首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Steatosis is a major risk factor for complications after liver surgery. Since neutrophil cytotoxicity is critical for ischemia-reperfusion injury in normal livers, the aim of the present study was to evaluate whether an exaggerated inflammatory response could cause the increased injury in steatotic livers. In C57Bl/6 mice, 60 min of warm hepatic ischemia triggered a gradual increase in hepatic neutrophil accumulation during reperfusion with peak levels of 100-fold over baseline at 12 h of reperfusion. Neutrophil extravasation and a specific neutrophil-induced oxidant stress (immunostaining for hypochlorous acid-modified epitopes) started at 6 h of reperfusion and peaked at 12-24 h. Ob/ob mice, which had a severe macrovesicular steatosis, suffered significantly higher injury (alanine transaminase activity: 18,000 +/- 2,100 U/l; 65% necrosis) compared with lean littermates (alanine transaminase activity: 4,900 +/- 720 U/l; 24% necrosis) at 6 h of reperfusion. However, 62% fewer neutrophils accumulated in steatotic livers. This correlated with an attenuated increase in mRNA levels of several proinflammatory genes in ob/ob mice during reperfusion. In contrast, sham-operated ob/ob mice had a 50% reduction in liver blood flow and 35% fewer functional sinusoids compared with lean littermates. These deficiencies in liver blood flow and the microcirculation were further aggravated only in ob/ob mice during reperfusion. The attenuated inflammatory response and reduced neutrophil-induced oxidant stress observed in steatotic livers during reperfusion cannot be responsible for the dramatically increased injury in ob/ob mice. In contrast, the aggravated injury appears to be mediated by ischemic necrosis due to massive impairment of blood and oxygen supply in the steatotic livers.  相似文献   

2.
Steatotic livers are not used for transplantation because they have a reduced tolerance for ischemic events with reduced ATP levels and greater levels of cellular necrosis, which ultimately result in total organ failure. Mitochondrial uncoupling protein-2 (UCP2) is highly expressed in steatotic livers and may be responsible for liver sensitivity to ischemia through mitochondrial and ATP regulation. To test this hypothesis, experiments were conducted in lean and steatotic (ob/ob), wild-type, and UCP2 knock-out mice subjected to total warm hepatic ischemi-a/reperfusion. Although ob/ob UCP2 knock-out mice and ob/ob mice have a similar initial phenotype, ob/ob UCP2 knock-out animal survival was 83% when compared with 30% in ob/ob mice 24 h after reperfusion. Serum alanine aminotransferase concentrations and hepatocellular necrosis were decreased in the ob/ob UCP2 knock-out mice when compared with ob/ob mice subjected to ischemia. Liver ATP levels were increased in the ob/ob UCP2 knock-out animals after reperfusion when compared with the ob/ob mice but remained below the concentrations from lean livers. Lipid peroxidation (thiobarbituric acid-reactive substances) increased after reperfusion most significantly in the steatotic groups, but the increase was not affected by UCP2 deficiency. These results reveal that UCP2 expression is a critical factor, which sensitizes steatotic livers to ischemic injury, regulating liver ATP levels after ischemia and reperfusion.  相似文献   

3.
Oxidative and inflammatory processes are elicited during hepatic post-ischemic reperfusion and generate liver damage. This study investigated the early anti-inflammatory effect of trans-resveratrol (T-res) and its consequences on the late self-aggravating inflammatory process in liver ischemia-reperfusion (I/R). Partial hepatic ischemia was initiated in rats for 1 h and T-res (0.02 and 0.2 mg/kg) was administered intravenously 5 min before starting reperfusion for 3 h. Plasma levels of aminotransferases and cytokines (tumour necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6) and hepatic neutrophil recruitment were assessed. Hepatic expression of stress protein (heat-shock protein (HSP-70), heme oxygenase-1(HO-1)) and cytokine (TNF-α, IL-1β, keratinocyte chemoattractant (KC)) mRNA was investigated. I/R caused an increase in aminotransferase levels and increased polymorphonuclear cell infiltration. Post-ischemic treatment with T-res (0.02 and 0.2 mg/kg) resulted in a significant decrease in aminotransferase, IL-1β and IL-6 plasma levels by about 40%, 60% and 40%, respectively, compared to the vehicle I/R group. Post-ischemic treatment with T-res (0.02 mg/kg) also significantly decreased hepatic neutrophil recruitment. TNF-α, IL-1β, KC and HO-1 hepatic mRNA expression was reduced by T-res without any change in HSP-70 mRNA. This T-res mediated decrease in early release of cytokines and neutrophil recruitment led to a reduction in the late inflammatory process. T-resveratrol might be useful in the prevention of inflammation secondary to hepatic surgery or liver transplantation.  相似文献   

