首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yeasts and filamentous fungi carried by the gynes of leaf-cutting ants   总被引:1,自引:1,他引:0  
Insect-associated microbes exhibit a wide range of interactions with their hosts. One example of such interactions is the insect-driven dispersal of microorganisms, which plays an essential role in the ecology of several microbes. To study dispersal of microorganisms by leaf-cutting ants (Formicidae: Attini), we applied culture-dependent methods to identify the filamentous fungi and yeasts found in two different body parts of leaf-cutting ant gynes: the exoskeleton and the infrabuccal pocket. The gynes use the latter structure to store a pellet of the ants’ symbiotic fungus during nest founding. Many filamentous fungi (n = 142) and yeasts (n = 19) were isolated from the gynes’ exoskeleton. In contrast, only seven filamentous fungi and three yeasts isolates were recovered from the infrabuccal pellets, suggesting an efficient mechanism utilized by the gynes to prevent contamination of the symbiotic fungus inoculum. The genus Cladosporium prevailed (78%) among filamentous fungi whereas Aureobasidium, Candida and Cryptococcus prevailed among yeasts associated with gynes. Interestingly, Escovopsis, a specialized fungal pathogen of the leaf-cutting ant-fungus symbiosis, was not isolated from the body parts or from infrabuccal pellets of any gynes sampled. Our results suggest that gynes of the leaf-cutter ants Atta laevigata and A. capiguara do not vertically transmit any particular species of yeasts or filamentous fungi during the foundation of a new nest. Instead, fungi found in association with gynes have a cosmopolitan distribution, suggesting they are probably acquired from the environment and passively dispersed during nest foundation. The possible role of these fungi for the attine ant–microbial symbiosis is discussed.  相似文献   

2.
1. Farming by non‐human organisms has arisen independently in several animal lineages, allowing them to survive on food sources that are otherwise difficult to access. However, agricultural gardens are prone to invasion by parasites that overgrow cultivars in the absence of host animals. The presence of garden parasites and associated host adaptations are well studied in advanced fungal agriculture practised by social insects (ants, termites, and ambrosia beetles), but the impact of garden parasites in more primitive forms of agriculture is poorly known. The aim of the present study was to report the presence of weed fungi in fungal gardens of the non‐social lizard beetle Doubledaya bucculenta Lewis (Coleoptera: Erotylidae: Languriinae), which cultivates the yeast Wickerhamomyces anomalus (E.C. Hansen) Kurtzman, Robnett & Bas.‐Powers in the internodes of recently dead bamboo culms. 2. The filamentous fungi Arthrinium spp., Fusarium spp., and an unidentified species were isolated from the inner wall and insect‐made wall debris of bamboo internodes inhabited by the beetle. 3. When cultured together with the yeast in the absence of host larvae, Arthrinium sp.1 outcompeted the yeast, suggesting that this filamentous fungus can invade yeast gardens but is normally suppressed under natural conditions. 4. Rearing experiments showed that beetle larvae grew faster when grown on yeast cultures than when fed only Arthrinium sp.1. 5. These results suggest that Arthrinium sp.1 acts as a weed in the fungal gardens of D. bucculenta, inhibiting both growth of the beetle larvae and proliferation of the beneficial yeast.  相似文献   

3.
4.
We investigate the diversity of yeasts isolated in gardens of the leafcutter ant Atta texana. Repeated sampling of gardens from four nests over a 1-year time period showed that gardens contain a diverse assemblage of yeasts. The yeast community in gardens consisted mostly of yeasts associated with plants or soil, but community composition changed between sampling periods. In order to understand the potential disease-suppressing roles of the garden yeasts, we screened isolates for antagonistic effects against known microfungal garden contaminants. In vitro assays revealed that yeasts inhibited the mycelial growth of two strains of Escovopsis (a specialized attine garden parasite), Syncephalastrum racemosum (a fungus often growing in gardens of leafcutter lab nests), and the insect pathogen Beauveria bassiana. These garden yeasts add to the growing list of disease-suppressing microbes in attine nests that may contribute synergistically, together with actinomycetes and Burkholderia bacteria, to protect the gardens and the ants against diseases. Additionally, we suggest that garden immunity against problem fungi may therefore derive not only from the presence of disease-suppressing Pseudonocardia actinomycetes, but from an enrichment of multiple disease-suppressing microorganisms in the garden matrix.  相似文献   

