting pollinators, and can show considerable variation, even between closely related species. For example, domesticated tomato (S. lycopersicum) has orange/yellow flowers, while the wild relative S. chilense (accession LA2405) has bright yellow flowers. In this study, the mechanism of flower colour formation in these two species was compared by evaluating the accumulation of carotenoids, assessing the expression genes related to carotenoid biosynthetic pathways and observing chromoplast ultrastructure. In S. chilense petals, genes associated with the lutein branch of the carotenoid biosynthetic pathway, phytoene desaturase (PDS), ζ‐carotene desaturase (ZDS), lycopene β‐cyclase (LCY‐B), β‐ring hydroxylase (CRTR‐B) and ε‐ring hydroxylase (CRTR‐E), were highly expressed, and this was correlated with high levels of lutein accumulation. In contrast, PDS, ZDS and CYC‐B from the neoxanthin biosynthetic branch were highly expressed in S. lycopersicum anthers, leading to increased β‐carotene accumulation and hence an orange/yellow colour. Changes in the size, amount and electron density of plastoglobules in chromoplasts provided further evidence of carotenoid accumulation and flower colour formation. Taken together, these results reveal the biochemical basis of differences in carotenoid pigment accumulation and colour between petals and anthers in tomato.  相似文献   

17.
18.
19.
The cyanobacterium Synechocystis sp. PCC 6803 is a model species commonly employed for biotechnological applications. It is naturally able to accumulate zeaxanthin (Zea) and echinenone (Ech), but not astaxanthin (Asx), which is the highest value carotenoid produced by microalgae, with a wide range of applications in pharmaceutical, cosmetics, food and feed industries. With the aim of finding an alternative and sustainable biological source for the production of Asx and other valuable hydroxylated and ketolated intermediates, the carotenoid biosynthetic pathway of Synechocystis sp. PCC 6803 has been engineered by introducing the 4,4′ β‐carotene oxygenase (CrtW) and 3,3′ β‐carotene hydroxylase (CrtZ) genes from Brevundimonas sp. SD‐212 under the control of a temperature‐inducible promoter. The expression of exogenous CrtZ led to an increased accumulation of Zea at the expense of Ech, while the expression of exogenous CrtW promoted the production of non‐endogenous canthaxanthin and an increase in the Ech content with a concomitant strong reduction of β‐carotene (β‐car). When both Brevundimonas sp. SD‐212 genes were coexpressed, significant amounts of non‐endogenous Asx were obtained accompanied by a strong decrease in β‐car content. Asx accumulation was higher (approximately 50% of total carotenoids) when CrtZ was cloned upstream of CrtW, but still significant (approximately 30%) when the position of genes was inverted. Therefore, the engineered strains constitute a useful tool for investigating the ketocarotenoid biosynthetic pathway in cyanobacteria and an excellent starting point for further optimisation and industrial exploitation of these organisms for the production of added‐value compounds.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号