首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the tree growth and physiological response of five pine forest stands in relation to changes in atmospheric CO2 concentration (ca) and climate in the Iberian Peninsula using annually resolved width and δ13C tree‐ring chronologies since ad 1600. 13C discrimination (Δ≈ci/ca), leaf intercellular CO2 concentration (ci) and intrinsic water‐use efficiency (iWUE) were inferred from δ13C values. The most pronounced changes were observed during the second half of the 20th century, and differed between stands. Three sites kept a constant ci/ca ratio, leading to significant ci and iWUE increases (active response to ca); whereas a significant increase in ci/ca resulted in the lowest iWUE increase of all stands at a relict Pinus uncinata forest site (passive response to ca). A significant decrease in ci/ca led to the greatest iWUE improvement at the northwestern site. We tested the climatic signal strength registered in the δ13C series after removing the low‐frequency trends due to the physiological responses to increasing ca. We found stronger correlations with temperature during the growing season, demonstrating that the physiological response to ca changes modulated δ13C and masked the climate signal. Since 1970 higher δ13C values revealed iWUE improvements at all the sites exceeding values expected by an active response to the ca increase alone. These patterns were related to upward trends in temperatures, indicating that other factors are reinforcing stomatal closure in these forests. Narrower rings during the second half of the 20th century than in previous centuries were observed at four sites and after 1970 at all sites, providing no evidence for a possible CO2‘fertilization’ effect on growth. The iWUE improvements found for all the forests, reflecting both a ca rise and warmer conditions, seem to be insufficient to compensate for the negative effects of the increasing water limitation on growth.  相似文献   

2.
Under the increase in atmospheric CO2 during the last century, variable increases in the intrinsic water‐use efficiency (Wi), i.e., the ratio between carbon assimilation rate (A) and stomatal conductance (gs), of C3 vegetation have been observed. Here, we ask if long‐term nutrient status and especially nitrogen supply have an effect on the CO2 response of Wi in a temperate seminatural C3 grassland. This analysis draws on the long‐term trends (1915–2009) in Wi, derived from carbon isotope analysis, of archived hay and herbage from the Park Grass Experiment at Rothamsted (South‐East England). Plant samples came from five fertilizer treatments, each with different annual nitrogen (N; 0, 48 or 96 kg ha?1), phosphorus (P; 0 or 35 kg ha?1) and potassium (K; 0 or 225 kg ha?1) applications, with lime as required to maintain soil pH near 7. Carbon isotope discrimination (13Δ) increased significantly (P < 0.001) on the Control (0.9‰ per 100 ppm CO2 increase). This trend differed significantly (P < 0.01) from those observed on the fertilized treatments (PK only: 0.4‰ per 100 ppm CO2 increase, P < 0.001; Low N only, Low N+PK, High N+PK: no significant increase). The 13Δ trends on fertilized treatments did not differ significantly from each other. However, N status, assessed as N fertilizer supply plus an estimate of biologically fixed N, was negatively related (r2 = 0.88; P < 0.02) to the trend for 13Δ against CO2. Other indices of N status exhibited similar relationships. Accordingly, the increase in Wi at High N+PK was twice that of the Control (+28% resp. +13% relative to 1915). In addition, the CO2 responsiveness of 13Δ was related to the grass content of the plant community. This may have been due to the greater CO2 responsiveness of gs in grasses relative to forbs. Thus, the greater CO2 response of grass‐rich fertilized swards may be related to effects of nutrient supply on botanical composition.  相似文献   

