首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Repeated patterns among biological communities suggest similar evolutionary and ecological forces are acting on the communities. Conversely, the lack of such patterns suggests that similar forces are absent or additional ones are present. Coevolution between a seed predator, the red crossbill (Loxia curvirostra complex), and lodgepole pine (Pinus contorta var. latifolia) exemplifies the ecological and evolutionary predictions for coevolving systems. In the absence of another seed predator and preemptive competitor (pine squirrels Tamiasciurus hudsonicus), natural selection by crossbills results in the evolution of larger cones with thicker distal scales, while relaxation of selection by squirrels results in the evolution of cones with more seeds and a greater ratio of seed mass to cone mass. However, in one range, the Little Rocky Mountains, distal scale thickness has diverged as expected but cone size has not. In these mountains seed predation by lodgepole pine cone borer moths (Eucosma recissoriana) was about 10 times greater than in other ranges lacking squirrels. We quantified moth predation and cone traits and found that moths select for smaller cones with fewer seeds. Thus, selection by moths in the Little Rocky Mountains counters both selection by crossbills for large cone size and relaxation of selection by squirrels favoring more seeds per cone and accounts for the relatively small and few-seeded cones in these mountains. It is also apparent that selection by crossbills changes seed defenses in a manner that favors seed predation by moths, whereas selection by squirrels likely reduces such predation. These results demonstrate the importance of considering the evolutionary consequences of community context in locally evolved (coevolved) traits and interactions.  相似文献   

2.
With a career stretching from the 1960s, Roger Good clocked up over 50 years’ experience in restoring alpine ecosystems, particularly bogs and fens. This interview (recorded not long before Roger's untimely death in 2015) shows how the evolving approaches to restoration in Australia's Snowy Mountains mirror the evolving broad discipline of restoration.  相似文献   

3.
The removal of grazing from the high country in NSW and almost 20 years of rehabilitation and revegetation works at a cost of almost $10 million has restored the alpine zone in Kosciuszko National Park to a near natural landscape. Few visitors today would realise that the summer alpine floral display which they now enjoy each summer, hides a once degraded and severely eroded landscape, devoid of many of the natural catchment values so important to the discharge of water to the rivers and to the Snowy Mountains Hydro‐electric Scheme. The rehabilitation of the alpine zone has contributed to and seen the recovery of many native species and communities, some nearing extinction during the grazing years, such that their conservation will be forever ensured. The rehabilitation and revegetation programme is one that the Soil Conservation Service officers and more recently National Parks staff can be justly proud. It was arguably the first and certainly at the time, the largest landscape restoration programme undertaken in NSW. Much was learnt from the programme through observation of long‐term natural processes, providing for recognition of the limitations within which the work had to be carried out. Working with nature and utilising sound ecological principles was essential to the success of this landscape restoration programme and to the long‐term conservation of the alpine zone.  相似文献   

4.
1. Multiannual population cycles of geometrid moths are thought to be driven by trophic‐level interactions involving a delayed density‐dependent component. Predation on adult moths has been a little‐studied mechanism of this phenomenon. 2. Using 29 daytime and 61 night‐time predation trials in the field, we exposed living autumnal moth (Epirrita autumnata Borkhausen, Lepidoptera: Geometridae) females to their natural predators during each autumn throughout the 10‐year population cycle. 3. In our northern study location (70°N), insectivorous passerines had already migrated, and harvestman Mitopus morio Fabricius (Opiliones: Phalangiidae) was found to be the main predator of the adult moths. The predation mortality occurred mainly at night and was positively correlated with the minimum temperature measured during the predation trial. 4. Despite high annual variability in the degree of adult predation, both direct and delayed density‐dependent effects were weak and indicate that predation on adult moths in the autumn does not have any regulatory role in cyclic population dynamics of the autumnal moth in northern Fennoscandia.  相似文献   

5.
Aim This paper seeks to investigate whether alpine floras on isolated mountains in boreal forest show nestedness, and, if that is the case, to determine whether selective extinction or colonization is the likely cause of the observed patterns. Location Isolated mountains in the boreal coniferous forests of northern Sweden (province of Norrbotten, c. 66°N; 18°E). The timberline in the region probably has been 300–400 m above the present some thousands of years before present, potentially covering these mountains. Methods A data matrix of twenty‐seven alpine plant species on twenty‐seven isolated mountains was subjected to nested subsets analysis. Extinction probability was assumed to increase with decreasing area, and colonization probability was assumed to decrease with increasing isolation. By sorting the data matrix by these factors and sequentially computing the degree of nestedness, we were able to determine whether the alpine floras were structured mainly by selective extinction or mainly by differential colonization. Results When ordered by decreasing area the data matrix was significantly more nested than random, but that was not the case when ordered by decreasing isolation. Ordering by maximum altitude also produced significant nestedness. Main conclusions Contrary to the conventional view that isolated mountains were completely covered with boreal forest some thousands of years ago, the nestedness patterns of alpine plants indicate that many of them survived the forest period on the isolated mountains, probably on cliffs and slopes too steep for the formation of closed forest.  相似文献   