4.
The incidence of non-alcoholic fatty liver disease (NAFLD) has been increasing, and there is a shortage of liver donors, which has led to the acceptance of steatotic livers for transplantation. However, steatotic livers are known to experience more severe acute ischemia-reperfusion (I/R) injury than normal livers upon transplantation. In the present study, we investigated the role of theaflavin, a polyphenol substance extracted from black tea, in attenuating acute I/R injury in a fatty liver model. We induced I/R in normal and steatotic livers treated with or without theaflavin. We also separated primary hepatocytes from the normal and steatotic livers, and applied RAW264.7 cells, a mouse macrophage cell line, that was pretreated with theaflavin. We observed that liver steatosis, oxidative stress, inflammation and hepatocyte apoptosis were increased in the steatotic liver compared to the normal liver, however, these changes were significantly decreased by theaflavin treatment. In addition, theaflavin significantly diminished the ROS production of steatotic hepatocytes and TNF-α production by LPS-stimulated RAW264.7 cells. We concluded that theaflavin has protective effects against I/R injury in fatty livers by anti-oxidant, anti-inflammatory, and anti-apoptotic mechanisms.  相似文献   

5.
6.
7.
Kim SJ  Park JG  Lee SM 《Life sciences》2012,90(5-6):169-176
AimsThe purpose of this study was to investigate the cytoprotective role of heme oxygenase-1 (HO-1) induction in hepatic injury in alcoholic steatotic liver exposed to cold ischemia/reperfusion (I/R).Main methodsAnimals were fed an ethanol liquid diet or isocaloric control diet for 5 weeks. Isolated perfused rat livers were preserved in Histidine–Tryptophan–Ketoglutarate at 4 °C. After 24 h of storage, livers were subjected to 120 min of reperfusion with Krebs–Henseleit bicarbonate buffer at 37 °C. Animals were pretreated with cobalt protoporphyrin (CoPP, 5 mg/kg, i.p.) or zinc protoporphyrin (ZnPP, 25 mg/kg, i.p.), HO-1 inducer and antagonist, respectively.Key findingsIn the model of ischemia/isolated perfusion, endogenous HO-1 was downregulated in the livers fed with ethanol diet (ED I/R). In ED I/R group, portal pressure and lactate dehydrogenase release were significantly increased, while bile output and hyaluronic acid clearance decreased compared to rats fed on control diet (CD I/R). Furthermore, hepatic glutathione content decreased and lipid peroxidation increased in the ED I/R group compared to the CD I/R group. These alterations were attenuated by upregulation of HO-1 with CoPP pretreatment.SignificanceOur results suggest that chronic ethanol consumption aggravates hepatic injury during cold I/R and it is likely due to downregulation of endogenous HO-1. Prior induction of HO-1 expression may provide a new strategy to protect livers against hepatic I/R injury or to increase the donor transplant pool through modulation of marginal alcoholic steatotic livers.  相似文献   

