首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
In skeletal muscle, excitation-contraction coupling involves the activation of dihydropyridine receptors (DHPR) and type-1 ryanodine receptors (RyR1) to produce depolarization-dependent sarcoplasmic reticulum Ca2+ release via orthograde signaling. Another form of DHPR-RyR1 communication is retrograde signaling, in which RyRs modulate the gating of DHPR. DP4 (domain peptide 4), is a peptide corresponding to residues Leu2442-Pro2477 of the central domain of the RyR1 that produces RyR1 channel destabilization. Here we explore the effects of DP4 on orthograde excitation-contraction coupling and retrograde RyR1-DHPR signaling in isolated murine muscle fibers. Intracellular dialysis of DP4 increased the peak amplitude of Ca2+ release during step depolarizations by 64% without affecting its voltage-dependence or kinetics, and also caused a similar increase in Ca2+ release during an action potential waveform. DP4 did not modify either the amplitude or the voltage-dependence of the intramembrane charge movement. However, DP4 augmented DHPR Ca2+ current density without affecting its voltage-dependence. Our results demonstrate that the conformational changes induced by DP4 regulate both orthograde E-C coupling and retrograde RyR1-DHPR signaling.  相似文献   

2.
Excitation-contraction (e-c) coupling in muscle relies on the interaction between dihydropyridine receptors (DHPRs) and RyRs within Ca(2+) release units (CRUs). In skeletal muscle this interaction is bidirectional: alpha(1S)DHPRs trigger RyR1 (the skeletal form of the ryanodine receptor) to release Ca(2+) in the absence of Ca(2+) permeation through the DHPR, and RyR1s, in turn, affect the open probability of alpha(1S)DHPRs. alpha(1S)DHPR and RyR1 are linked to each other, organizing alpha(1S)-DHPRs into groups of four, or tetrads. In cardiac muscle, however, alpha(1C)DHPR Ca(2+) current is important for activation of RyR2 (the cardiac isoform of the ryanodine receptor) and alpha(1C)-DHPRs are not organized into tetrads. We expressed RyR1, RyR2, and four different RyR1/RyR2 chimeras (R4: Sk1635-3720, R9: Sk2659-3720, R10: Sk1635-2559, R16: Sk1837-2154) in 1B5 dyspedic myotubes to test their ability to restore skeletal-type e-c coupling and DHPR tetrads. The rank-order for restoring skeletal e-c coupling, indicated by Ca(2+) transients in the absence of extracellular Ca(2+), is RyR1 > R4 > R10 > R16 > R9 > RyR2. The rank-order for restoration of DHPR tetrads is RyR1 > R4 = R9 > R10 = R16 > RyR2. Because the skeletal segment in R9 does not overlap with that in either R10 or R16, our results indicate that multiple regions of RyR1 may interact with alpha(1S)DHPRs and that the regions responsible for tetrad formation do not correspond exactly to the ones required for functional coupling.  相似文献   

3.
Bi-directional signaling between ryanodine receptor type 1 (RyR1) and dihydropyridine receptor (DHPR) in skeletal muscle serves as a prominent example of conformational coupling. Evidence for a physiological mechanism that upon depolarization of myotubes tightly couples three calcium channels, DHPR, RyR1, and a Ca(2+) entry channel with SOCC-like properties, has recently been presented. This form of conformational coupling, termed excitation-coupled calcium entry (ECCE) is triggered by the alpha(1s)-DHPR voltage sensor and is highly dependent on RyR1 conformation. In this report, we substitute RyR1 cysteines 4958 or 4961 within the TXCFICG motif, common to all ER/SR Ca(2+) channels, with serine. When expressed in skeletal myotubes, C4958S- and C4961S-RyR1 properly target and restore L-type current via the DHPR. However, these mutants do not respond to RyR activators and do not support skeletal type EC coupling. Nonetheless, depolarization of cells expressing C4958S- or C4961S-RyR1 triggers calcium entry via ECCE that resembles that for wild-type RyR1, except for substantially slowed inactivation and deactivation kinetics. ECCE in these cells is completely independent of store depletion, displays a cation selectivity of Ca(2+)>Sr(2+) approximately Ba(2+), and is fully inhibited by SKF-96365 or 2-APB. Mutation of other non-CXXC motif cysteines within the RyR1 transmembrane assembly (C3635S, C4876S, and C4882S) did not replicate the phenotype observed with C4958S- and C4961S-RyR1. This study demonstrates the essential role of Cys(4958) and Cys(4961) within an invariant CXXC motif for stabilizing conformations of RyR1 that influence both its function as a release channel and its interaction with ECCE channels.  相似文献   