6.
Eva Knop  Jan Zünd  Dirk Sanders 《Oikos》2014,123(10):1244-1249
The positive relationship between biodiversity and ecosystem functioning is mainly derived from studies concerning primary producers, whereas a generalization of this relationship for higher trophic levels is more difficult. Furthermore, most evidence of the biodiversity–ecosystem functioning relationship is derived from experiments manipulating only one trophic level and, as a consequence, interactive diversity effects at multiple trophic levels have mostly been ignored. Here, we performed a mesocosm experiment in which we manipulated functional group diversity at two trophic levels (primary and secondary consumers) applying a full‐factorial design. More specifically, we asked whether 1) predator functional diversity affects prey mortality rates, 2) prey functional diversity affects prey mortality rates, 3) whether there are interactive effects of simultaneous diversity changes at both trophic levels. For each trophic level we used two functional groups, i.e. organisms belonging to two different habitat domains: at the higher trophic position 1) a ground foraging spider species and 2) a spider species foraging in the vegetation canopy and at the lower trophic position 3) a ground living cricket species and 4) leafhoppers living in the vegetation canopy. Increasing predator functional group diversity increased prey mortality by 53%, and increasing prey functional group diversity increased prey mortality by 24%. Further, prey mortality was highest at the uppermost level of functional group diversity (142% increase in prey mortality compared to single prey and predator functional diversity), most likely due to resource partitioning between the predators. This finding demonstrates that a multi‐trophic perspective is necessary, and that previous studies focusing on only one trophic level have most likely underestimated the strength of the relationship between biodiversity and ecosystem functioning.  相似文献   

7.
The sterile insect technique (SIT) has been successfully applied against codling moth Cydia pomonella (Linnaeus) (Lepidoptera; Tortricidae) in British Columbia since 1992 where the mass‐rearing facility produces between 15 and 16 million moths per week. Due to the seasonality of this pest, the facility is only fully utilized for part of the year. The time and expense of implementing SIT against codling moth in South Africa may be substantially reduced if moths from Canada were sexually compatible with those from South Africa. In addition, because the pome fruit‐growing season in both countries is opposite, the programme in Canada might benefit by maintaining moth production year‐round and selling moths to South Africa. Semi‐field studies in small cages and release‐recapture studies were conducted in an unsprayed apple orchard in South Africa to assess mating compatibility of laboratory‐reared codling moth from Canada and wild codling moths from South Africa. The results suggest that Canadian codling moth males were equally attracted to calling Canadian and South African females despite the fact that Canadian moths had been transported (from Canada to South Africa) for 48 h as both pupae and adults. The data also suggest that at lower field temperatures Canadian moths were more active than South African moths. Results from the release‐recapture field trials indicated that Canadian and South African males were equally attracted to Canadian and South African females. These results suggest that codling moths from Canada and South Africa are fully compatible and indicate that Canadian moths can be used for SIT studies in South Africa. As these studies were conducted with moths from two very different climatic and time zones, it is proposed that populations of codling moth in other pome fruit production areas may also be compatible with the Canadian moths.  相似文献   

8.
9.
Alpine environments are currently relatively free from non‐native plant species, although their presence and abundance have recently been on the rise. It is however still unclear whether the observed low invasion levels in these areas are due to an inherent resistance of the alpine zone to invasions or whether an exponential increase in invasion is just a matter of time. Using a seed‐addition experiment on north‐ and south‐facing slopes (cf. microclimatic gradient) on two mountains in subarctic Sweden, we tested the establishment of six non‐native species at an elevation above their current distribution limits and under experimentally enhanced anthropogenic pressures (disturbance, added nutrients and increased propagule pressure). We found a large microclimatic variability in cumulative growing degree days (GDD) (range = 500.77°C, SD = 120.70°C) due to both physiographic (e.g. aspect) and biophysical (e.g. vegetation cover) features, the latter being altered by the experimental disturbance. Non‐native species establishment and biomass production were positively correlated with GDD along the studied microclimatic gradient. However, even though establishment on the north‐facing slopes caught up with that on the south‐facing slopes throughout the growing season, biomass production was limited on the north‐facing slopes due to a shorter growing season. On top of this microclimatic effect, all experimentally imposed anthropogenic factors enhanced non‐native species success. The observed microclimatic effect indicates a potential for non‐native species to use warm microsites as stepping stones for their establishment towards the cold end of the gradient. Combined with anthropogenic pressures this result suggests an increasing risk for plant invasion in cold ecosystems, as such stepping stones in alpine ecosystems are likely to be more common in a future that will combine a warming climate with persistent anthropogenic pressures.  相似文献   