5.
Leaf-cutting ants (Formicidae: Attini) are considered pests in agriculture for their impact in human crops, as they utilize leaf fragments to raise their fungal mutualist (Agaricales: Lepiotaceae). Basically, the basidiomycetous fungus is cultivated to supply food to adult workers and broads; in return, the ants protect it against natural enemies. However, recent studies have claimed that other microorganisms are associated to ant nests where a wide range of interactions may take place. To investigate the occurrence of dematiaceous fungi on the cuticle of Atta laevigata ants, 30 workers were sampled from an adult nest located in the surroundings of the Center for the Studies of Social Insects, UNESP-Rio Claro, SP, Brazil. The use of selective techniques to avoid high-sporulation fungi has been recommended and was tested in this study. To favor the isolation of the desired fungi, heads and cuticle scrapings of ant bodies were inoculated on Mycosel agar and incubated for 3 weeks at 35°C. Morphological and molecular methods were used to identify the filamentous fungi recovered. From 56 isolates, 19 were hyaline filamentous species, and among the remaining 37, some are mentioned as phyto-associated fungi like Alternaria arborescens, Bipolaris sorokiniana, Bipolaris eleusines, Bipolaris zeae, Curvularia trifolii, and Paraphaeosphaeria michotii. These species are reported from A. laevigata bodies for the first time. None of the isolation trials revealed the presence of the parasite Escovopsis or entomopathogenic fungi. The possible spread of the fungi in nature by the ants is discussed.  相似文献   

6.
Leaf-cutting ants are one of the main herbivores of the Neotropics, where they represent an important agricultural pest. These ants are particularly difficult to control because of the complex network of microbial symbionts. Leaf-cutting ants have traditionally been controlled through pesticide application, but there is a need for alternative, more environmentally friendly, control methods such as biological control. Potential promising biocontrol candidates include the microfungi Escovopsis spp. (anamorphic Hypocreales), which are specialized pathogens of the fungi the ants cultivate for food. These pathogens are suppressed through ant behaviors and ant-associated antibiotic-producing Actinobacteria. In order to be an effective biocontrol agent, Escovopsis has to overcome these defenses. Here, we evaluate, using microbial in vitro assays, whether defenses in the ant-cultivated fungus strain (Leucoagaricus sp.) and Actinobacteria from the ant pest Acromyrmex lundii have the potential to limit the use of Escovopsis in biocontrol. We also explore, for the first time, possible synergistic biocontrol between Escovopsis and the entomopathogenic fungus Lecanicillium lecanii. All strains of Escovopsis proved to overgrow A. lundii cultivar in less than 7 days, with the Escovopsis strain isolated from a different leaf-cutting ant species being the most efficient. Escovopsis challenged with a Streptomyces strain isolated from A. lundii did not exhibit significant growth inhibition. Both results are encouraging for the use of Escovopsis as a biocontrol agent. Although we found that L. lecanii can suppress the growth of the cultivar, it also had a negative impact on Escovopsis, making the success of simultaneous use of these two fungi for biocontrol of A. lundii questionable.  相似文献   

