首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inhibitors of protein-tyrosine kinases (TPKs) from the tyrphostins family induce terminal erythroid differentiation of mouse erythroleukemia (MEL) cells. The most potent tyrphostin was found to be AG-568 which was therefore investigated in more detail. Just prior to differentiation the inhibition of tyrosine phosphorylation of a pp97 protein band was noted. We also found that AG-568 treatment induces the appearance of a putative differentiation factor which could induce tyrphostin-independent differentiation in untreated cells. Our study suggests that the inhibition of tyrosine phosphorylation by AG-568 leads to the production of differentiating factor(s) which induce the MEL cells to differentiate.  相似文献   

2.
To test whether reversible tubulin phosphorylation plays any role in the process of plant mitosis the effects of inhibitors of tyrosine kinases, herbimycin A, genistein and tyrphostin AG 18, and of an inhibitor of tyrosine phosphatases, sodium orthovanadate, on microtubule organization and mitosis progression in a synchronized BY-2 culture has been investigated. It was found that treatment with inhibitors of tyrosine kinases of BY-2 cells at the G2/M transition did not lead to visible disturbances of mitotic microtubule structures, while it did reduce the frequency of their appearance. We assume that a decreased tyrosine phosphorylation level could alter the microtubule dynamic instability parameters during interphase/prophase transition. All types of tyrosine kinase inhibitors used caused a prophase delay: herbimycin A and genistein for 2 h, and tyrphostin AG18 for 1 h. Thereafter the peak of mitosis was displaced for 1 h by herbimycin A or genistein exposure, but after tyrphostin AG18 treatment the timing of the mitosis-peak was comparable to that in control cells. Enhancement of tyrosine phosphorylation induced by the tyrosine phosphatase inhibitor resulted in the opposite effect on BY-2 mitosis transition. Culture treatment with sodium orthovanadate during 1 h resulted in an accelerated start of the prophase and did not lead to the alteration in time of the mitotic index peak formation, as compared to control cells. We suppose that the reversible tyrosine phosphorylation can be involved in the regulation of interphase to M phase transition possible through regulation of microtubule dynamics in plant cells.  相似文献   

3.
Aggregation of the high-affinity IgE receptors (FcepsilonRIs) on the surface of granulated mast cells initiates a chain of signaling events culminating in the release of allergy mediators. Although microtubules are involved in mast cell degranulation, the molecular mechanism that controls microtubule rearrangement after FcepsilonRI triggering is poorly understood. In this study, we show that the activation of bone marrow-derived mast cells (BMMCs) induced by FcepsilonRI aggregation or treatment with pervanadate leads to a rapid polymerization of microtubules. This polymerization was not dependent on the presence of Lyn kinase as determined by experiments with BMMCs isolated from Lyn-negative mice. One of the key regulators of microtubule polymerization is gamma-tubulin. Immunoprecipitation experiments revealed that gamma-tubulin from activated cells formed complexes with Fyn and Syk protein tyrosine kinases and several tyrosine phosphorylated proteins from both wild-type and Lyn(-/-) BMMCs. Pretreatment of the cells with Src-family or Syk-family selective tyrosine kinase inhibitors, PP2 or piceatannol, respectively, inhibited the formation of microtubules and reduced the amount of tyrosine phosphorylated proteins in gamma-tubulin complexes, suggesting that Src and Syk family kinases are involved in the initial stages of microtubule formation. This notion was corroborated by pull-down experiments in which gamma-tubulin complex bounds to the recombinant Src homology 2 and Src homology 3 domains of Fyn kinase. We propose that Fyn and Syk kinases are involved in the regulation of binding properties of gamma-tubulin and/or its associated proteins, and thus modulate the microtubule nucleation in activated mast cells.  相似文献   