3.
We examined radial growth responses of ponderosa pine (Pinus ponderosa var. ponderosa) between 1905–1954 and 1955–2004 to determine if the effects of increased intrinsic water‐use efficiencies (iWUE) caused by elevated atmospheric CO2 concentrations were age‐specific. We collected 209 cores from five sites in the Northern Rockies and calculated iWUE using carbon isotope data from 1850 to 2004. Standardized radial growth responses were age dependent, with older trees exhibiting significantly higher values than younger trees during the later period at four sites and all sites combined. No significant differences in radial growth existed either for the individual sites or combined site during the earlier period. Increases in iWUE during 1955–2004 were 11% greater than during 1905–1954, and pentadal fluctuations in iWUE were significantly correlated with the radial growth of older trees from 1850 to 2004. Radial growth of younger trees and iWUE were not significantly correlated. Our results suggest that: (1) responses to elevated atmospheric CO2 in old‐growth ponderosa forests are age‐specific; (2) radial growth increases in older trees coincided with increased iWUE; (3) ponderosa had increased growth rates in their third, fourth, and fifth centuries of life; and (4) age‐specific growth responses during 1955–2004 are unique since at least the mid‐16th century.  相似文献   

4.
The ecophysiological response of an alpine grassland to recent climate change and increasing atmospheric CO2 concentration was investigated with a new strategy to go back in time: using a time‐series of Capra ibex horns as archives of the alpine grasslands' carbon isotope discrimination (13Δ). From the collection of the Natural History Museum of Bern, horns of 24 males from the population of the Augstmatthorn–Brienzer Rothorn mountains, Switzerland, were sampled covering the period from 1938 to 2006. Samples were taken from the beginning of each year‐ring of the horns, representing the beginning of the horn growth period, the spring. The horns' carbon 13C content (Δ13C) declined together with that of atmospheric CO2 over the 69‐year period, but 13Δ increased slightly (+0.4‰), though significantly (P<0.05), over the observation period. Estimated intercellular CO2 concentration increased (+56 μmol mol?1) less than the atmospheric CO2 concentration (+81 μmol mol?1), so that intrinsic water‐use efficiency increased by 17.8% during the 69‐year period. However, the atmospheric evaporative demand at the site increased by approximately 0.1 kPa between 1955 and 2006, thus counteracting the improvement of intrinsic water‐use efficiency. As a result, instantaneous water‐use efficiency did not change. The observed changes in intrinsic water‐use efficiency were in the same range as those of trees (as reported by others), indicating that leaf‐level control of water‐use efficiency of grassland and forests followed the same principles. This is the first reconstruction of the water‐use efficiency response of a natural grassland ecosystem to last century CO2 and climatic changes. The results indicate that the alpine grassland community has responded to climate change by improving the physiological control of carbon gain to water loss, following the increases in atmospheric CO2 and evaporative demand. But, effective leaf‐level water‐use efficiency has remained unchanged.  相似文献   

5.
Rising atmospheric carbon dioxide [CO2] can accelerate tree growth by stimulating photosynthesis and increasing intrinsic water‐use efficiency (iWUE). Little evidence exists, however, for the long‐term growth and gas‐exchange responses of mature trees in tropical forests to the combined effects of rising [CO2] and other global changes such as warming. Using tree rings and stable isotopes of carbon and oxygen, we investigated long‐term trends in the iWUE and stem growth (basal area increment, BAI) of three canopy tree species in a tropical monsoon forest in western Thailand (Chukrasia tabularis, Melia azedarach, and Toona ciliata). To do this, we modelled the contribution of ontogenetic effects (tree diameter or age) and calendar year to variation in iWUE, oxygen isotopes, and BAI using mixed‐effects models. Although iWUE increased significantly with both tree diameter and calendar year in all species, BAI at a given tree diameter was lower in more recent years. For one species, C. tabularis, differences in crown dominance significantly influence stable isotopes and growth. Tree ring Δ18O increased with calendar year in all species, suggesting that increasing iWUE may have been driven by relatively greater reductions in stomatal conductance – leading to enrichment in Δ18O – than increases in photosynthetic capacity. Plausible explanations for the observed declines in growth include water stress resulting from rising temperatures and El Niño events, increased respiration, changes in allocation, or more likely, a combination of these factors.  相似文献   

