首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
林昊 《生物信息学》2009,7(4):252-254
由于蛋白质亚细胞位置与其一级序列存在很强的相关性,利用多样性增量来描述蛋白质之间氨基酸组分和二肽组分的相似程度,采用修正的马氏判别式(这里称为IDQD方法)对分枝杆菌蛋白质的亚细胞位置进行了预测。利用Jackknife检验对不同序列相似度下的蛋白质数据集进行了预测研究,结果显示,当数据集的序列相似度小于等于70%时,算法的预测精度稳定在75%左右。在对整体852条蛋白质的预测成功率达到87.7%,这一结果优于已有算法的预测精度,说明IDQD是一种有效的分枝杆菌蛋白质亚细胞预测方法。  相似文献   

2.
The location of a protein in a cell is closely correlated with its biological function. Based on the concept that the protein subcellular location is mainly determined by its amino acid and pseudo amino acid composition (PseAA), a new algorithm of increment of diversity combined with support vector machine is proposed to predict the protein subcellular location. The subcellular locations of plant and non-plant proteins are investigated by our method. The overall prediction accuracies in jackknife test are 88.3% for the eukaryotic plant proteins and 92.4% for the eukaryotic non-plant proteins, respectively. In order to estimate the effect of the sequence identity on predictive result, the proteins with sequence identity 相似文献   

3.
Zp curve, a three-dimensional space curve representation of protein primary sequence based on the hydrophobicity and charged properties of amino acid residues along the primary sequence is suggested. Relying on the Zp parameters extracted from the three components of the Zp curve and the Bayes discriminant algorithm, the subcellular locations of prokaryotic proteins were predicted. Consequently, an accuracy of 81.5% in the cross-validation test has been achieved using 13 parameters extracted from the curve for the database of 997 prokaryotic proteins. The result is slightly better than that of using the neural network method (80.9%) based on the amino acid composition for the same database. By jointing the amino acid composition and the Zp parameters, the overall predictive accuracy 89.6% can be achieved. It is about 3% higher than that of the Bayes discriminant algorithm based merely on the amino acid composition for the same database. The prediction is also performed with a larger dataset derived from the version 39 SWISS-PROT databank and two datasets with different sequence similarity. Even for the dataset of non-sequence similarity, the improvement can be of 4.4% in the cross-validation test. The results indicate that the Zp parameters are effective in representing the information within a protein primary sequence. The method of extracting information from the primary structure may be useful for other areas of protein studies.  相似文献   

4.
Given a raw protein sequence, knowing its subcellular location is an important step toward understanding its function and designing further experiments. A novel method is proposed for the prediction of protein subcellular locations from sequences. For four categories of eukaryotic proteins the overall predictive accuracy is 82.0%, 2.6% higher than that by using SVM approach. For three subcellular locations of prokaryotic proteins, an overall accuracy of 89.9% is obtained. In accordance with the architecture of cells, a hierarchical prediction approach is designed. Based on amino acid composition extracellular proteins and intracellular proteins can be identified with accuracy of 97%.  相似文献   

5.
Gao QB  Wang ZZ  Yan C  Du YH 《FEBS letters》2005,579(16):3444-3448
To understand the structure and function of a protein, an important task is to know where it occurs in the cell. Thus, a computational method for properly predicting the subcellular location of proteins would be significant in interpreting the original data produced by the large-scale genome sequencing projects. The present work tries to explore an effective method for extracting features from protein primary sequence and find a novel measurement of similarity among proteins for classifying a protein to its proper subcellular location. We considered four locations in eukaryotic cells and three locations in prokaryotic cells, which have been investigated by several groups in the past. A combined feature of primary sequence defined as a 430D (dimensional) vector was utilized to represent a protein, including 20 amino acid compositions, 400 dipeptide compositions and 10 physicochemical properties. To evaluate the prediction performance of this encoding scheme, a jackknife test based on nearest neighbor algorithm was employed. The prediction accuracies for cytoplasmic, extracellular, mitochondrial, and nuclear proteins in the former dataset were 86.3%, 89.2%, 73.5% and 89.4%, respectively, and the total prediction accuracy reached 86.3%. As for the prediction accuracies of cytoplasmic, extracellular, and periplasmic proteins in the latter dataset, the prediction accuracies were 97.4%, 86.0%, and 79.7, respectively, and the total prediction accuracy of 92.5% was achieved. The results indicate that this method outperforms some existing approaches based on amino acid composition or amino acid composition and dipeptide composition.  相似文献   