4.
5.
Neutrophil activation by specific stimuli, such as the oligopeptide chemotactic factor fMet-Leu-(fMLF), is associated with an increased enzymatic addition of tyrosine to tubulin α -subunits, as measured by 14C tyrosine uptake. In studies using immunoblots we have found that this increased tyrosine uptake into tubulin in activated neutrophils reflects an increase in the proportion of cellular tubulin that is tyrosinated rather than simply an increase in the turnover of tyrosinated subunits. However, the increased accumulation of tyrosinated tubulin was also found to follow an initial depletion of tyrosinated tubulin and concomitant increase in detyrosinated tubulin between 0 and 60 sec following stimulation of neutrophils with fMLF. Immunogold electron microscopy studies of intact micro tubules recovered from activated neutrophils demonstrated that these rapid changes in the relative content of tubulin isoforms in the cells were not associated with the formation or disappearance of microtubule microdomains composed of only one form of tubulin. Previously, we have shown that under conditions of fMLF-stimulated exocytosis there is an increased binding of neutrophil granules to endogenous microtubules. Since neutrophil activation by fMLF is associated with increased tyrosination of α -tubulin subunits, we speculated that rapid changes in the levels of tyrosinated tubulin in the microtubules of activated neutrophils might have a role in the regulation of granule-microtubule interactions. When the binding of purified neutrophil granules to reconstituted rat brain microtubules containing approximately 50% tyrosinated tubulin was measured by electron microscopy and compared with granule binding to microtubules that contained no detectable tyrosinated tubulin, granule-microtubule associations were found to be significantly favored by detyrosinated vs. tyrosinated tubulin. These findings indicate that interactions between cytoplasmic granules and microtubules in activated neutrophils may be modulated by rapid changes in the relative content of detyrosinated and tyrosinated tubulin in the microtubule network of the cells. © 1993 Wiley-Liss, Inc.  相似文献   

6.
7.
Protein tyrosine phosphatases (PTPs) are key mediators that link physiological cues with reversible changes in protein structure and function; nevertheless, significant details concerning their regulation in vivo remain unknown. We demonstrate that PTPepsilon associates with microtubules in vivo and is inhibited by them in a noncompetitive manner. Microtubule-associated proteins, which interact strongly with microtubules in vivo, significantly increase binding of PTPepsilon to tubulin in vitro and further reduce phosphatase activity. Conversely, disruption of microtubule structures in cells reduces their association with PTPepsilon, alters the subcellular localization of the phosphatase, and increases its specific activity. Activation of the epidermal growth factor receptor (EGFR) increases the PTPepsilon-microtubule association in a manner dependent upon EGFR-induced phosphorylation of PTPepsilon at Y638 and upon microtubule integrity. These events are transient and occur with rapid kinetics similar to EGFR autophosphorylation, suggesting that activation of the EGFR transiently down-regulates PTPepsilon activity near the receptor by promoting the PTPepsilon-microtubule association. Tubulin also inhibits the tyrosine phosphatase PTP1B but not receptor-type PTPmu or the unrelated alkaline phosphatase. The data suggest that reversible association with microtubules is a novel, physiologically regulated mechanism for regulation of tyrosine phosphatase activity in cells.  相似文献   

8.
A prominent tyrosine phosphorylated protein of 85 kDa (p85) was detected in highly proliferative sublines derived from the Jurkat T cell leukemia. We undertook a study to characterize the identity of this protein and its possible role in the hyperproliferative phenotypes observed. Using immunoblot and immunoprecipitation techniques, this protein was characterized as the p85 regulatory subunit of phosphatidylinositol 3-kinase. Cell proliferation and p85 tyrosine phosphorylation was not affected by tyrphostin AG-490, an inhibitor of Jak kinases, wortmannin or LY294002, inhibitors of the activity of the catalytic phosphatidylinositol 3-kinase subunit. Herbimycin-A and PPI, inhibitors of src-like protein tyrosine kinases, and genistein, a general tyrosine kinase inhibitor, inhibited p85 tyrosine phosphorylation and induced cell death in the sublines. PD98059, an inhibitor of Mek, inhibited cell growth of the sublines, but not that of the parental cells. It was concluded that tyrosine phosphorylation of p85 is associated with highly proliferative tumoral phenotypes, at least in T cell leukemias, independent of the phosphatidylinositol 3-kinase activity of the catalytic subunit.  相似文献   