10.
Intraguild predation is the simplest, ubiquitous form of trophic omnivory, known to greatly influence the structure and functioning of natural and managed food webs. Although alternative states are fundamental to intraguild predation dynamics, only necessary conditions for alternative states have been previously reported. Using simple models, we found complex but systematic patterns in which different alternative states occur along a productivity gradient, and clarified the sufficient conditions to separate these patterns. We found that two quantities known to control the necessary conditions also determine the sufficient conditions: (1) relative energy transfer efficiency through alternative trophic pathways to an intraguild predator, and (2) relative resource exploitation ability between intraguild prey and predator. These governing quantities suggest how body size and stoichiometric relations between intraguild prey and predators can influence the possibility of alternative states. Our results indicate that food webs involving intraguild predation have a high potential of complex alternative states, and their management can be highly precarious.  相似文献   

11.
Understanding non‐trophic interactions is critical to mechanistically linking community structure and ecosystem functioning. Despite the widespread occurrence of territoriality across animal taxa and ecosystems, the cascading ecological consequences of non‐trophic interactions between territorial animals and intruders have been poorly studied. We experimentally investigated the non‐trophic interaction between territorial ants and members of a dung decomposer community (i.e. predatory arthropods, maggots and coprophagous beetles) in an alpine meadow. We further examined how this non‐trophic interaction cascaded to influence ecosystem properties including dung removal rate, soil nutrient status and aboveground plant biomass surrounding dung pats. Results indicated that territorial interference of ants on key decomposers cascaded to affect plant growth. Specifically, ants significantly decreased the abundance of coprophagous beetles at the time of their peak‐abundance and hence decreased dung removal rates and soil nitrogen concentrations, ultimately decreasing aboveground plant biomass. The strength of this non‐trophic cascading effect was comparable to those reported in studies addressing trophic cascades triggered by predator–prey interactions. Our findings suggest that the non‐trophic interactions and associated cascading effects stemming from territorial behavior should be incorporated into ecological network modeling and research addressing biodiversity–ecosystem functioning relationships.  相似文献   

12.
Climate change models predict that Australia's alpine areas will experience major declines in snow cover, which, in turn, may provide suitable habitat for species presently restricted to lower altitudes. As a result, there are concerns among land managers that many species will invade alpine areas and have a detrimental impact on fragile alpine ecosystems. However, species survival in such areas, irrespective of snow cover, is greatly dependent on the availability of suitable resources. This study investigated the selection of resources by common wombats Vombatus ursinus, which are currently restricted to, but widespread throughout, the subalpine zone of the Snowy Mountains. Our objectives were to identify habitat choices, and build a model of habitat suitability over the broader landscape, to investigate the likelihood of this common herbivore inhabiting the alpine zone. Global positioning system data were obtained from collared wombats, which were tracked for up to a year, to examine resource selection. Resource selection within the home range of individual wombats revealed that topographic position, vegetation cover, drainage, past fire disturbance, and roads were important predictors of locations. A global model showed that wombats selected locations with mid‐elevations, moderate slopes, closer to water courses and roads, and with a lower proportion of grassland, which are discussed in relation to foraging and burrowing requirements. Mapping of the global model illustrated that alpine areas had a low relative probability of use by this species. Consequently, wombats are unlikely to inhabit alpine areas under given climate change scenarios of less snow cover, because the area (presently) does not contain suitable resources necessary for a wombat to maintain a home range. Researchers and managers need to be mindful of how the spatial distribution of resources, in addition to species climatic tolerances, will influence potential range shifts.  相似文献   