6.
Ecosystem water‐use efficiency (EWUE) is an indicator of carbon–water interactions and is defined as the ratio of carbon assimilation (GPP) to evapotranspiration (ET). Previous research suggests an increasing long‐term trend in annual EWUE over many regions and is largely attributed to the physiological effects of rising CO2. The seasonal trends in EWUE, however, have not yet been analyzed. In this study, we investigate seasonal EWUE trends and responses to various drivers during 1982–2008. The seasonal cycle for two variants of EWUE, water‐use efficiency (WUE, GPP/ET), and transpiration‐based WUE (WUEt, the ratio of GPP and transpiration), is analyzed from 0.5° gridded fields from four process‐based models and satellite‐based products, as well as a network of 63 local flux tower observations. WUE derived from flux tower observations shows moderate seasonal variation for most latitude bands, which is in agreement with satellite‐based products. In contrast, the seasonal EWUE trends are not well captured by the same satellite‐based products. Trend analysis, based on process‐model factorial simulations separating effects of climate, CO2, and nitrogen deposition (NDEP), further suggests that the seasonal EWUE trends are mainly associated with seasonal trends of climate, whereas CO2 and NDEP do not show obvious seasonal difference in EWUE trends. About 66% grid cells show positive annual WUE trends, mainly over mid‐ and high northern latitudes. In these regions, spring climate change has amplified the effect of CO2 in increasing WUE by more than 0.005 gC m−2 mm−1 yr−1 for 41% pixels. Multiple regression analysis further shows that the increase in springtime WUE in the northern hemisphere is the result of GPP increasing faster than ET because of the higher temperature sensitivity of GPP relative to ET. The partitioning of annual EWUE to seasonal components provides new insight into the relative sensitivities of GPP and ET to climate, CO2, and NDEP.  相似文献   

7.
Forests exhibit leaf‐ and ecosystem‐level responses to environmental changes. Specifically, rising carbon dioxide (CO2) levels over the past century are expected to have increased the intrinsic water‐use efficiency (iWUE) of tropical trees while the ecosystem is gradually pushed into progressive nutrient limitation. Due to the long‐term character of these changes, however, observational datasets to validate both paradigms are limited in space and time. In this study, we used a unique herbarium record to go back nearly a century and show that despite the rise in CO2 concentrations, iWUE has decreased in central African tropical trees in the Congo Basin. Although we find evidence that points to leaf‐level adaptation to increasing CO2—that is, increasing photosynthesis‐related nutrients and decreasing maximum stomatal conductance, a decrease in leaf δ13C clearly indicates a decreasing iWUE over time. Additionally, the stoichiometric carbon to nitrogen and nitrogen to phosphorus ratios in the leaves show no sign of progressive nutrient limitation as they have remained constant since 1938, which suggests that nutrients have not increasingly limited productivity in this biome. Altogether, the data suggest that other environmental factors, such as increasing temperature, might have negatively affected net photosynthesis and consequently downregulated the iWUE. Results from this study reveal that the second largest tropical forest on Earth has responded differently to recent environmental changes than expected, highlighting the need for further on‐ground monitoring in the Congo Basin.  相似文献   