9.
We examined therole of epidermal growth factor (EGF) receptor (EGFR) tyrosine kinaseactivation in G protein-coupled receptor (GPCR) agonist-inducedmitogenesis in Swiss 3T3 and Rat-1 cells. Addition of EGFR tyrosinekinase inhibitors (e.g., tyrphostin AG-1478) abrogated bombesin-inducedextracellular signal-regulated kinase (ERK) activation in Rat-1 cellsbut not in Swiss 3T3 cells, indicating the importance of cell contextin determining the role of EGFR in ERK activation. In strikingcontrast, treatment with tyrphostin AG-1478 markedly (~70%)inhibited DNA synthesis induced by bombesin in both Swiss 3T3 and Rat-1cells. Similar inhibition of bombesin-induced DNA synthesis in Swiss3T3 cells was obtained using four structurally different inhibitors ofEGFR tyrosine kinase. Furthermore, kinetic analysis indicates that EGFRfunction is necessary for bombesin-induced mitogenesis in mid-lateG1 in both Swiss 3T3 and Rat-1 cells. Our results indicatethat EGFR kinase activity is necessary in mid-late G1 forpromoting the accumulation of cyclins D1 and E and implicate EGFRfunction in the coupling of GPCR signaling to the activation of thecell cycle.

  相似文献   

10.
The formation of a functional bipolar mitotic spindle is essential for genetic integrity. In human cells, the microtubule polymerase XMAP215/ch-Tog ensures spindle bipolarity by counteracting the activity of the microtubule-depolymerizing kinesin XKCM1/MCAK. Their antagonistic effects on microtubule polymerization confer dynamic instability on microtubules assembled in cell-free systems. It is, however, unclear if a similar interplay governs microtubule behavior in mammalian cells in vivo. Using real-time analysis of spindle assembly, we found that ch-Tog is required to produce or maintain long centrosomal microtubules after nuclear-envelope breakdown. In the absence of ch-Tog, microtubule assembly at centrosomes was impaired and microtubules were nondynamic. Interkinetochore distances and the lengths of kinetochore fibers were also reduced in these cells. Codepleting MCAK with ch-Tog improved kinetochore fiber length and interkinetochore separation but, surprisingly, did not rescue centrosomal microtubule assembly and microtubule dynamics. Our data therefore suggest that ch-Tog has at least two distinct roles in spindle formation. First, it protects kinetochore microtubules from depolymerization by MCAK. Second, ch-Tog plays an essential role in centrosomal microtubule assembly, a function independent of MCAK activity. Thus, the notion that the antagonistic activities of MCAK and ch-Tog determine overall microtubule stability is too simplistic to apply to human cells.  相似文献   

11.
The cytoplasmic localized Janus tyrosine kinase 3 (Jak3) is activated by multiple cytokines, including IL-2, IL-4, and IL-7, through engagement of the IL-2R common gamma-chain. Genetic inactivation of Jak3 is manifested as SCID in humans and mice. These findings have suggested that Jak3 represents a pharmacological target to control certain lymphoid-derived diseases. Using the rat T cell line Nb2-11c, we document that tyrphostin AG-490 blocked in vitro IL-2-induced cell proliferation (IC(50) approximately 20 microM), Jak3 autophosphorylation, and activation of its key substrates, Stat5a and Stat5b, as measured by tyrosine/serine phosphorylation analysis and DNA-binding experiments. To test the notion that inhibition of Jak3 provides immunosuppressive potential, a 7-day course of i.v. therapy with 5-20 mg/kg AG-490 was used to inhibit rejection of heterotopically transplanted Lewis (RT1(l)) heart allografts in ACI (RT1(a)) recipients. In this study, we report that AG-490 significantly prolonged allograft survival, but also acted synergistically when used in combination with the signal 1 inhibitor cyclosporin A, but not the signal 3 inhibitor, rapamycin. Finally, AG-490 treatment reduced graft infiltration of mononuclear cells and Stat5a/b DNA binding of ex vivo IL-2-stimulated graft infiltrating of mononuclear cells, but failed to affect IL2R alpha expression, as judged by RNase protection assays. Thus, inhibition of Jak3 prolongs allograft survival and also potentiates the immunosuppressive effects of cyclosporin A, but not rapamycin.  相似文献   