4.
In skeletal muscle, excitation-contraction (EC) coupling and retrograde signaling are thought to result from direct interactions between the ryanodine receptor (RyR1) and the alpha(1) subunit of the dihydropyridine receptor (alpha(1S)). Previous work has shown that the s53 region of alpha(1S) (residues 720-765 in the II-III loop) and regions R10 (1635-2636) and R9 (2659-3720) of RyR1 are involved in this signaling. Using the yeast two-hybrid system, we here report an interaction between s53 and the sR16 region of RyR1 (1837-2168, within R10), whereas no interaction was seen using upstream residues of the alpha(1S) II-III loop (s31, 666-709). The specificity of the s53-sR16 interaction was tested by using fragments of the cardiac RyR (RyR2) and DHPR (alpha(1C)) that correspond to sR16 and s53, respectively. No interaction was observed for sR16 x c53 (alpha(1C) 850-897), but weak interaction was occasionally observed for s53 x cR16 (RyR2 1817-2142). To test the functional significance of the s53 x sR16 interaction, we expressed in dyspedic myotubes a chimeric RyR (chimeraR16) in which sR16 was substituted for the corresponding region of RyR2. ChimeraR16 was found to mediate weak skeletal-type EC coupling. To test the necessity of sR16 sequence for coupling, we used "chimeraR16-rev," in which sR16 and a small upstream region of RyR1 were replaced by RyR2 sequence. ChimeraR16-rev did not differ from RyR1 in its ability to mediate EC coupling. Thus, interaction between residues 720-765 of alpha(1S) and residues 1837-2168 of RyR1 appears to contribute to but is not essential for EC coupling in skeletal muscle.  相似文献   

5.
《The Journal of cell biology》1993,123(5):1161-1174
Excitation-contraction (E-C) coupling is thought to involve close interactions between the calcium release channel (ryanodine receptor; RyR) of the sarcoplasmic reticulum (SR) and the dihydropyridine receptor (DHPR) alpha 1 subunit in the T-tubule membrane. Triadin, a 95- kD protein isolated from heavy SR, binds both the RyR and DHPR and may thus participate in E-C coupling or in interactions responsible for the formation of SR/T-tubule junctions. Immunofluorescence labeling of normal mouse myotubes shows that the RyR and triadin co-aggregate with the DHPR in punctate clusters upon formation of functional junctions. Dysgenic myotubes with a deficiency in the alpha 1 subunit of the DHPR show reduced expression and clustering of RyR and triadin; however, both proteins are still capable of forming clusters and attaining mature cross-striated distributions. Thus, the molecular organization of the RyR and triadin in the terminal cisternae of SR as well as its association with the T-tubules are independent of interactions with the DHPR alpha 1 subunit. Analysis of calcium transients in dysgenic myotubes with fluorescent calcium indicators reveals spontaneous and caffeine-induced calcium release from intracellular stores similar to those of normal muscle; however, depolarization-induced calcium release is absent. Thus, characteristic calcium release properties of the RyR do not require interactions with the DHPR; neither do they require the normal organization of the RyR in the terminal SR cisternae. In hybrids of dysgenic myotubes fused with normal cells, both action potential- induced calcium transients and the normal clustered organization of the RyR are restored in regions expressing the DHPR alpha 1 subunit.  相似文献   