8.
Although IL-10 down-regulates pro-inflammatory cytokine secretion by hepatic Kupffer cells, the mechanisms underlying its hepatoprotective effects are not fully clear. This study tested the hypothesis that IL-10 protects the liver against pro-inflammatory cytokines by counteracting their pro-apoptotic effects. Wild type and IL-10 knockout mice were treated with bacterial lipopolysaccharide and sacrificed 1, 4, 8, and 12 h later. Plasma ALT activity was measured as a marker of liver injury. Liver pathology and TUNEL response were assessed by histology. Plasma levels and whole liver mRNA levels were measured for TNF-alpha, IL-1 beta, TGF-beta1, IL-10, and their respective receptors. Hepatic mRNA levels were measured for several pro-apoptotic adaptors/regulators, including FasL, Fas receptor, FADD, TRADD, Bad, Bak, Bax, and Bcl-X(S), and anti-apoptotic regulators, including Bcl-w, Bcl-X(L), Bcl-2, and Bfl-1. Caspase-3 activity in the liver was determined as well as immunohistochemistry for IL-1RII, TGF-betaRII and Fas receptor. At all time points the livers from IL-10 knockout mice displayed a significantly increased number of apoptotic nuclei compared to wild type mice. Changes in plasma cytokine levels and their liver mRNA levels were consistent with suppression by IL-10 of pro-inflammatory cytokine secretion. In addition, pro-inflammatory cytokine receptor mRNA levels (TNF-alpha, TGF-beta, and IL-1 beta) were markedly up-regulated by LPS at all time points in IL-10 knockout mice as compared to wild type mice. Expression of the pro-inflammatory cytokine receptor IL-1RII was similarly increased as shown by immunostaining. The mRNA levels of a typical pro-apoptotic cytokine, TRAIL, were increased and LPS also up-regulated the mRNA expression of other apoptotic factors to a larger extent in IL-10 knockout mice than in their wild type counterparts, suggestive of an IL-10 anti-apoptotic effect. In the livers of knockout mice, markedly increased caspase-3 activity was already evident at the 1-h time point following LPS administration, while in the wild type animals this increase was delayed. Immunostaining also indicated that LPS increased hepatic expression of the pro-apoptotic receptors Fas and TGF-betaRII in IL-10 knockout mice. The data presented in this study show that: (i) IL-10 modulates not only the secretion of pro-inflammatory cytokines, but also the receptors of these cytokines, and ii) IL-10 protects the liver against LPS-induced injury at least in part by counteracting pro-inflammatory cytokine-induced liver apoptosis.  相似文献   

9.
10.
During partial hepatectomy, ischemia–reperfusion (I/R) is commonly applied in clinical practice to reduce blood flow. Steatotic livers show impaired regenerative response and reduced tolerance to hepatic injury. We examined the effects of tauroursodeoxycholic acid (TUDCA) and 4-phenyl butyric acid (PBA) in steatotic and non-steatotic livers during partial hepatectomy under I/R (PH+I/R). Their effects on the induction of unfolded protein response (UPR) and endoplasmic reticulum (ER) stress were also evaluated. We report that PBA, and especially TUDCA, reduced inflammation, apoptosis and necrosis, and improved liver regeneration in both liver types. Both compounds, especially TUDCA, protected both liver types against ER damage, as they reduced the activation of two of the three pathways of UPR (namely inositol-requiring enzyme and PKR-like ER kinase) and their target molecules caspase 12, c-Jun N-terminal kinase and C/EBP homologous protein-10. Only TUDCA, possibly mediated by extracellular signal-regulated kinase upregulation, inactivated glycogen synthase kinase-3β. This is turn, inactivated mitochondrial voltage-dependent anion channel, reduced cytochrome c release from the mitochondria and caspase 9 activation and protected both liver types against mitochondrial damage. These findings indicate that chemical chaperones, especially TUDCA, could protect steatotic and non-steatotic livers against injury and regeneration failure after PH+I/R.  相似文献   