7.
Microfungal “Weeds” in the Leafcutter Ant Symbiosis   总被引:1,自引:0,他引:1  
Leafcutter ants (Formicidae: tribe Attini) are well-known insects that cultivate basidiomycete fungi (Agaricales: Lepiotaceae) as their principal food. Fungus gardens are monocultures of a single cultivar strain, but they also harbor a diverse assemblage of additional microbes with largely unknown roles in the symbiosis. Cultivar-attacking microfungi in the genus Escovopsis are specialized parasites found only in association with attine gardens. Evolutionary theory predicts that the low genetic diversity in monocultures should render ant gardens susceptible to a wide range of diseases, and additional parasites with roles similar to that of Escovopsis are expected to exist. We profiled the diversity of cultivable microfungi found in 37 nests from ten Acromyrmex species from Southern Brazil and compared this diversity to published surveys. Our study revealed a total of 85 microfungal strains. Fusarium oxysporum and Escovopsis were the predominant species in the surveyed gardens, infecting 40.5% and 27% of the nests, respectively. No specific relationship existed regarding microfungal species and ant-host species, ant substrate preference (dicot versus grass) or nesting habit. Molecular data indicated high genetic diversity among Escovopsis isolates. In contrast to the garden parasite, F. oxysporum strains are not specific parasites of the cultivated fungus because strains isolated from attine gardens have similar counterparts found in the environment. Overall, the survey indicates that saprophytic microfungi are prevalent in South American leafcutter ants. We discuss the antagonistic potential of these microorganisms as “weeds” in the ant–fungus symbiosis.  相似文献   

8.
钱茜  李赛飞  文华安 《菌物学报》2011,30(4):556-565
培菌性白蚁能在存在于蚁巢或分散在其周围土壤中的菌圃上培养真菌。菌圃在无白蚁存在下培养会生长出炭角菌的子实体。对分别采集自我国西南四川、云南两省的4个土白蚁属菌圃采用原位培养法分离并纯化得到40株炭角菌,划分为13个形态型,ITS1-5.8S-ITS2序列分析确定为两种炭角菌。采用建立ITS基因文库的方法分析了白蚁菌圃真菌群落多样性,结果表明有白蚁存在的菌圃,蚁巢伞为单一优势菌;废弃的蚁巢中的菌圃,木霉、炭角菌等其他真菌成为优势菌。  相似文献   

9.
Leucoagaricus gongylophorus, the symbiotic fungus of the leaf-cutting ants, degrades starch, this degradation being supposed to occur in the plant material which leafcutters forage to the nests, generating most of the glucose which the ants utilize for food. In the present investigation, we show that laboratory cultures of L. gongylophorus produce extracellular -amylase and maltase which degrade starch to glucose, reinforcing that the ants can obtain glucose from starch through the symbiotic fungus. Glucose was found to repress -amylase and, more severely, maltase activity, thus repressing starch degradation by L. gongylophorus, so that we hypothesize that: (1) glucose down-regulation of starch degradation also occurs in the Atta sexdens fungus garden; (2) glucose consumption from the fungus garden by A. sexdens stimulates degradation of starch from plant material by L. gongylophorus, which may represent a mechanism by which leafcutters can control enzyme production by the symbiotic fungus. Since glucose is found in the fungus garden inside the nests, down-regulation of starch degradation by glucose is supposed to occur in the nest and play a part in the control of fungal enzyme production by leafcutters.  相似文献   

10.
The prevalence and impact of a specialized microfungal parasite (Escovopsis) that infects the fungus gardens of leaf-cutting ants was examined in the laboratory and in the field in Panama. Escovopsis is a common parasite of leaf-cutting ant colonies and is apparently more frequent in Acromyrmex spp. gardens than in gardens of the more phylogenetically derived genus Atta spp. In addition, larger colonies of Atta spp. appear to be less frequently infected with the parasite. In this study, the parasite Escovopsis had a major impact on the success of this mutualism among ants, fungi, and bacteria. Infected colonies had a significantly lower rate of fungus garden accumulation and produced substantially fewer workers. In addition, the extent of the reduction in colony growth rate depended on the isolate, with one isolate having a significantly larger impact than two others, suggesting that Escovopsis has different levels of virulence. Escovopsis is also spatially concentrated within parts of ant fungus gardens, with the younger regions having significantly lower rates of infection as compared to the older regions. The discovery that gardens of fungus-growing ants are host to a virulent pathogen that is not related to any of the three mutualists suggests that unrelated organisms may be important but primarily overlooked components of other mutualistic associations.  相似文献   