12.
Microtubule depolymerization has multiple consequences that include actin stress fiber and focal adhesion assembly, increased tyrosine phosphorylation and DNA synthesis. Similar effects induced by serum, or agents such as lysophosphatidic acid, have previously been shown to be mediated by the GTP-binding protein Rho. We have investigated whether the effects of microtubule depolymerization are similarly mediated by Rho and show that they are blocked by the specific Rho inhibitor, C3 transferase. Because microtubule depolymerization induces these effects in quiescent cells, in which Rho is largely inactive, we conclude that microtubule depolymerization leads to activation of Rho. The activation of Rho in response to microtubule depolymerization and the consequent stimulation of contractility suggest a mechanism by which microtubules may regulate microfilament function in various motile phenomena. These range from growth cone extension to the development of the contractile ring during cytokinesis, in which there are interactions between the microtubule and microfilament systems.  相似文献   

13.
We have characterized the effects of vinblastine on the dynamic instability behavior of individual microtubules in living BS-C-1 cells microinjected with rhodamine-labeled tubulin and have found that at low concentrations (3-64 nM), vinblastine potently suppresses dynamic instability without causing net microtubule depolymerization. Vinblastine suppressed the rates of microtubule growth and shortening, and decreased the frequency of transitions from growth or pause to shortening, also called catastrophe. In vinblastine-treated cells, both the average duration of a pause (a state of attenuated dynamics where neither growth nor shortening could be detected) and the percentage of total time spent in pause were significantly increased. Vinblastine potently decreased dynamicity, a measure of the overall dynamic activity of microtubules, reducing this parameter by 75% at 32 nM. The present work, consistent with earlier in vitro studies, demonstrates that vinblastine kinetically caps the ends of microtubules in living cells and supports the hypothesis that the potent chemotherapeutic action of vinblastine as an antitumor drug is suppression of mitotic spindle microtubule dynamics. Further, the results indicate that molecules that bind to microtubule ends can regulate microtubule dynamic behavior in living cells and suggest that endogenous regulators of microtubule dynamics that work by similar mechanisms may exist in living cells.  相似文献   

14.
Auxin controls the orientation of cortical microtubules in maize coleoptile segments. We used tyrosinylated alpha-tubulin as a marker to assess auxin-dependent changes in microtubule turnover. Auxin-induced tyrosinylated alpha-tubulin, correlated with an elevated sensitivity of growth to antimicrotubular compounds such as ethyl-N-phenylcarbamate (EPC). We determined the affinity of alpha-tubulin to EPC and found that it was dramatically increased when the tubulin was de-tyrosinylated. By proteolytic cleavage of the carboxy terminal tyrosine, such an increased affinity could be induced in vitro. Thus, the auxin-induced sensitivity of growth to EPC is not caused by an increased affinity for this inhibitor, but caused by a reduced microtubule turnover. Double visualization assays revealed that the transverse microtubules induced by auxin consist predominantly of tyrosinylated alpha-tubulin, whereas the longitudinal microtubules induced by auxin depletion contain de-tyrosinylated alpha-tubulin. The results are discussed in terms of direction-dependent differences in the lifetime of microtubules.  相似文献   