13.
14.
Iran is a mountainous country. Zagros and Alborz mountains reach altitudes of more than 4,000 m. Alpine regions are above timber-line, which is not easy to recognize, since aridity is prominent in most regions. The alpine zone in Alborz lies between 3,000 and 4,000 m, the nival zone is above 4,000 m, locally varying by some hundred meters. A first evaluation of vascular flora shows that 682 species belonging to 193 genera and 39 families are known from the alpine zone of Iran. The alpine zone is commonly characterized by many species of hemicryptophytes and thorny cushions. Species numbers decline very strongly with increasing altitude. In this paper biogeographical patterns of the alpine flora of Iran have been discussed and distribution maps of 44 species are illustrated. New data indicate a transitional situation of the Iranian mountains between Anatolia/Caucasus and the Hindu Kush, but with a strong own element with high endemism and remarkable relict species. Ca. 58% of the alpine flora of Iran are endemic and subendemic. The Zagros Mountains harbor high endemism which justify considering this area as a separate floristic province. Based on the evaluation of published data from 682 known alpine species ca. 160 species have been known only by one record, 110 species by 2–3 records and 87 endemic species have been known only based on the type location. These plants need a strong conservation and protection management since the fragile ecosystems are often very restricted, small and very isolated, nonetheless grazing and overgrazing are still common threats.  相似文献   

15.
There is a long tradition of grazing by semi‐domestic reindeer and sheep in alpine and sub‐alpine Scandinavian habitats, but present management regimes are questioned from a conservation point of view. In this review we discuss plant diversity patterns in the Scandinavian mountains in a global, regional and local perspective. The main objective was to identify processes that influence diversity at different spatial scales with a particular focus on grazing. In a global perspective the species pool of the Scandinavian mountains is limited. partly reflecting the general latitudinal decline of species but also historical and ecological factors operating after the latest glaciation. At the local scale, both productivity and disturbance are primary factors structuring diversity, but abiotic factors such as soil pH, snow distribution and temperature are also important. Although evidence is scarce, grazing favours local species richness in productive habitats, whereas species richness decreases with grazing when productivity is low. Regional patterns of plant diversity is set by, 1) the species pool. 2) the heterogeneity and fragmentation of communities, and 3) local diversity of each plant community. We suggest that local shifts in community composition depend both on the local grazing frequency and the return‐time of the plant community after a grazing session. In addition, an increasing number of grazing‐modified local patches homogenises the vegetation and is likely to reduce the regional plant diversity. The time scale of local shifts in community composition depends on plant colonisation and persistence, From a mechanistic point of view, diversity patterns at a regional scale also depend on the regional dynamics of single species. Colonisation is usually a slow and irregular process in alpine environments, whereas the capacity for extended local persistence is generally high. Although the poor knowledge of plant regional dynamics restricts our understanding of how grazing influences plant diversity, we conclude that grazing is a key process for maintaining biodiversity in the Scandinavian mountains.  相似文献   

16.
Animal species differ considerably in their response to predation risks. Interspecific variability in prey behaviour and morphology can alter cascading effects of predators on ecosystem structure and functioning. We tested whether species‐specific morphological defenses may affect responses of leaf litter consuming invertebrate prey to sit‐and‐wait predators, the odonate Cordulegaster boltonii larvae, in aquatic food webs. Partly or completely blocking the predator mouthparts (mandibles and/or extensible labium), thus eliminating consumptive (i.e. lethal) predator effects, we created a gradient of predator‐prey interaction intensities (no predator < predator – no attack < predator – non‐lethal attacks < lethal predator). A field experiment was first used to assess both consumptive and non‐consumptive predator effects on leaf litter decomposition and prey abundances. Laboratory microcosms were then used to examine behavioural responses of armored and non‐armored prey to predation risk and their consequences on litter decomposition. Results show that armored and non‐armored prey responded to both acute (predator – non‐lethal attacks) and chronic (predator – no attack) predation risks. Acute predation risk had stronger effects on litter decomposition, prey feeding rate and prey habitat use than predator presence alone (chronic predation risk). Predator presence induced a reduction in feeding activity (i.e. resource consumption) of both prey types but a shift to predator‐free habitat patches in non‐armored detritivores only. Non‐consumptive predator effects on prey subsequently decreased litter decomposition rate. Species‐specific prey morphological defenses and behaviour should thus be considered when studying non‐consumptive predator effects on prey community structure and ecosystem functioning.  相似文献   