11.
Queens of the leaf‐cutting ant species Atta laevigata and Atta capiguara were collected soon after their mating flight and maintained in the laboratory until death. Ant corpses showing signs of contamination by insect pathogenic fungi were selected for fungal identification. Filamentous fungi such as Beauveria bassiana and Paecilomyces lilacinus actively sporulated in the ant’s corpses. This is the first report of the latter fungus on reproductives of leaf‐cutting ants. The fact that queens may acquire filamentous fungi including saprophytic and potential insect pathogens after their mating event is especially interesting regarding the impacts of such microbes on the establishment of a new nest.  相似文献   

12.
Division of labor and caste specialization plays an important role in many aspects of social insect colony organization, including parasite defense. Within leaf-cutting ant colonies, worker caste specialization permeates colony tasks ranging from foraging, substrate incorporation, brood care, and chemical defenses via glandular secretions and mutualistic bacteria. Leaf-cutting ants rely on protecting a mutualistic fungus they grow for food from microfungi in the genus Escovopsis that parasitizes the ant–fungus relationship. Here, we examine whether Acromyrmex octospinosus leaf-cutter ant castes (minors and majors) display task specialization in two behavioral defenses against Escovopsis: fungus grooming (the removal of Escovopsis spores) and weeding (the removal of large pieces of Escovopsis-infected fungus garden). Using behavioral observations, we show that minors are the primary caste that performs fungus grooming, while weeding is almost exclusively performed by majors. In addition, using a sub-colony infection experimental setup, we show that at the early stages of infection, minors more efficiently remove Escovopsis spores from the fungus garden, thereby restricting Escovopsis spore germination and growth. At later stages of infection, after Escovopsis spore germination, we find that major workers are as efficient as minors in defending the fungus garden, likely due to the increased importance of weeding. Finally, we show, using SEM imaging, that the number of sensory structures is similar between minor and major workers. If these structures are invoked in recognition of the parasites, this finding suggests that both castes are able to sense Escovopsis. Our findings support that leaf-cutter ant behavioral defense tasks against Escovopsis are subject to caste specialization, likely facilitated by worker sizes being optimal for grooming and weeding by minors and majors, respectively, with important consequences for cultivar defense.  相似文献   

13.
Physically isolating organisms from disease agents should reduce the likelihood of disease transmission and infection, and increase survival and growth, particularly in more vulnerable, early ontogenetic stages. During nest founding in fungus-growing ants, foundresses of most genera use a garden platform to isolate the incipient fungal garden from the soil of the underground chamber. We studied nest founding in Acromyrmex octospinosus to test the hypotheses that the use of a platform (rootlets used to suspend the fungus garden): (i) reduces the likelihood that the garden will be contaminated by soil-borne microbial pathogens; (ii) results in more rapid growth of a young colony; and (iii) increases colony survival. We manipulated natural incipient nests to have gardens either in contact with or isolated from soil surrounding the chamber, and nests with and without foundresses present. We found a higher incidence of infection in gardens that were in contact with the chamber soil and without queens, compared with gardens isolated from the chamber soil with and without foundresses. The production of eggs, larvae and pupae, as well as leaf area harvested, were significantly different between nests with and without platforms, but there were no differences in the production of workers nor garden biomass. Likewise, there were no differences between treatments in colony survival rates over 8 weeks. Using smaller incipient gardens, however, gardens with and without platforms differed in survivorship rates after 24 hours. The results indicate that the use of a platform to cultivate an incipient fungal garden is an adaptation to reduce soil-borne diseases and increase colony performance. Received 28 July 2006; revised 15 November 2006; accepted 22 November 2006.  相似文献   