15.
The major transforming activity of polyomavirus, middle T antigen, targets several cellular regulatory effectors including protein phosphatase 2A and src tyrosine kinases. Although transformed cells exhibit profound morphological changes, little is known about how middle T antigen-induced changes in the cellular regulatory environment specifically affect the cytoskeleton. We have investigated these changes in 10T(1/2) mouse fibroblasts transformed with polyoma middle T antigen. Immunofluorescence microscopy revealed that expression of middle T antigen (Pym T cells) depleted the stable (acetylated) microtubule array and increased the sensitivity of dynamic (tyrosinated) microtubules to nocodazole-induced disassembly. These effects were associated with a modest but statistically significant (P相似文献   

16.
The C-terminus of the alpha-chain of tubulin is subject to reversible incorporation of tyrosine by tubulin tyrosine ligase and removal by tubulin carboxypeptidase. Thus, microtubules rich in either tyrosinated or detyrosinated tubulin can coexist in the cell. Substitution of the terminal tyrosine by 3-nitrotyrosine has been claimed to cause microtubule dysfunction and consequent injury of epithelial lung carcinoma A549 cells. Nitrotyrosine is formed in cells by nitration of tyrosine by nitric oxide-derived species. We studied properties of tubulin modified by in vitro nitrotyrosination at the C-terminus of the alpha-subunit, and the consequences for cell functioning. Nitrotyrosinated tubulin was a good substrate of tubulin carboxypeptidase, and showed a similar capability to assemble into microtubules in vitro to that of tyrosinated tubulin. Tubulin of C6 cells cultured in F12K medium in the presence of 500 micro m nitrotyrosine became fully nitrotyrosinated. This nitrotyrosination was shown to be reversible. No changes in morphology, proliferation, or viability were observed during cycles of nitrotyrosination, denitrotyrosination, and re-nitrotyrosination. Similar results were obtained with CHO, COS-7, HeLa, NIH-3T3, NIH-3T3(TTL-), and A549 cells. C6 and A549 cells were subjected to several passages during 45 days or more in the continuous presence of 500 micro m nitrotyrosine without noticeable alteration of morphology, viability, or proliferation. The microtubular networks visualized by immunofluorescence with antibodies to nitrotyrosinated and total tubulin were identical. Furthermore, nitrotyrosination of tubulin in COS cells did not alter the association of tubulin carboxypeptidase with microtubules. Our results demonstrate that substitution of C-terminal tyrosine by 3-nitrotyrosine has no detrimental effect on dividing cells.  相似文献   

17.
Assembly and turnover of detyrosinated tubulin in vivo   总被引:15,自引:9,他引:6       下载免费PDF全文
Detyrosinated (Glu) tubulin was prepared from porcine brain and microinjected into human fibroblasts and Chinese hamster ovary (CHO) cells. Glu tubulin assembled onto the ends of preexisting microtubules and directly from the centrosome within minutes of its microinjection. Incorporation into the cytoskeleton continued until almost all of the microtubules were copolymers of Glu and tyrosinated (Tyr) tubulin. However, further incubation resulted in the progressive and ultimately complete loss of Glu-staining microtubules. Glu tubulin injected into nocodazole-treated cells was converted to Tyr tubulin by a putative tubulin/tyrosine ligase activity. The observed decrease in staining with the Glu antibody over time was used to analyze microtubule turnover in microinjected cells. The mode of Glu disappearance was analyzed quantitatively by tabulating the number of Glu-Tyr copolymers and Tyr-only microtubules at fixed times after injection. The proportion of Glu-Tyr copolymers decreased progressively over time and no segmentally labeled microtubules were observed, indicating that microtubules turn over rapidly and individually. Our results are consistent with a closely regulated tyrosination-detyrosination cycle in living cells and suggest that microtubule turnover is mediated by dynamic instability.  相似文献   