11.
In hemorrhagic shock and trauma, patients are prone to develop systemic inflammation with remote organ dysfunction, which is thought to be caused by pro-inflammatory mediators. This study investigates the role of the immuno-modulatory cytokine IL-10 in the development of organ dysfunction following hemorrhagic shock. Male C57/BL6 and IL-10 KO mice were subjected to volume controlled hemorrhagic shock for 3 h followed by resuscitation. Animals were either sacrificed 3 or 24 h after resuscitation. To assess systemic inflammation, serum IL-6, IL-10, KC, and MCP-1 concentrations were measured with the Luminex? multiplexing platform; acute lung injury (ALI) was assessed by pulmonary myeloperoxidase (MPO) activity and lung histology and acute liver injury was assessed by hepatic MPO activity, hepatic IL-6 levels, and serum ALT levels. There was a trend towards increased IL-6 and KC serum levels 3 h after resuscitation in IL-10 KO as compared to C57/BL6 mice; however this did not reach statistical significance. Serum MCP-1 levels were significantly increased in IL-10 KO mice 3 and 24 h following resuscitation as compared to C57/BL6 mice. In IL-10 KO mice, pulmonary MPO activity was significantly increased 3 h following resuscitation and after 24 h histological signs of acute lung injury were more apparent than in C57/BL6 mice. In contrast, no significant differences in any liver parameters were detected between IL-10 KO and C57/BL6 mice. Our data indicate that an endogenous IL-10 deficiency augments acute lung but not liver injury following hemorrhagic shock.  相似文献   

12.
13.
Excess hepatic lipid accumulation and oxidative stress contribute to nonalcoholic fatty liver disease (NAFLD). Thus, we hypothesized that the hypolipidemic and antioxidant activities of green tea extract (GTE) would attenuate events leading to NAFLD. Obese mice (ob/ob; 5 weeks old, n=38) and their lean littermates (n=12) were fed 0%, 0.5% or 1% GTE for 6 weeks. Then, hepatic steatosis, oxidative stress and inflammatory markers were measured. Obese mice, compared to lean controls, had greater hepatic lipids and serum alanine aminotransferase (ALT). GTE at 1% lowered (P<.05) hepatic lipids and ALT in obese mice. The GTE-mediated attenuation in hepatic steatosis was accompanied by decreased mRNA expression of adipose sterol regulatory element-binding protein-1c, fatty acid synthase, stearoyl CoA desaturase-1, and hormone-sensitive lipase and decreased serum nonesterified fatty acid concentrations. Immunohistochemical data indicated that steatotic livers from obese mice had extensive accumulation of tumor necrosis factor-α (TNF-α), whereas GTE at 1% decreased hepatic TNF-α protein and inhibited adipose TNF-α mRNA expression. Hepatic total glutathione, malondialdehyde and Mn- and Cu/Zn-superoxide dismutase activities in obese mice fed GTE were normalized to the levels of lean littermates. Also, GTE increased hepatic catalase and glutathione peroxidase activities, and these activities were inversely correlated with ALT and liver lipids. Collectively, GTE mitigated NAFLD and hepatic injury in ob/ob mice by decreasing the release of fatty acids from adipose and inhibiting hepatic lipid peroxidation as well as restoring antioxidant defenses and decreasing inflammatory responses. These findings suggest that GTE may be used as an effective dietary strategy to mitigate obesity-triggered NAFLD.  相似文献   