6.
Molecular understanding of the mechanism of excitation-contraction (EC) coupling in skeletal muscle has been made possible by cultured myotube models lacking specific dihydropyridine receptor (DHPR) subunits and ryanodine receptor type 1 (RyR1) isoforms. Transient expression of missing cDNAs in mutant myotubes leads to a rapid recovery, within days, of various Ca2+ current and EC coupling phenotypes. These myotube models have thus permitted structure-function analysis of EC coupling domains present in the DHPR controlling the opening of RyR1. The purpose of this brief review is to highlight advances made by this laboratory towards understanding the contribution of domains present in alpha1S and beta1a subunits of the skeletal DHPR to EC coupling signaling. Our main contention is that domains of the alpha1S II-III loop are necessary but not sufficient to recapitulate skeletal-type EC coupling. Rather, the structural unit that controls the EC coupling signal appears to be the alpha1S/beta1a pair.  相似文献   

7.
The dihydropyridine receptor (DHPR) alpha(1S) II-III loop has been shown to be critical for excitation-contraction (EC) coupling in skeletal muscle, but the importance of other cytoplasmic regions, especially the N-terminus (residues 1-51), remains unclear. In this study, we found that deletion of alpha(1S) residues 2-37 (weakly conserved with N-termini of other L-type Ca(2+) channels) had little effect on the ability of alpha(1S) to serve as a Ca(2+) channel or voltage sensor for EC coupling. Strikingly, deletion of 10 additional residues, which are conserved in L-type channels, resulted in ablation of DHPR function. Specifically, confocal microscopy and measurement of charge movement showed that removal of residues 2-47 resulted in a failure of sarcolemmal insertion. Our results indicate that the weakly conserved, distal alpha(1S) N-terminus is not critical for EC coupling or function as a Ca(2+) channel. However, integrity of the proximal alpha(1S) N-terminus is necessary for sarcolemmal expression of the DHPR.  相似文献   

8.
Excitation-contraction coupling in skeletal muscle involves conformational coupling between the dihydropyridine receptor (DHPR) and the type 1 ryanodine receptor (RyR1) at junctions between the plasma membrane and sarcoplasmic reticulum. In an attempt to find which regions of these proteins are in close proximity to one another, we have constructed a tandem of cyan and yellow fluorescent proteins (CFP and YFP, respectively) linked by a 23-residue spacer, and measured the fluorescence resonance energy transfer (FRET) of the tandem either in free solution or after attachment to sites of the alpha1S and beta1a subunits of the DHPR. For all of the sites examined, attachment of the CFP-YFP tandem did not impair function of the DHPR as a Ca2+ channel or voltage sensor for excitation-contraction coupling. The free tandem displayed a 27.5% FRET efficiency, which decreased significantly after attachment to the DHPR subunits. At several sites examined for both alpha1S (N-terminal, proximal II-III loop of a two fragment construct) and beta1a (C-terminal), the FRET efficiency was similar after expression in either dysgenic (alpha1S-null) or dyspedic (RyR1-null) myotubes. However, compared with dysgenic myotubes, the FRET efficiency in dyspedic myotubes increased from 9.9 to 16.7% for CFP-YFP attached to the N-terminal of beta1a, and from 9.5 to 16.8% for CFP-YFP at the C-terminal of alpha1S. Thus, the tandem reporter suggests that the C terminus of alpha1S and the N terminus of beta1a may be in close proximity to the ryanodine receptor.  相似文献   