8.
Defined as the ratio between gross primary productivity (GPP) and evapotranspiration (ET), ecosystem‐scale water‐use efficiency (EWUE) is an indicator of the adjustment of vegetation photosynthesis to water loss. The processes controlling EWUE are complex and reflect both a slow evolution of plants and plant communities as well as fast adjustments of ecosystem functioning to changes of limiting resources. In this study, we investigated EWUE trends from 1982 to 2008 using data‐driven models derived from satellite observations and process‐oriented carbon cycle models. Our findings suggest positive EWUE trends of 0.0056, 0.0007 and 0.0001 g C m?2 mm?1 yr?1 under the single effect of rising CO2 (‘CO2’), climate change (‘CLIM’) and nitrogen deposition (‘NDEP’), respectively. Global patterns of EWUE trends under different scenarios suggest that (i) EWUE‐CO2 shows global increases, (ii) EWUE‐CLIM increases in mainly high latitudes and decreases at middle and low latitudes, (iii) EWUE‐NDEP displays slight increasing trends except in west Siberia, eastern Europe, parts of North America and central Amazonia. The data‐driven MTE model, however, shows a slight decline of EWUE during the same period (?0.0005 g C m?2 mm?1 yr?1), which differs from process‐model (0.0064 g C m?2 mm?1 yr?1) simulations with all drivers taken into account. We attribute this discrepancy to the fact that the nonmodeled physiological effects of elevated CO2 reducing stomatal conductance and transpiration (TR) in the MTE model. Partial correlation analysis between EWUE and climate drivers shows similar responses to climatic variables with the data‐driven model and the process‐oriented models across different ecosystems. Change in water‐use efficiency defined from transpiration‐based WUEt (GPP/TR) and inherent water‐use efficiency (IWUEt, GPP×VPD/TR) in response to rising CO2, climate change, and nitrogen deposition are also discussed. Our analyses will facilitate mechanistic understanding of the carbon–water interactions over terrestrial ecosystems under global change.  相似文献   

9.
A 150‐year‐long record of intrinsic water‐use efficiency (Wi) was derived from community‐level carbon isotope discrimination (13Δ) in the herbage of the unfertilized, unlimed control treatment (plot 3) of the Park Grass Experiment at Rothamsted (England) between 1857 and 2007. 13Δ during spring growth (first cut harvested in June) averaged 21.0‰ (±0.5‰ SD) and has not shown a long‐term trend (P=0.5) since 1857. 13Δ of summer/autumn growth (second cut harvested between September and November) increased from 21.3‰ to 22.0‰ (P < 0.001) between 1875 and 2007. Wi during spring growth has therefore increased by 33% since the beginning of the experiment, and Wi of summer/autumn growth has increased by 18%. The variation in 13Δ was mainly related to weather conditions. Plant available soil water explained 51% and 40% of the variation in spring growth 13Δ and summer/autumn growth 13Δ, respectively. In the 1857–2007 period yields have not increased, suggesting that community‐level photosynthesis has not increased either. Therefore, the increased Wi probably resulted from a decreased stomatal conductance. Vapour pressure deficit (VPD) during spring growth (March–June) has not changed since 1915, meaning that instantaneous water‐use efficiency (Wt) in spring time has increased and transpiration has probably decreased, provided that leaf temperature followed air temperature. Conversely, VPD in the months between the first and second cut has increased by 0.07 kPa since 1915, offsetting the effect of increased Wi on Wt during summer and early autumn. Our results suggest that vegetation has adjusted physiologically to elevated CO2 by decreasing stomatal conductance in this nutrient‐limited grassland.  相似文献   

10.
We aimed to gain knowledge on the changes in intrinsic water use efficiency (iWUE) in response to increasing atmospheric CO2 concentrations and climate change over the last century. We investigated the variation in the iWUE of mature Fagus sylvatica trees located in the higher, central and lower altitudinal forest limits (HFL, CFA and LFL) of one of the southernmost sites of beech distribution in Europe, the Montseny Mountains in Catalonia (northeast Spain), during the last century by analysing the δ13C of their tree rings. Pre‐ and post‐maturation phases of the trees presented different trends in δ13C, Δ13C, Ci (internal CO2 concentration), iWUE and basal area increment (BAI). Moreover, these variables showed different trends and absolute values in the LFL than in the other altitudinal sites, CFA and HFL. Our results show the existence of an age effect on δ13C in the CFA and HFL (values increased by ca. 1.25‰ coinciding with the BAI suppression and release phases, previous to maturation). These age‐related changes were not found in the LFL, whose beech trees arrived to maturation earlier and experienced drier conditions during the suppression phase. In the last 26 years of comparable mature trees, the increase of iWUE deduced from the Δ13C analyses was ca. 10% in LFL, ca. 6% in CFA and not significant in HFL. These results show that climate change towards more arid conditions accounted for these higher Δ13C‐values and increases in the LFL more than the continuous increase in atmospheric CO2 concentrations. This increased iWUE in the LFL did not avoid a decline in growth in these lowest altitudes of this beech southern range‐edge as a result of warming. Furthermore, since there was no apparent change in iWUE and growth in the beech forests growing in the more standard‐adequate environments of higher altitudes in the last 26 years, the rate of sequestration of C into temperate ecosystems may not increase with increasing atmospheric CO2 concentrations as predicted by most models based on short‐term small scale experiments.  相似文献   