14.
Antagonistic interactions between host and parasites are often embedded in networks of interacting species, in which hosts may be attacked by competing parasites species, and parasites may infect more than one host species. To better understand the evolution of host defenses and parasite counterdefenses in the context of a multihost, multiparasite system, we studied two sympatric species, of congeneric fungus‐growing ants (Attini) species and their symbiotic fungal cultivars, which are attacked by multiple morphotypes of parasitic fungi in the genus, Escovopsis. To assess whether closely related ant species and their cultured fungi are evolving defenses against the same or different parasitic strains, we characterized Escovopsis that were isolated from colonies of sympatric Apterostigma dentigerum and A. pilosum. We assessed in vitro and in vivo interactions of these parasites with their hosts. While the ant cultivars are parasitized by similar Escovopsis spp., the frequency of infection by these pathogens differs between the two ant species. The ability of the host fungi to suppress Escovopsis growth, as well as ant defensive responses toward the parasites, differs depending on the parasite strain and on the host ant species.  相似文献   

15.
Switching by parasites to novel hosts has profound effects on ecological and evolutionary disease dynamics. Switching requires that parasites are able to establish contact with novel hosts and to overcome host defenses. For most host–parasite associations, it is unclear as to what specific mechanisms prevent infection of novel hosts. Here, we show that parasitic fungal species in the genus Escovopsis, which attack and consume the fungi cultivated by fungus-growing ants, are attracted to their hosts via chemotaxis. This response is host-specific: Escovopsis spp. grow towards their natural host cultivars more rapidly than towards other closely related fungi. Moreover, the cultivated fungi secrete compounds that can suppress Escovopsis growth. These antibiotic defenses are likewise specific: in most interactions, cultivars can inhibit growth of Escovopsis spp. not known to infect them in nature but cannot inhibit isolates of their naturally infecting pathogens . Cases in which cultivars are susceptible to novel Escovopsis are limited to a narrow set of host–parasite strain combinations. Targeted chemotactic and antibiotic responses therefore explain why Escovopsis pathogens do not readily switch to novel hosts, consequently constraining long-term dynamics of host–parasite coevolution within this ancient association.  相似文献   

16.
A survey of the filamentous fungi other than the symbiotic one found in association with Atta sexdens rubropilosa colonies was carried out. Different fungal species (27 taxa) were isolated a few days after treating the workers with toxic baits (sulfluramid; Mirex-S), from 40 laboratory and 20 field nests. Syncephalastrum racemosum (54%) and Escovopsis weberi (21%), Trichoderma harzianum (38%) and Fusarium oxysporum (23%) were the prevalent species in laboratory and field nests, respectively. Acremonium kiliense, Acremonium strictum, E. weberi, F. oxysporum, Fusarium solani, Moniliella suaveolens and T. harzianum were found in both nests' groups. We revealed that many filamentous fungi can co-exist in a dormant state inside the nests of these insects and some of them appear to be tightly associated with this environment.  相似文献   

17.
The ophiostomatoid fungi associated with cerambycid beetles Tetropium spp. (their symbiotic vectors) colonizing Norway spruce in Poland (six species collected) were isolated. The virulence of representative isolates was evaluated through inoculations using 2-year-old Norway spruce seedlings. A total of 1325 isolates (Ophiostoma piceae, O. tetropii, O. minus, Grosmannia piceiperda, G. cucullata, and five other less frequent taxa) were obtained. Tetropium castaneum and T. fuscum were vectors of similar spectra of ophiostomatoid fungi although some differences in fungal frequency between these Tetropium spp. were found. Among the fungal associates of the Tetropium spp. collected only G. piceiperda was pathogenic, which suggests that it can play a role in the death of spruce trees following attack by Tetropium spp.  相似文献   