18.
Microtubules are essential for guard-cell function in Vicia and Arabidopsis   总被引:1,自引:0,他引:1  
Radially arranged cortical microtubules are a prominent feature of guard cells. Guard cells expressing GFP-tubulin showed consistent changes in the appearance of microtubules when stomata opened or closed. Guard cells showed fewer microtubule structures as stomata closed, whether induced by transfer to darkness, ABA, hydrogen peroxide, or sodium hydrogen carbonate. Guard cells kept in the dark (closed stomata) showed increases in microtubule structures and stomatal aperture on light treatment. GFP-EB1, marking microtubule growing plus ends, showed no change in number of plus ends or velocity of assembly on stomatal closure. Since the number of growing plus ends and the rate of plus-end growth did not change when microtubule structure numbers declined, microtubule instability and/or rearrangement must be responsible for the apparent loss of microtubules. Guard cells with closed stomata showed more cytosolic GFP-fluorescence than those with open stomata as cortical microtubules became disassembled, although with a large net loss in total fluorescence. Microtubule-targeted drugs blocked guard-cell function in Vicia and Arabidopsis. Oryzalin disrupted guard-cell microtubules and prevented stomatal opening and taxol stabilized guard-cell microtubules and delayed stomatal closure. Gas exchange measurements indicated that the transgenes for fluorescent-labeled proteins did not disrupt normal stomatal function. These dynamic changes in guard-cell microtubules combined with our inhibitor studies provide evidence for an active role of microtubules in guard-cell function.  相似文献   

19.
Internalisation of the human pathogen Yersinia pseudotuberculosis via interaction of bacterial invasin with host beta1 integrins depends on the actin cytoskeleton and involves Src family kinases, focal adhesion kinase, p130Crk-associated substrate, proline-rich tyrosine kinase 2, Rac, Arp 2/3 complex and WASP family members. We show here that Rho GTPases are regulated by the microtubule system during bacterial uptake. Interfering with microtubule organisation using nocodazole or paclitaxel suppressed uptake by HeLa cells. The nocodazole effect on microtubule depolymerisation was partially inhibited through overexpression of Rac, Cdc42, RhoG or RhoA and completely prevented by expression of Vav2. This suggests that microtubules influence Rho GTPases during invasin-mediated phagocytosis and in the absence of functional microtubules Vav2 can mimic their effect on one, or more, of the Rho family GTPases. Lastly, overexpression of p50 dynamitin partially inhibited bacterial uptake and this effect was also blocked by co-expression of Vav2, thus further implicating this guanine nucleotide exchange factor in activating Rho GTPases for internalisation during loss of microtubule function.  相似文献   

20.
The cytoskeleton is involved in numerous cellular processes such as migration, division, and contraction and provides the tracks for transport driven by molecular motors. Therefore, it is very important to quantify the mechanical behavior of the cytoskeletal filaments to get a better insight into cell mechanics and organization. It has been demonstrated that relevant mechanical properties of microtubules can be extracted from the analysis of their motion and shape fluctuations. However, tracking individual filaments in living cells is extremely complex due, for example, to the high and heterogeneous background. We introduce a believed new tracking algorithm that allows recovering the coordinates of fluorescent microtubules with ∼9 nm precision in in vitro conditions. To illustrate potential applications of this algorithm, we studied the curvature distributions of fluorescent microtubules in living cells. By performing a Fourier analysis of the microtubule shapes, we found that the curvatures followed a thermal-like distribution as previously reported with an effective persistence length of ∼20 μm, a value significantly smaller than that measured in vitro. We also verified that the microtubule-associated protein XTP or the depolymerization of the actin network do not affect this value; however, the disruption of intermediate filaments decreased the persistence length. Also, we recovered trajectories of microtubule segments in actin or intermediate filament-depleted cells, and observed a significant increase of their motion with respect to untreated cells showing that these filaments contribute to the overall organization of the microtubule network. Moreover, the analysis of trajectories of microtubule segments in untreated cells showed that these filaments presented a slower but more directional motion in the cortex with respect to the perinuclear region, and suggests that the tracking routine would allow mapping the microtubule dynamical organization in cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号