11.
Water deficiency is a critical environmental condition that is seriously reducing global plant production. Improved water‐use efficiency (WUE) and drought tolerance are effective strategies to address this problem. In this study, PdEPF1, a member of the EPIDERMAL PATTERNING FACTOR (EPF) family, was isolated from the fast‐growing poplar clone NE‐19 [Populus nigra × (Populus deltoides × Populus nigra)]. Significantly, higher PdEPF1 levels were detected after induction by dehydration and abscisic acid. To explore the biological functions of PdEPF1, transgenic triploid white poplars (Populus tomentosa ‘YiXianCiZhu B385’) overexpressing PdEPF1 were constructed. PdEPF1 overexpression resulted in increased water deficit tolerance and greater WUE. We confirmed that the transgenic lines with greater instantaneous WUE had approximately 30% lower transpiration but equivalent CO2 assimilation. Lower transpiration was associated with a 28% reduction in abaxial stomatal density. PdEPF1 overexpression not only strongly enhanced WUE, but also greatly improved drought tolerance, as measured by the leaf relative water content and water potential, under limited water conditions. In addition, the growth of these oxPdEPF1 plants was less adversely affected by reduced water availability than plants with a higher stomatal density, indicating that plants with a low stomatal density may be well suited to grow in water‐scarce environments. Taken together, our data suggest that PdEPF1 improves WUE and confers drought tolerance in poplar; thus, it could be used to breed drought‐tolerant plants with increased production under conditions of water deficiency.  相似文献   

12.
The rise in atmospheric CO2 concentrations (Ca) has been related to tree growth enhancement and increasing intrinsic water‐use efficiency (iWUE). However, the extent that rising Ca has led to increased long‐term iWUE and whether climate could explain deviations from expected Ca‐induced growth enhancement are still poorly understood. The aim of this research was to use Ca and local climatic variability to explain changes during the 20th century in growth and tree ring and needle δ13C in declining and nondeclining Abies alba stands from the Spanish Pyrenees, near the southern distribution limit of this species. The temporal trends of iWUE were calculated under three theoretical scenarios for the regulation of plant‐gas exchange at increasing Ca. We tested different linear mixed‐effects models by multimodel selection criteria to predict basal area increment (BAI), a proxy of tree radial growth, using these scenarios and local temperature together with precipitation data as predictors. The theoretical scenario assuming the strongest response to Ca explained 66–81% of the iWUE variance and 28–56% of the observed BAI variance, whereas local climatic variables together explained less than 11–21% of the BAI variance. Our results are consistent with a drought‐induced limitation of the tree growth response to rising CO2 and a decreasing rate of iWUE improvement from the 1980s onward in declining A. alba stands subjected to lower water availability.  相似文献   