18.
Switching by parasites to novel hosts has profound effects on ecological and evolutionary disease dynamics. Switching requires that parasites are able to establish contact with novel hosts and to overcome host defenses. For most host–parasite associations, it is unclear as to what specific mechanisms prevent infection of novel hosts. Here, we show that parasitic fungal species in the genus Escovopsis, which attack and consume the fungi cultivated by fungus-growing ants, are attracted to their hosts via chemotaxis. This response is host-specific: Escovopsis spp. grow towards their natural host cultivars more rapidly than towards other closely related fungi. Moreover, the cultivated fungi secrete compounds that can suppress Escovopsis growth. These antibiotic defenses are likewise specific: in most interactions, cultivars can inhibit growth of Escovopsis spp. not known to infect them in nature but cannot inhibit isolates of their naturally infecting pathogens . Cases in which cultivars are susceptible to novel Escovopsis are limited to a narrow set of host–parasite strain combinations. Targeted chemotactic and antibiotic responses therefore explain why Escovopsis pathogens do not readily switch to novel hosts, consequently constraining long-term dynamics of host–parasite coevolution within this ancient association.  相似文献   

19.
1. Variation and control of nutritional input is an important selective force in the evolution of mutualistic interactions and may significantly affect coevolutionary modifications in partner species. 2. The attine fungus‐growing ants are a tribe of more than 230 described species (12 genera) that use a variety of different substrates to manure the symbiotic fungus they cultivate inside the nest. Common ‘wisdom’ is that the conspicuous leaf‐cutting ants primarily use freshly cut plant material, whereas most of the other attine species use dry and partly degraded plant material such as leaf litter and caterpillar frass, but systematic comparative studies of actual resource acquisition across the attine ants have not been done. 3. Here we review 179 literature records of diet composition across the extant genera of fungus‐growing ants. The records confirm the dependence of leaf‐cutting ants on fresh vegetation but find that flowers, dry plant debris, seeds (husks), and insect frass are used by all genera, whereas other substrates such as nectar and insect carcasses are only used by some. 4. Diet composition was significantly correlated with ant substrate preparation behaviours before adding forage to the fungus garden, indicating that diet composition and farming practices have co‐evolved. Neither diet nor preparation behaviours changed when a clade within the paleoattine genus Apterostigma shifted from rearing leucocoprinous fungi to cultivating pterulaceous fungi, but the evolutionary derived transition to yeast growing in the Cyphomyrmex rimosus group, which relies almost exclusively on nectar and insect frass, was associated with specific changes in diet composition. 5. The co‐evolutionary transitions in diet composition across the genera of attine ants indicate that fungus‐farming insect societies have the possibility to obtain more optimal fungal crops via artificial selection, analogous to documented practice in human subsistence farming.  相似文献   

20.
Abstract We investigate the nature and duration of incompatibility between certain combinations of Acromyrmex leaf‐cutting ants and symbiotic fungi, taken from sympatric colonies of the same or a related species. Ant‐fungus incompatibility appeared to be largely independent of the ant species involved, but could be explained partly by genetic differences among the fungus cultivars. Following current theoretical considerations, we develop a hypothesis, originally proposed by S. A. Frank, that the observed incompatibilities are ultimately due to competitive interactions between genetically different fungal lineages, and we predict that the ants should have evolved mechanisms to prevent such competition between cultivars within a single garden. This requires that the ants are able to recognize unfamiliar fungi, and we show that this is indeed the case. Amplified fragment length polymorphism genotyping further shows that the two sympatric Acromyrmex species share each other's major lineages of cultivar, confirming that horizontal transfer does occasionally take place. We argue and provide some evidence that chemical substances produced by the fungus garden may mediate recognition of alien fungi by the ants. We show that incompatibility between ants and transplanted, genetically different cultivars is indeed due to active killing of the novel cultivar by the ants. This incompatibility disappears when ants are force‐fed the novel cultivar for about a week, a result that is consistent with our hypothesis of recognition induced by the resident fungus and eventual replacement of incompatibility compounds during force‐feeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号