6.
7.
根据凋亡蛋白的亚细胞位置主要决定于它的氨基酸序列这一观点,基于局部氨基酸序列的n肽组分和序列的亲疏水性分布信息,采用离散增量结合支持向量机(ID_SVM)算法,对六类细胞凋亡蛋白的亚细胞位置进行预测。结果表明,在Re-substitution检验和Jackknife检验下,ID_SVM算法的总体预测成功率分别达到了94.6%和84.2%;在5-fold检验和10-fold检验下,其总体预测成功率也都达到了83%以上。通过比较ID和ID_SVM两种方法的预测能力发现,结合了支持向量机的离散增量算法能够改进预测成功率,结果表明ID_SVM是预测凋亡蛋白亚细胞位置的一种很有效的方法。  相似文献   

8.
Based on Bayesian Networks, methods were created that address protein sequence-based bacterial subcellular location prediction. Distinct predictive algorithms for the eight bacterial subcellular locations were created. Several variant methods were explored. These variations included differences in the number of residues considered within the query sequence - which ranged from the N-terminal 10 residues to the whole sequence - and residue representation - which took the form of amino acid composition, percentage amino acid composition, or normalised amino acid composition. The accuracies of the best performing networks were then compared to PSORTB. All individual location methods outperform PSORTB except for the Gram+ cytoplasmic protein predictor, for which accuracies were essentially equal, and for outer membrane protein prediction, where PSORTB outperforms the binary predictor. The method described here is an important new approach to method development for subcellular location prediction. It is also a new, potentially valuable tool for candidate subunit vaccine selection.  相似文献   

9.
As the number of complete genomes rapidly increases, accurate methods to automatically predict the subcellular location of proteins are increasingly useful to help their functional annotation. In order to improve the predictive accuracy of the many prediction methods developed to date, a novel representation of protein sequences is proposed. This representation involves local compositions of amino acids and twin amino acids, and local frequencies of distance between successive (basic, hydrophobic, and other) amino acids. For calculating the local features, each sequence is split into three parts: N-terminal, middle, and C-terminal. The N-terminal part is further divided into four regions to consider ambiguity in the length and position of signal sequences. We tested this representation with support vector machines on two data sets extracted from the SWISS-PROT database. Through fivefold cross-validation tests, overall accuracies of more than 87% and 91% were obtained for eukaryotic and prokaryotic proteins, respectively. It is concluded that considering the respective features in the N-terminal, middle, and C-terminal parts is helpful to predict the subcellular location.  相似文献   

10.
Feng ZP 《In silico biology》2002,2(3):291-303
The present paper overviews the issue on predicting the subcellular location of a protein. Five measures of extracting information from the global sequence based on the Bayes discriminant algorithm are reviewed. 1) The auto-correlation functions of amino acid indices along the sequence; 2) The quasi-sequence-order approach; 3) the pseudo-amino acid composition; 4) the unified attribute vector in Hilbert space, 5) Zp parameters extracted from the Zp curve. The actual performance of the predictive accuracy is closely related to the degree of similarity between the training and testing sets or to the average degree of pairwise similarity in dataset in a cross-validated study. Many scholars considered that the current higher predictive accuracy still cannot ensure that some available algorithms are effective in practice prediction for the higher pairwise sequence identity of the datasets, but some of them declared that construction of the dataset used for developing software should base on the reality determined by the Mother Nature that some subcellular locations really contain only a minor number of proteins of which some even have a high percentage of sequence similarity. Owing to the complexity of the problem itself, some very sophisticated and special programs are needed for both constructing dataset and improving the prediction. Anyhow finding the target information in mature protein sequence and properly cooperating it with sorting signals in prediction may further improve the overall predictive accuracy and make the prediction into practice.  相似文献   

11.
Prediction of the subcellular location of apoptosis proteins   总被引:4,自引:0,他引:4  
Apoptosis proteins have a central role in the development and the homeostasis of an organism. These proteins are very important for understanding the mechanism of programmed cell death. The function of an apoptosis protein is closely related to its subcellular location. Based on the concept that the subcellular location of an apoptosis protein is mainly determined by its amino acid sequence, a new algorithm for prediction of the subcellular location of an apoptosis protein is proposed. By using of a distinctive set of information parameters derived from the primary sequence of 317 apoptosis proteins, the increment of diversity (ID), the sole prediction parameter, is calculated. The higher predictive success rates than the previous other algorithms is obtained by the jackknife tests using the expanded dataset. Our prediction results show that the local compositions of twin amino acids and hydropathy distribution are very useful to predict subcellular location of protein.  相似文献   