13.
This study used an environmentally controlled plant growth facility, EcoCELLs, to measure canopy gas exchanges directly and to examine the effects of elevated [CO2] on canopy radiation‐ and water‐use efficiencies. Sunflowers (Helianthus annus var. Mammoth) were grown at ambient (399 μmol mol?1) and elevated [CO2] (746 μmol mol?1) for 53 days in EcoCELLs. Whole canopy carbon‐ and water‐fluxes were measured continuously during the period of the experiment. The results indicated that elevated [CO2] enhanced daily total canopy carbon‐ and water‐fluxes by 53% and 11%, respectively, on a ground‐area basis, resulting in a 54% increase in radiation‐use efficiency (RUE) based on intercepted photosynthetic active radiation and a 26% increase in water‐use efficiency (WUE) by the end of the experiment. Canopy carbon‐ and water‐fluxes at both CO2 treatments varied with canopy development. They were small at 22 days after planting (DAP) and gradually increased to the maxima at 46 DAP. When canopy carbon‐ and water‐fluxes were expressed on a leaf‐area basis, no effect of CO2 was found for canopy water‐flux while elevated [CO2] still enhanced canopy carbon‐flux by 29%, on average. Night‐time canopy carbon‐flux was 32% higher at elevated than at ambient [CO2]. In addition, RUE and WUE displayed strong diurnal variations, high at noon and low in the morning or afternoon for WUE but opposite for RUE. This study provided direct evidence that plant canopy may consume more, instead of less, water but utilize both water and radiation more efficiently at elevated than at ambient [CO2], at least during the exponential growth period as illustrated in this experiment.  相似文献   

14.
Uncertainty about long‐term leaf‐level responses to atmospheric CO2 rise is a major knowledge gap that exists because of limited empirical data. Thus, it remains unclear how responses of leaf gas exchange to elevated CO2 (eCO2) vary among plant species and functional groups, or across different levels of nutrient supply, and whether they persist over time for long‐lived perennials. Here, we report the effects of eCO2 on rates of net photosynthesis and stomatal conductance in 14 perennial grassland species from four functional groups over two decades in a Minnesota Free‐Air CO2 Enrichment experiment, BioCON. Monocultures of species belonging to C3 grasses, C4 grasses, forbs, and legumes were exposed to two levels of CO2 and nitrogen supply in factorial combinations over 21 years. eCO2 increased photosynthesis by 12.9% on average in C3 species, substantially less than model predictions of instantaneous responses based on physiological theory and results of other studies, even those spanning multiple years. Acclimation of photosynthesis to eCO2 was observed beginning in the first year and did not strengthen through time. Yet, contrary to expectations, the response of photosynthesis to eCO2 was not enhanced by increased nitrogen supply. Differences in responses among herbaceous plant functional groups were modest, with legumes responding the most and C4 grasses the least as expected, but did not further diverge over time. Leaf‐level water‐use efficiency increased by 50% under eCO2 primarily because of reduced stomatal conductance. Our results imply that enhanced nitrogen supply will not necessarily diminish photosynthetic acclimation to eCO2 in nitrogen‐limited systems, and that significant and consistent declines in stomatal conductance and increases in water‐use efficiency under eCO2 may allow plants to better withstand drought.  相似文献   

15.
In forests, the increase in atmospheric CO2 concentrations (Ca) has been related to enhanced tree growth and intrinsic water‐use efficiency (iWUE). However, in drought‐prone areas such as the Mediterranean Basin, it is not yet clear to what extent this “fertilizing” effect may compensate for drought‐induced growth reduction. We investigated tree growth and physiological responses at five Scots pine (Pinus sylvestris L.) and five sessile oak (Quercus petraea (Matt.) Liebl.) sites located at their southernmost distribution limits in Europe for the period 1960–2012 using annually resolved tree‐ring width and δ13C data to track ecophysiological processes. Results indicated that all 10 natural stands significantly increased their leaf intercellular CO2 concentration (Ci), and consequently iWUE. Different trends in the theoretical gas‐exchange scenarios as a response to increasing Ca were found: generally, Ci tended to increase proportionally to Ca, except for trees at the driest sites in which Ci remained constant. Ci from the oak sites displaying higher water availability tended to increase at a comparable rate to Ca. Multiple linear models fitted at site level to predict basal area increment (BAI) using iWUE and climatic variables better explained tree growth in pines (31.9%–71.4%) than in oak stands (15.8%–46.8%). iWUE was negatively linked to pine growth, whereas its effect on growth of oak differed across sites. Tree growth in the western and central oak stands was negatively related to iWUE, whereas BAI from the easternmost stand was positively associated with iWUE. Thus, some Q. petraea stands might have partially benefited from the “fertilizing” effect of rising Ca, whereas P. sylvestris stands due to their strict closure of stomata did not profit from increased iWUE and consequently showed in general growth reductions across sites. Additionally, the inter‐annual variability of BAI and iWUE displayed a geographical polarity in the Mediterranean.  相似文献   