17.
Seed dispersal will be essential for plants to track future climate space, but dispersal capacity is rarely measured or incorporated into species distribution models. Using the entire alpine flora of the Snowy Mountains, south-eastern Australia, as a case study, we modelled the dispersal capacity of 198 species (93.4% of the flora) using the plant traits dispersal syndrome, seed mass, seed release height and growth form. The modelled maximum dispersal distances were mostly affected by dispersal syndrome of each species. The models reveal that 75% of species disperse up to 10 m, whilst 20% may disperse >100 m. Most species in this flora do not have any specific dispersal strategy, hence their inability to disperse >10 m. However, those species with longer modelled distances were dispersed by animals or wind (>600 and >140 m, respectively). This alpine flora has a low capacity for long-distance seed dispersal and is likely to suffer from migration lag as the local climate undergoes rapid changes.  相似文献   

18.
Abstract 1 Predation by small mammals has previously been shown to be the largest source of mortality in low‐density gypsy moth, Lymantria dispar (L.), populations in established populations in north‐eastern North America. Fluctuations in predation levels are critical in determining changes in population densities. 2 We compared small mammal communities and levels of predation on gypsy moth pupae among five different oak‐dominated forest types along this insect's western expanding population front in Wisconsin. Comparisons of predator impact can provide critical information for predicting variation in susceptibility among forest types. 3 The results indicated that small mammals caused more mortality than did invertebrates. 4 Both abundance of Peromyscus sp. predators and predation levels were lower in urban and xeric forest types than in mesic sites. 5 These results suggest that, because predation pressures will probably be greater in the mesic sites, gypsy moths may be less likely to develop outbreaks in these habitats, and that defoliation will probably be more frequent in urban and xeric oak‐dominated sites.  相似文献   

19.
Birds living in alpine environments are becoming increasingly impacted by human‐induced threats. We investigated the impacts of introduced mammalian predators on an endangered alpine species, the New Zealand Rockwren Xenicus gilviventris, and assessed whether predator control improved its breeding success. Nest monitoring revealed that the primary cause of nest failure was predation by invasive mammals, primarily Stoats Mustela erminea and House Mice Mus musculus. Daily survival rates (DSR) decreased with nest age, and nests were at their most vulnerable to predators just prior to fledging. DSR, egg‐hatching and fledgling rates were all improved by predator trapping, demonstrating the significant impacts that even low numbers of invasive predators can have on sensitive alpine and upland species.  相似文献   

20.
Aim To assess the geological evolution and biogeographical implications of low mountain passes. In particular, we question the common biogeographical belief that major mountain belts form impervious physical barriers to biological dispersal, and that related taxa found on opposites sides of mountains are necessarily a result of vicariant tectonic processes. Location The Southern Alps of New Zealand form a long (500 km) narrow mountain belt at the oblique collisional Pacific–Australian tectonic plate boundary. High mountains were uplifted during the Pliocene (2–5 Ma) and uplift has continued to the present day. Methods We integrate previous work from several disciplines to obtain an overview of inter‐relationships between plate tectonic processes, geomorphology and biogeography along the main mountain barrier in New Zealand, and then extend this approach to other major mountain belts. Results The Southern Alps initially formed a barrier to at least some biological dispersal, including vicariant formation of separate species of freshwater non‐migratory galaxiid fish on either side. However, the high mountain barrier was breached in several places when passive transport of topography occurred, from the low‐erosion rain shadow on the eastern side towards the high‐erosion, high‐rainfall western side. This tectonic transport resulted in the capture of eastern rivers by west‐draining rivers, leaving low passes at the topographic divide. These low‐elevation corridors permitted biological dispersal across the mountains, although continued uplift raises these passes. A new set of passes has formed in the northern part of the mountains where younger faults are cutting across the older mountain topography. These potential dispersal corridors are becoming lower with continued erosion, and more common as the defining structures migrate southwards. Main conclusions Biological dispersal across the Southern Alps may be facilitated by numerous mountain passes, especially via the new passes formed by cross‐cutting faults. More low‐lying corridors existed than is readily apparent now, as old river capture‐related passes have been blocked by ongoing uplift. The dynamic mountain‐building and erosional environment typified by the Southern Alps occurs in all the world’s collisional mountain belts, such as the Andes, Himalayas, European Alps and North American Cordillera. Sister taxa occurring across mountain belts are not necessarily a result of vicariance driven by the rise of the mountains, as numerous passes may have permitted intermittent dispersal. The evolution of low passes may have been more prevalent than is currently appreciated, suggesting that topographically complex mountain ranges might be more effectively viewed as dynamic filters within a probability landscape rather than as static and impervious high‐altitude barriers to all but the rarest of biological dispersal events. In some cases, the biological disjunctions observed across mountains may more directly reflect habitat differentiation driven by orographic mountain development that has limited the probability of trans‐alpine dispersal success.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号