14.
Liu A  Fang H  Dirsch O  Jin H  Dahmen U 《Cytokine》2012,57(1):150-157
Macrophage migration inhibitory factor (MIF) is an important mediator of ischemia/reperfusion (I/R) injury in heart, brain and intestine. We previously demonstrated that MIF was released during warm/cold ischemia in vitro. However, the role of MIF in liver I/R injury remains unclear. We aimed to test the hypothesis that MIF acts as an early proinflammatory cytokine and could mediate the inflammatory injury in liver I/R. Rats (n = 6 per group) were subjected to 90 min warm ischemia followed by 0.5 h, 6 h and 24 h reperfusion, respectively to liver transplantation (LTx) after 6 h of cold ischemia followed by 24 h of reperfusion. The expression of MIF, its receptor (cluster of differentiation 74 (CD74)) and the downstream inflammatory cytokines (tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β)) were analyzed. Peritoneal macrophages were cultured for 6 h alone or in the presence of effluent from cold-preserved livers or effluent depleted of MIF. Warm I/R increased hepatic MIF-mRNA and protein expression. MIF-protein was released into peripheral circulation in vivo with a maximum at 0.5 h after reperfusion. Induction of MIF-expression was associated with the expression of proinflammatory cytokines and its receptor in both models. MIF released by isolated cold preserved livers, induced TNF-α and IL-1β production by cultured peritoneal macrophages. Intrahepatic upregulation of MIF, release into systemic circulation and the associated upregulation of the proinflammatory mediators suggest a role of MIF in mediating the inflammatory response to I/R injury. Blocking experiments will help to elucidate its role as potential molecular target for preventing hepatic I/R injury.  相似文献   

15.
While adipose tissue-associated macrophages contribute to development of chronic inflammation and insulin resistance of obesity, little is known about the role of hepatic Kupffer cells in this environment. Here we address the impact of Kupffer cell ablation using clodronate-encapsulated liposome depletion in a diet-induced obese (DIO) and insulin resistant mouse model. Hepatic expression of macrophage markers measured by realtime RT-PCR remained unaltered in DIO mice despite characteristic expansion of adipose tissue-associated macrophages. DIO mouse livers displayed increased expression of alternative activation markers but unaltered proinflammatory cytokine expression when compared to lean mice. Kupffer cell ablation reduced hepatic anti-inflammatory cytokine IL-10 mRNA expression in lean and DIO mice by 95% and 84%, respectively. Despite decreased hepatic IL-6 gene expression after ablation in lean and DIO mice, hepatic STAT3 phosphorylation, Socs3 and acute phase protein mRNA expression increased. Kupffer cell ablation in DIO mice resulted in additional hepatic triglyceride accumulation and a 30–40% reduction in hepatic insulin receptor autophosphorylation and Akt activation. Implicating systemic loss of IL-10, high-fat-fed IL-10 knockout mice also displayed increased hepatic STAT3 signaling and hepatic triglyceride accumulation. Insulin signaling was not altered, however. In conclusion, Kupffer cells are a major source of hepatic IL-10 expression, the loss of which is associated with increased STAT3-dependent signaling and steatosis. One or more additional factors appear to be required, however, for the Kupffer cell-dependent protective effect on insulin receptor signaling in DIO mice.  相似文献   

16.
17.
IL-1 is well known to be involved in the immune system and have a role in ovarian inflammation as well as exhibiting inhibitory effects on steroidogenesis and folliculogenesis. Because multiple aspects of ovarian function have also been shown to involve cytokine/chemokine networks, IL-1alpha-induced chemokine gene expression in mouse granulosa cells was investigated. Granulosa cells from immature mice at 28 d of age were cultured with IL-1alpha (10 ng/ml). IL-1alpha induced abundantly and specifically keratinocyte chemoattractant (KC) chemokine, a CXC subfamily. KC chemokine mRNA and protein were increased 1-2 h after IL-1alpha and then gradually decreased. The KC promoter (-701/+30) containing three nuclear factor (NF)-kappaB sites was fully responsive to IL-1alpha, whereas deletions and mutants of the NF-kappaB sites lowered the responsiveness to IL-1alpha. The proximal NF-kappaB site (-69/-59) played a critical role in regulating IL-1alpha-induced KC chemokine promoter activity. Overexpression of the inhibitor of NF-kappaB (IkappaB) blocked KC promoter activity induced by IL-1alpha, whereas overexpression of p65, a component of NF-kappaB, increased promoter activity and mRNA of KC chemokine. In addition, FSH did not affect NF-kappaB signaling or IL-1alpha-induced KC chemokine promoter activity. Within 1-3 h after ip injection of lipopolysaccharide (100 mug/mouse), a product known to stimulate release of IL-1, KC chemokine was localized in the ovary to granulosa cells as well as the thecal-interstitial layer. The results of this study indicate that KC gene is a chemokine induced acutely by IL-1alpha via NF-kappaB signaling in mouse granulosa cells.  相似文献   