16.
Elevated atmospheric CO2 concentration (eCa) might reduce forest water‐use, due to decreased transpiration, following partial stomatal closure, thus enhancing water‐use efficiency and productivity at low water availability. If evapotranspiration (Et) is reduced, it may subsequently increase soil water storage (ΔS) or surface runoff (R) and drainage (Dg), although these could be offset or even reversed by changes in vegetation structure, mainly increased leaf area index (L). To understand the effect of eCa in a water‐limited ecosystem, we tested whether 2 years of eCa (~40% increase) affected the hydrological partitioning in a mature water‐limited Eucalyptus woodland exposed to Free‐Air CO2 Enrichment (FACE). This timeframe allowed us to evaluate whether physiological effects of eCa reduced stand water‐use irrespective of L, which was unaffected by eCa in this timeframe. We hypothesized that eCa would reduce tree‐canopy transpiration (Etree), but excess water from reduced Etree would be lost via increased soil evaporation and understory transpiration (Efloor) with no increase in ΔS, R or Dg. We computed Et, ΔS, R and Dg from measurements of sapflow velocity, L, soil water content (θ), understory micrometeorology, throughfall and stemflow. We found that eCa did not affect Etree, Efloor, ΔS or θ at any depth (to 4.5 m) over the experimental period. We closed the water balance for dry seasons with no differences in the partitioning to R and Dg between Ca levels. Soil temperature and θ were the main drivers of Efloor while vapour pressure deficit‐controlled Etree, though eCa did not significantly affect any of these relationships. Our results suggest that in the short‐term, eCa does not significantly affect ecosystem water‐use at this site. We conclude that water‐savings under eCa mediated by either direct effects on plant transpiration or by indirect effects via changes in L or soil moisture availability are unlikely in water‐limited mature eucalypt woodlands.  相似文献   

17.
Carbon dioxide (CO2) enhancement (eCO2) and N addition (aN) have been shown to increase net primary production (NPP) and to affect water‐use efficiency (WUE) for many temperate ecosystems, but few studies have been made on subtropical tree species. This study compared the responses of NPP and WUE from a mesocosm composing five subtropical tree species to eCO2 (700 ppm), aN (10 g N m?2 yr?1) and eCO2 × aN using open‐top chambers. Our results showed that mean annual ecosystem NPP did not changed significantly under eCO2, increased by 56% under aN and 64% under eCO2 × aN. Ecosystem WUE increased by 14%, 55%, and 61% under eCO2, aN and eCO2 × aN, respectively. We found that the observed responses of ecosystem WUE were largely driven by the responses of ecosystem NPP. Statistical analysis showed that there was no significant interactions between eCO2 and aN on ecosystem NPP (= 0.731) or WUE (= 0.442). Our results showed that increasing N deposition was likely to have much stronger effects on ecosystem NPP and WUE than increasing CO2 concentration for the subtropical forests. However, different tree species responded quite differently. aN significantly increased annual NPP of the fast‐growing species (Schima superba). Nitrogen‐fixing species (Ormosia pinnata) grew significantly faster only under eCO2 × aN. eCO2 had no effects on annual NPP of those two species but significantly increased annual NPP of other two species (Castanopsis hystrix and Acmena acuminatissima). Differential responses of the NPP among different tree species to eCO2 and aN will likely have significant implications on the species composition of subtropical forests under future global change.  相似文献   