9.
A peptide corresponding to residues 681-690 of the II-III loop of the skeletal muscle dihydropyridine receptor alpha(1) subunit (DHPR, alpha(1S)) has been reported to activate the skeletal muscle ryanodine receptor (RyR1) in vitro. Within this region of alpha(1S), a cluster of basic residues, Arg(681)-Lys(685), was previously reported to be indispensable for the activation of RyR1 in microsomal preparations and lipid bilayers. We have used an intact alpha(1S) subunit with scrambled sequence in this region of the II-III loop (alpha(1S)-scr) to test the importance of residues 681-690 and the basic motif for skeletal-type excitation-contraction (EC) coupling and retrograde signaling in vivo. When expressed in dysgenic myotubes (which lack endogenous alpha(1S)), alpha(1S)-scr restored calcium currents that were indistinguishable, in current density and voltage dependence, from those restored by wild-type alpha(1S). The scrambled DHPR also rescued skeletal-type EC coupling, as indicated by electrically evoked contractions in the presence of 0.5 mm Cd(2+) and 0.1 mm La(3+). Furthermore, the release of intracellular Ca(2+), as assayed by the indicator dye, Fluo-3, had similar kinetics and voltage dependence for alpha(1S) and alpha(1S)-scr. These data suggest that residues 681-690 of the alpha(1S) II-III loop are not essential in muscle cells for normal functioning of the DHPR, including skeletal-type EC coupling and retrograde signaling.  相似文献   

10.
Dihydropyridine receptors (DHPRs) and ryanodine receptors (RyRs) interact during EC coupling within calcium release units, CRUs. The location of the two channels and their positioning are related to their role in EC coupling. alphals DHPR and RyR1 of skeletal muscle form interlocked arrays. Groups of four DHPRs (forming a tetrad) are located on alternate RyR1s. This association provides the structural framework for reciprocal signaling between the two channels. RyR3 are present in some skeletal muscles in association with RyR1 and in ratios up to 1:1. RyR3 neither induce formation of tetrads by DHPRs nor sustain EC coupling. RyR3 are located in a parajunctional position, in proximity of the RyR1-DHPR complexes, and they may be indirectly activated by calcium liberated via the RyR1 channels. RyR2 have two locations in cardiac muscle. One is at CRUs that contain DHPRs and RyRs. In these cardiac CRUs, RyR2 and alpha1c DHPR are in proximity of each other, but not closely linked, so that they may not have a direct molecular interaction. A second location of RyR2 is on SR cisternae that are not attached to surface membrane/T tubules. The RyR2 in these cisternae, which are often several microns away from any DHPRs, must necessarily be activated indirectly.  相似文献   

11.
Molecular determinants essential for skeletal-type excitation-contraction (EC) coupling have been described in the cytosolic loops of the dihydropyridine receptor (DHPR) alpha1S pore subunit and in the carboxyl terminus of the skeletal-specific DHPR beta1a-subunit. It is unknown whether EC coupling domains present in the beta-subunit influence those present in the pore subunit or if they act independent of each other. To address this question, we investigated the EC coupling signal that is generated when the endogenous DHPR pore subunit alpha1S is paired with the heterologous heart/brain DHPR beta2a-subunit. Studies were conducted in primary cultured myotubes from beta1 knockout (KO), ryanodine receptor type 1 (RyR1) KO, ryanodine receptor type 3 (RyR3) KO, and double RyR1/RyR3 KO mice under voltage clamp with simultaneous monitoring of confocal fluo-4 fluorescence. The beta2a-mediated Ca2+ current recovered in beta1 KO myotubes lacking the endogenous DHPR beta1a-subunit verified formation of the alpha1S/beta1a pair. In myotube genotypes which express no or low-density L-type Ca2+ currents, namely beta1 KO and RyR1 KO, beta2a overexpression recovered a wild-type density of nifedipine-sensitive Ca2+ currents with a slow activation kinetics typical of skeletal myotubes. Concurrent with Ca2+ current recovery, there was a drastic reduction of voltage-dependent, skeletal-type EC coupling and emergence of Ca2+ transients triggered by the Ca2+ current. A comparison of beta2a overexpression in RyR3 KO, RyR1 KO, and double RyR1/RyR3 KO myotubes concluded that both RyR1 and RyR3 isoforms participated in Ca2+-dependent Ca2+ release triggered by the beta2a-subunit. In beta1 KO and RyR1 KO myotubes, the Ca2+-dependent EC coupling promoted by beta2a overexpression had the following characteristics: 1), L-type Ca2+ currents had a wild-type density; 2), Ca2+ transients activated much slower than controls overexpressing beta1a, and the rate of fluorescence increase was consistent with the activation kinetics of the Ca2+ current; 3), the voltage dependence of the Ca2+ transient was bell-shaped and the maximum was centered at approximately +30 mV, consistent with the voltage dependence of the Ca2+ current; and 4), Ca2+ currents and Ca2+ transients were fully blocked by nifedipine. The loss in voltage-dependent EC coupling promoted by beta2a was inferred by the drastic reduction in maximal Ca2+ fluorescence at large positive potentials (DeltaF/Fmax) in double dysgenic/beta1 KO myotubes overexpressing the pore mutant alpha1S (E1014K) and beta2a. The data indicate that beta2a, upon interaction with the skeletal pore subunit alpha1S, overrides critical EC coupling determinants present in alpha1S. We propose that the alpha1S/beta pair, and not the alpha1S-subunit alone, controls the EC coupling signal in skeletal muscle.  相似文献   