18.
Injection of the red cell substitute liposome-encapsulated haemoglobin (LEH) induces increased serum interleukin (IL)-6 in the absence of other inflammatory cytokines. In vitro studies found that IL-6 mRNA was increased in Mphi and endothelial cell lines by co-culture with LEH. In the present study, cytokine mRNA expression in extracts of livers, spleens, lungs and kidneys after LEH injection was determined by semi-quantitative RT-PCR. The distribution of cells expressing IL-6 mRNA in livers and spleens was visualized by in situ hydridization; extracts of kidney and lung did not show increased IL-6 mRNA and were not studied further. IL-6 mRNA accumulation in livers and spleens was increased at 4 h following LEH injection and had declined by 24 h. In the liver, cells expressing IL-6 mRNA were located in endothelia of hepatic and portal veins, and hepatic sinuses, Kupffer cells and epithelial cells of bile ducts. Endothelium of hepatic arteries did not express IL-6 mRNA. Lymphocytes, haematopoietic cells and macrophages expressed IL-6 mRNA in spleens. The data suggest that cells of the reticuloendothelial system (RES) might be a significant source of increased plasma IL-6 in vivo after LEH administration.  相似文献   

19.
PNA+Tempol, albumin containing conjugated (polynitroxyl albumin; PNA) and free (4-hydroxyl-2,2,6,6-tetramethyl-piperidinyl-1-oxyl; Tempol) nitroxide may protect against injury caused by reactive oxygen species. Therefore, the actions of PNA+Tempol on liver injury and inflammation induced by hepatic ischemia and reperfusion (I/R) were examined. Rats were subjected to 1 h ischemia followed by 24 h reperfusion in the absence (I/R) or presence of PNA+Tempol (25%; 15 mL/kg, i.v.) (I/R+PNA+Tempol) or human serum albumin (23%; 13.5 mL/kg, i.v.) (I/R+HSA). Test solutions were administered prior to and for 2 h during reperfusion. Sham-operated rats underwent surgery with neither ischemia nor infusion. I/R+PNA+Tempol rats had significantly less liver injury and inflammation than I/R rats. I/R+PNA+Tempol livers exhibited focal lesions whereas I/R livers exhibited global necrosis. Likewise, plasma ALT activity was significantly lower in I/R+PNA+Tempol rats. PNA+Tempol reduced I/R-induced neutrophil accumulation and intercellular adhesion molecule-1 (ICAM-1) expression. HSA did not alter I/R-induced liver injury or inflammation. Sham-operated rats exhibited normal liver morphology and no inflammation. Attenuation of I/R liver injury by PNA+Tempol may be mediated by its effect on inflammation, the major contributor to I/R injury. Reduction of inflammation by PNA+Tempol is most likely due to the antioxidative nature of the nitroxides.  相似文献   

20.
Uncoupling protein 2 (UCP2) uncouples respiration from oxidative phosphorylation and may contribute to obesity through effects on energy metabolism. Because basal metabolic rate is decreased in obesity, UCP2 expression is predicted to be reduced. Paradoxically, hepatic expression of UCP2 mRNA is increased in genetically obese (ob/ob) mice. In situ hybridization and immunohistochemical analysis of ob/ob livers demonstrate that UCP2 mRNA and protein expression are increased in hepatocytes, which do not express UCP2 in lean mice. Mitochondria isolated from ob/ob livers exhibit an increased rate of H+ leak which partially dissipates the mitochondrial membrane potential when the rate of electron transport is suppressed. In addition, hepatic ATP stores are reduced and these livers are more vulnerable to necrosis after transient hepatic ischemia. Hence, hepatocytes adapt to obesity by up-regulating UCP2. However, because this decreases the efficiency of energy trapping, the cells become vulnerable to ATP depletion when energy needs increase acutely.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号