18.
Investigating the many internal feedbacks within the climate system is a vital component of the effort to quantify the full effects of future anthropogenic climate change. The stomatal apertures of plants tend to close and decrease in number under elevated CO2 concentrations, increasing water‐use efficiency (WUE) and reducing canopy evapotranspiration. Experimental and modelling studies reveal huge variations in these changes such that the warming associated with reduced evapotranspiration (known as physiological forcing) is neither well understood or constrained. Palaeo‐observations of changes in stomatal response and plant WUE under rising CO2 might be used to better understand the processes underlying the physiological forcing feedback and to link measured changes in plant WUE to a specific physiological change in stomata. Here we use time series of tree ring (Pinus sylvestris L.) δ13C and subfossil leaf (Betula nana L.) measurements of stomatal density and geometry to derive records of changes in intrinsic water‐use efficiency (iWUE) and maximum stomatal conductance in the Boreal zone of northern Finland and Sweden. We investigate the rate of change in both proxies, over the recent past. The independent lines of evidence from these two different Boreal species indicate increased iWUE and reduced maximum stomatal conductance of similar magnitude from preindustrial times (ca. ad 1850) to around ad 1970. After this maximum stomatal conductance continues to decrease to ad 2000 in B. nana but iWUE in P. sylvestris reaches a plateau. We suggest that northern boreal P. sylvestris might have reached a threshold in its ability to increase WUE as CO2 rises.  相似文献   

19.
Stem radial growth responds to environmental conditions, and has been widely used as a proxy to study long‐term patterns of tree growth and to assess the impact of environmental changes on growth patterns. In this study, we use a tree ring dataset from the Catalan Ecological and Forest Inventory to study the temporal variability of Scots pine (Pinus sylvestris L.) stem growth during the 20th century across a relatively large region (Catalonia, NE Spain) close to the southern limit of the distribution of the species. Basal area increment (BAI) was modelled as a function of tree size and environmental variables by means of mixed effects models. Our results showed an overall increase of 84% in Scots pine BAI during the 20th century, consistent with most previous studies for temperate forests. This trend was associated with increased atmospheric CO2 concentrations and, possibly, with a general increase in nutrient availability, and we interpreted it as a fertilization effect. Over the same time period, there was also a marked increase in temperature across the study region (0.19 °C per decade on average). This warming had a negative impact on radial growth, particularly at the drier sites, but its magnitude was not enough to counteract the fertilization effect. In fact, the substantial warming observed during the 20th century in the study area did not result in a clear pattern of increased summer drought stress because of the large variability in precipitation, which did not show any clear time trend. But the situation may change in the future if temperatures continue to rise and/or precipitation becomes scarcer. Such a change could potentially reverse the temporal trend in growth, particularly at the driest sites, and is suggested in our data by the relative constancy of radial growth after ca. 1975, coinciding with the warmer period. If this situation is representative of other relatively dry, temperate forests, the implications for the regional carbon balance would be substantial.  相似文献   

20.
Factors constraining the geographic ranges of broadleaf tree species in eastern North America were examined in common gardens along a ~1500 km latitudinal transect travers in grange boundaries of four target species: trembling aspen (Populus tremuloides) and paper birch (Betula papyrifera) to the north vs. eastern cottonwood (Populus deltoides) and sweet gum (Liquidambar styraciflua) to the south. In 2006 and 2007, carbon‐use efficiency (CUE), the proportion of assimilated carbon retained in biomass, was estimated for seedlings of the four species as the quotient of relative growth rate (RGR) and photosynthesis per unit tree mass (Atree). In aspen and birch, CUE and RGR declined significantly with increasing growth temperature, which spanned 9 °C across gardens and years. The 37% (relative) CUE decrease from coolest to warmest garden correlated with increases in leaf nighttime respiration (Rleaf) and the ratio of Rleaf to leaf photosynthesis (R%A). For cottonwood and sweet gum, however, similar increases in Rleaf and R%A accompanied modest CUE declines, implying that processes other than Rleaf were responsible for species differences in CUE's temperature response. Our findings illustrate marked taxonomic variation, at least among young trees, in the thermal sensitivity of CUE, and point to potentially negative consequences of climate warming for the carbon balance, competitive ability, and persistence of two foundation species in northern temperate and boreal forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号