12.
In skeletal muscle, coupling between the 1,4-dihydropyridine receptor (DHPR) and the type 1 ryanodine receptor (RyR1) underlies excitation-contraction (EC) coupling. The III-IV loop of the DHPR alpha(1S) subunit binds to a segment of RyR1 in vitro, and mutations in the III-IV loop alter the voltage dependence of EC coupling, raising the possibility that this loop is directly involved in signal transmission from the DHPR to RyR1. To clarify the role of the alpha(1S) III-IV loop in EC coupling, we examined the functional properties of a chimera (GFP-alpha(1S)[III-IVa]) in which the III-IV loop of the divergent alpha(1A) isoform replaced that of alpha(1S). Dysgenic myotubes expressing GFP-alpha(1S)[III-IVa] yielded myoplasmic Ca(2+) transients that activated at approximately 10 mV more hyperpolarized potentials and that were approximately 65% smaller than those of GFP-alpha(1S). A similar reduction was observed in voltage-dependent charge movements for GFP-alpha(1S)[III-IVa], indicating that the chimeric channels trafficked less well to the membrane but that those that were in the membrane functioned as efficiently in EC coupling as GFP-alpha(1S). Relative to GFP-alpha(1S), L-type currents mediated by GFP-alpha(1S)[III-IVa] were approximately 40% smaller and activated at approximately 5 mV more hyperpolarized potentials. The altered gating of GFP-alpha(1S)[III-IVa] was accentuated by exposure to +/-Bay K 8644, which caused a much larger hyperpolarizing shift in activation compared with its effect on GFP-alpha(1S). Taken together, our observations indicate that the alpha(1S) III-IV loop is not directly involved in EC coupling but does influence DHPR gating transitions important both for EC coupling and activation of L-type conductance.  相似文献   