12.
Apoptosis proteins play an essential role in regulating a balance between cell proliferation and death. The successful prediction of subcellular localization of apoptosis proteins directly from primary sequence is much benefited to understand programmed cell death and drug discovery. In this paper, by use of Chou’s pseudo amino acid composition (PseAAC), a total of 317 apoptosis proteins are predicted by support vector machine (SVM). The jackknife cross-validation is applied to test predictive capability of proposed method. The predictive results show that overall prediction accuracy is 91.1% which is higher than previous methods. Furthermore, another dataset containing 98 apoptosis proteins is examined by proposed method. The overall predicted successful rate is 92.9%.  相似文献   

13.
蛋白质的亚细胞定位是进行蛋白质功能研究的重要信息.蛋白质合成后被转运到特定的细胞器中,只有转运到正确的部位才能参与细胞的各种生命活动,有效地发挥功能.尝试了将保守序列及蛋白质相互作用数据的编码信息结合传统的氨基酸组成编码,采用支持向量机进行蛋白质亚细胞定位预测,在真核生物中5轮交叉验证精度达到91.8%,得到了显著的提高.  相似文献   

14.
基于氨基酸组成分布的蛋白质同源寡聚体分类研究   总被引:7,自引:0,他引:7  
基于一种新的特征提取方法——氨基酸组成分布,使用支持向量机作为成员分类器,采用“一对一”的多类分类策略,从蛋白质一级序列对四类同源寡聚体进行分类研究。结果表明,在10-CV检验下,基于氨基酸组成分布,其总分类精度和精度指数分别达到了86.22%和67.12%,比基于氨基酸组成成分的传统特征提取方法分别提高了5.74和10.03个百分点,比二肽组成成分特征提取方法分别提高了3.12和5.63个百分点,说明氨基酸组成分布对于蛋白质同源寡聚体分类是一种非常有效的特征提取方法;将氨基酸组成分布和蛋白质序列长度特征组合,其总分类精度和精度指数分别达到了86.35%和67.23%,说明蛋白质序列长度特征含有一定的空间结构信息。  相似文献   

15.
Subcellular location of protein is constructive information in determining its function, screening for drug candidates, vaccine design, annotation of gene products and in selecting relevant proteins for further studies. Computational prediction of subcellular localization deals with predicting the location of a protein from its amino acid sequence. For a computational localization prediction method to be more accurate, it should exploit all possible relevant biological features that contribute to the subcellular localization. In this work, we extracted the biological features from the full length protein sequence to incorporate more biological information. A new biological feature, distribution of atomic composition is effectively used with, multiple physiochemical properties, amino acid composition, three part amino acid composition, and sequence similarity for predicting the subcellular location of the protein. Support Vector Machines are designed for four modules and prediction is made by a weighted voting system. Our system makes prediction with an accuracy of 100, 82.47, 88.81 for self-consistency test, jackknife test and independent data test respectively. Our results provide evidence that the prediction based on the biological features derived from the full length amino acid sequence gives better accuracy than those derived from N-terminal alone. Considering the features as a distribution within the entire sequence will bring out underlying property distribution to a greater detail to enhance the prediction accuracy.  相似文献   

16.
An algorithm of predicting the subcellular location of prokaryotic proteins is proposed in this paper. In addition to the amino acid composition, the auto-correlation functions based on the hydrophobicity profile of amino acids along the primary sequence of the query protein have been used. Consequently, the best predictive accuracy to date has been achieved. Of the 997 prokaryotic proteins in the database used here, 688 cytoplasmic, 107 extracellular and 202 periplasmic proteins, the overall predictive accuracies are as high as 97.7 and 90.4% in the resubstitution and jackknife tests, respectively, using the hydrophilicity value of Hopp and Woods. The underlying mechanism of the improvement is also discussed. This work would be useful for a systematic analysis of the great amounts of prokaryotic genome sequences. The computer programs used in this paper are available on request via email.  相似文献   