13.
The second of three SPRY domains (SPRY2, S1085 V1208) located in the skeletal muscle ryanodine receptor (RyR1) is contained within regions of RyR1 that influence EC coupling and bind to imperatoxin A, a toxin probe of RyR1 channel gating. We examined the binding of the F loop (P1107 A1121) in SPRY2 to the ASI/basic region in RyR1 (T3471-G3500, containing both alternatively spliced (ASI) residues and neighboring basic amino acids). We then investigated the possible influence of this interaction on excitation contraction (EC) coupling. A peptide with the F loop sequence and an antibody to the SPRY2 domain each enhanced RyR1 activity at low concentrations and inhibited at higher concentrations. A peptide containing the ASI/basic sequence bound to SPRY2 and binding decreased ~10-fold following mutation or structural disruption of the basic residues. Binding was abolished by mutation of three critical acidic F loop residues. Together these results suggest that the ASI/basic and SPRY2 domains interact in an F loop regulatory module. Although a region that includes the SPRY2 domain influences EC coupling, as does the ASI/basic region, Ca2+ release during ligand- and depolarization-induced RyR1 activation were not altered by mutation of the three critical F loop residues following expression of mutant RyR1 in RyR1-null myotubes. Therefore the electrostatic regulatory interaction between the SPRY2 F loop residues (that bind to imperatoxin A) and the ASI/basic residues of RyR1 does not influence bi-directional DHPR-RyR1 signaling during skeletal EC coupling, possibly because the interaction is interrupted by the influence of factors present in intact muscle cells.  相似文献   

14.
The second of three SPRY domains (SPRY2, S1085 -V1208) located in the skeletal muscle ryanodine receptor (RyR1) is contained within regions of RyR1 that influence EC coupling and bind to imperatoxin A, a toxin probe of RyR1 channel gating. We examined the binding of the F loop (P1107-A1121) in SPRY2 to the ASI/basic region in RyR1 (T3471-G3500, containing both alternatively spliced (ASI) residues and neighboring basic amino acids). We then investigated the possible influence of this interaction on excitation contraction (EC) coupling. A peptide with the F loop sequence and an antibody to the SPRY2 domain each enhanced RyR1 activity at low concentrations and inhibited at higher concentrations. A peptide containing the ASI/basic sequence bound to SPRY2 and binding decreased ~10-fold following mutation or structural disruption of the basic residues. Binding was abolished by mutation of three critical acidic F loop residues. Together these results suggest that the ASI/basic and SPRY2 domains interact in an F loop regulatory module. Although a region that includes the SPRY2 domain influences EC coupling, as does the ASI/basic region, Ca2+ release during ligand- and depolarization-induced RyR1 activation were not altered by mutation of the three critical F loop residues following expression of mutant RyR1 in RyR1-null myotubes. Therefore the electrostatic regulatory interaction between the SPRY2 F loop residues (that bind to imperatoxin A) and the ASI/basic residues of RyR1 does not influence bi-directional DHPR-RyR1 signaling during skeletal EC coupling, possibly because the interaction is interrupted by the influence of factors present in intact muscle cells.  相似文献   

15.
Excitation-contraction (E-C) coupling and Ca(2+)-induced Ca(2+) release in smooth and cardiac muscles is mediated by the L-type Ca(2+) channel isoform Ca(v)1.2 and the ryanodine receptor isoform RyR2. Although physical coupling between Ca(v)1.1 and RyR1 in skeletal muscle is well established, it is generally assumed that Ca(v)1.2 and RyR2 do not directly communicate either passively or dynamically during E-C coupling. In the present work, we re-examined this assumption by studying E-C coupling in the detrusor muscle of wild type and Homer1(-/-) mice and by demonstrating a Homer1-mediated dynamic interaction between Ca(v)1.2 and RyR2 using the split green fluorescent protein technique. Deletion of Homer1 in mice (but not of Homer2 or Homer3) resulted in impaired urinary bladder function, which was associated with higher sensitivity of the detrusor muscle to muscarinic stimulation and membrane depolarization. This was not due to an altered expression or function of RyR2 and Ca(v)1.2. Most notably, expression of Ca(v)1.2 and RyR2 tagged with the complementary C- and N-terminal halves of green fluorescent protein and in the presence and absence of Homer1 isoforms revealed that H1a and H1b/c reciprocally modulates a dynamic interaction between Ca(v)1.2 and RyR2 to regulate the intensity of Ca(2+)-induced Ca(2+) release and its dependence on membrane depolarization. These findings define the molecular basis of a "two-state" model of E-C coupling by Ca(v)1.2 and RyR2. In one state, Ca(v)1.2 couples to RyR2 by H1b/c, which results in reduced responsiveness to membrane depolarization and in the other state H1a uncouples Ca(v)1.2 and RyR2 to enhance responsiveness to membrane depolarization. These findings reveal an unexpected and novel mode of interaction and communication between Ca(v)1.2 and RyR2 with important implications for the regulation of smooth and possibly cardiac muscle E-C coupling.  相似文献   

16.
In skeletal muscle, an anterograde signal from the dihydropyridine receptor (DHPR) to the ryanodine receptor (RyR1) is required for excitation-contraction (EC) coupling and a retrograde signal from RyR1 to the DHPR regulates the magnitude of the calcium current carried by the DHPR. As a tool for studying biosynthesis and targeting, we constructed a cDNA encoding green fluorescent protein (GFP) fused to the amino terminal of RyR1 and expressed it in dyspedic myotubes. The GFP-RyR1 was present in a restricted domain near the nucleus injected with cDNA and was fully functional, which places constraints on the location of the amino terminal in the folded structure of RyR1.  相似文献   

17.
In skeletal muscle, the dihydropyridine receptor (DHPR) in the plasma membrane (PM) serves as a Ca(2+) channel and as the voltage sensor for excitation-contraction (EC coupling), triggering Ca(2+) release via the type 1 ryanodine receptor (RyR1) in the sarcoplasmic reticulum (SR) membrane. In addition to being functionally linked, these two proteins are also structurally linked to one another, but the identity of these links remains unknown. As an approach to address this issue, we have expressed DHPR alpha(1S) or beta(1a) subunits, with a biotin acceptor domain fused to targeted sites, in myotubes null for the corresponding, endogenous DHPR subunit. After saponin permeabilization, the approximately 60-kD streptavidin molecule had access to the beta(1a) N and C termini and to the alpha(1S) N terminus and proximal II-III loop (residues 671-686). Steptavidin also had access to these sites after injection into living myotubes. However, sites of the alpha(1S) C terminus were either inaccessible or conditionally accessible in saponin- permeabilized myotubes, suggesting that these C-terminal regions may exist in conformations that are occluded by other proteins in PM/SR junction (e.g., RyR1). The binding of injected streptavidin to the beta(1a) N or C terminus, or to the alpha(1S) N terminus, had no effect on electrically evoked contractions. By contrast, binding of streptavidin to the proximal alpha(1S) II-III loop abolished such contractions, without affecting agonist-induced Ca(2+) release via RyR1. Moreover, the block of EC coupling did not appear to result from global distortion of the DHPR and supports the hypothesis that conformational changes of the alpha(1S) II-III loop are necessary for EC coupling in skeletal muscle.  相似文献   

18.
We conducted a deletion analysis of two regions identified in the II-III loop of alpha(1S), residues 671-690, which were shown to bind to ryanodine receptor type 1 (RyR1) and stimulate RyR1 channels in vitro, and residues 720-765 or the narrower 724-743 region, which confer excitation-contraction (EC) coupling function to chimeric dihydropyridine receptors (DHPRs). Deletion mutants were expressed in dysgenic alpha(1S)-null myotubes and analyzed by voltage-clamp and confocal fluo-4 fluorescence. Immunostaining of the mutant subunits using an N-terminus tag revealed abundant protein expression in all cases. Furthermore, the maximum recovered charge movement density was >80% of that recovered by full-length alpha(1S) in all cases. Delta671-690 had no effect on the magnitude of voltage-evoked Ca(2+) transients or the L-type Ca(2+) current density. In contrast, Delta720-765 or Delta724-743 abolished Ca(2+) transients entirely, and L-type Ca(2+) current was reduced or absent. Surprisingly, Ca(2+) transients and Ca(2+) currents of a moderate magnitude were recovered by the double deletion mutant Delta671-690/Delta720-765. A simple explanation for this result is that Delta720-765 induces a conformation change that disrupts EC coupling, and this conformational change is partially reverted by Delta671-690. To test for Ca(2+)-entry independent EC coupling, a pore mutation (E1014K) known to entirely abolish the inward Ca(2+) current was introduced. alpha(1S) Delta671-690/Delta720-765/E1014K expressed Ca(2+) transients with Boltzmann parameters identical to those of the Ca(2+)-conducting double deletion construct. The data strongly suggest that skeletal-type EC coupling is not uniquely controlled by alpha(1S) 720-765. Other regions of alpha(1S) or other DHPR subunits must therefore directly contribute to the activation of RyR1 during EC coupling.  相似文献   