17.
Lee S  Lee BC  Kim D 《Proteins》2006,62(4):1107-1114
Knowing protein structure and inferring its function from the structure are one of the main issues of computational structural biology, and often the first step is studying protein secondary structure. There have been many attempts to predict protein secondary structure contents. Previous attempts assumed that the content of protein secondary structure can be predicted successfully using the information on the amino acid composition of a protein. Recent methods achieved remarkable prediction accuracy by using the expanded composition information. The overall average error of the most successful method is 3.4%. Here, we demonstrate that even if we only use the simple amino acid composition information alone, it is possible to improve the prediction accuracy significantly if the evolutionary information is included. The idea is motivated by the observation that evolutionarily related proteins share the similar structure. After calculating the homolog-averaged amino acid composition of a protein, which can be easily obtained from the multiple sequence alignment by running PSI-BLAST, those 20 numbers are learned by a multiple linear regression, an artificial neural network and a support vector regression. The overall average error of method by a support vector regression is 3.3%. It is remarkable that we obtain the comparable accuracy without utilizing the expanded composition information such as pair-coupled amino acid composition. This work again demonstrates that the amino acid composition is a fundamental characteristic of a protein. It is anticipated that our novel idea can be applied to many areas of protein bioinformatics where the amino acid composition information is utilized, such as subcellular localization prediction, enzyme subclass prediction, domain boundary prediction, signal sequence prediction, and prediction of unfolded segment in a protein sequence, to name a few.  相似文献   

18.
MOTIVATION: The subcellular location of a protein is closely correlated to its function. Thus, computational prediction of subcellular locations from the amino acid sequence information would help annotation and functional prediction of protein coding genes in complete genomes. We have developed a method based on support vector machines (SVMs). RESULTS: We considered 12 subcellular locations in eukaryotic cells: chloroplast, cytoplasm, cytoskeleton, endoplasmic reticulum, extracellular medium, Golgi apparatus, lysosome, mitochondrion, nucleus, peroxisome, plasma membrane, and vacuole. We constructed a data set of proteins with known locations from the SWISS-PROT database. A set of SVMs was trained to predict the subcellular location of a given protein based on its amino acid, amino acid pair, and gapped amino acid pair compositions. The predictors based on these different compositions were then combined using a voting scheme. Results obtained through 5-fold cross-validation tests showed an improvement in prediction accuracy over the algorithm based on the amino acid composition only. This prediction method is available via the Internet.  相似文献   

19.
Tantoso E  Li KB 《Amino acids》2008,35(2):345-353
Identifying a protein's subcellular localization is an important step to understand its function. However, the involved experimental work is usually laborious, time consuming and costly. Computational prediction hence becomes valuable to reduce the inefficiency. Here we provide a method to predict protein subcellular localization by using amino acid composition and physicochemical properties. The method concatenates the information extracted from a protein's N-terminal, middle and full sequence. Each part is represented by amino acid composition, weighted amino acid composition, five-level grouping composition and five-level dipeptide composition. We divided our dataset into training and testing set. The training set is used to determine the best performing amino acid index by using five-fold cross validation, whereas the testing set acts as the independent dataset to evaluate the performance of our model. With the novel representation method, we achieve an accuracy of approximately 75% on independent dataset. We conclude that this new representation indeed performs well and is able to extract the protein sequence information. We have developed a web server for predicting protein subcellular localization. The web server is available at http://aaindexloc.bii.a-star.edu.sg .  相似文献   

20.
利用分组重量编码预测细胞凋亡蛋白的亚细胞定位   总被引:2,自引:1,他引:1  
从氨基酸的物化特性出发,利用物理学中“粗粒化”和“分组”的思想,提出了一种新的蛋白质序列特征提取方法——分组重量编码方法。采用组分耦合算法作为分类器,从蛋白质一级序列出发对细胞凋亡蛋白的亚细胞定位进行研究。针对Zhou和Doctor使用的数据集,Re—substitution和Jackknife检验总体预测精度分别为98、O%和85.7%,比基于氨基酸组成和组分耦合算法的总体预测精度提高了7.2%和13.2%;针对陈颖丽和李前忠使用的数据集,Re—substitution和Jackknife检验总体预测精度分别为94.0%和80、1%,比基于二肽组成和离散增量算法的总体预测精度提高了5.9%和2、0%。针对我们自己整理的最新数据集,通过Re—substitution和Jackknife检验,总体预测精度分别为97.33%和75、11%。实验结果表明蛋白质序列的分组重量编码对于细胞凋亡蛋白的定位研究是一种有效的特征提取方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号