19.
Calmodulin (CaM) modulates the activity of several proteins that play a key role in excitation-contraction coupling (ECC). In cardiac muscle, the major binding partner of CaM is the type-2 ryanodine receptor (RyR2) and altered CaM binding contributes to defects in sarcoplasmic reticulum (SR) calcium (Ca2+) release. Many genetic studies have reported a series of CaM missense mutations in patients with a history of severe arrhythmogenic cardiac disorders. In the present study, we generated four missense CaM mutants (CaMN98I, CaMD132E, CaMD134H and CaMQ136P) and we used a CaM-RyR2 co-immunoprecipitation and a [3H]ryanodine binding assay to directly compare the relative RyR2-binding of wild type and mutant CaM proteins and to investigate the functional effects of these CaM mutations on RyR2 activity. Furthermore, isothermal titration calorimetry (ITC) experiments were performed to investigate and compare the interactions of the wild-type and mutant CaM proteins with various synthetic peptides located in the well-established RyR2 CaM-binding region (3584-3602aa), as well as another CaM-binding region (4255-4271aa) of human RyR2. Our data revealed that all four CaM mutants displayed dramatically reduced RyR2 interaction and defective modulation of [3H]ryanodine binding to RyR2, regardless of LQTS or CPVT association. Moreover, our isothermal titration calorimetry ITC data suggest that RyR2 3584-3602aa and 4255-4271aa regions interact with significant affinity with wild-type CaM, in the presence and absence of Ca2+, two regions that might contribute to a putative intra-subunit CaM-binding pocket. In contrast, screening the interaction of the four arrhythmogenic CaM mutants with two synthetic peptides that correspond to these RyR2 regions, revealed disparate binding properties and signifying differential mechanisms that contribute to reduced RyR2 association.  相似文献   

20.
Differentiated primary myotubes isolated from wild-type mice exhibit ryanodine-sensitive, spontaneous global Ca2+ oscillations as well as spontaneous depolarizations in the plasma membrane. Immunolabeling of these myotubes showed expression of both 1S dihydropyridine receptors (DHPRs) and ryanodine-sensitive Ca2+-release channel 1 (RyR1), the two key proteins in skeletal excitation-contraction (E-C) coupling. Spontaneous global Ca2+ oscillations could be inhibited by addition of 0.1 mM CdCl2/0.5 mM LaCl3 or 5 µM nifedipine to the extracellular bathing solution. After either treatment, Ca2+ oscillations could be restored upon extensive washing. Although exposure to DHPR antagonists completely blocked Ca2+ oscillations, normal orthograde signaling between DHPRs and RyRs, such as that elicited by 80 mM KCl depolarization, was still observed. In addition, we showed that spontaneous Ca2+ oscillations were never present in cultured mdg myotubes, which lack the expression of 1SDHPRs. These results suggest that under physiological conditions in conjunction with the mechanical coupling between the 1SDHPRs and RyR1, the initiation of Ca2+ oscillations in myotubes may be facilitated, in part, by the Ca2+ influx through the 1s-subunit of the DHPR. calcium-induced calcium release; dihydropyridine receptors; excitation-contraction coupling; ryanodine receptors; skeletal muscle  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号