首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
活性污泥产酸发酵研究进展   总被引:1,自引:0,他引:1  
有机物的厌氧生物处理一般经过三个阶段:水解阶段、产酸发酵阶段和产甲烷阶段;研究证明,产酸相不同发酵类型的形成对产甲烷相乃至整个工艺的稳定运行具有至关重要的作用,此外,污泥厌氧消化过程所产生的大量的挥发性脂肪酸(VFAs),如乙酸、丙酸、丁酸及戊酸等,还可作为化工原料用于发酵工业生产各种高附加值产品.近年来,产酸发酵受到越来越多的关注,该文主要对污泥产酸阶段的产酸发酵类型、产酸发酵细菌的生态学、产酸过程的影响因素和生态因子以及产酸发酵的液相末端产物VFAs的测定方法进行了论述.  相似文献   

2.
This study investigated the process of high-rate, high-temperature methanogenesis to enable very-high-volume loading during anaerobic digestion of waste-activated sludge. Reducing the hydraulic retention time (HRT) from 15 to 20 days in mesophilic digestion down to 3 days was achievable at a thermophilic temperature (55°C) with stable digester performance and methanogenic activity. A volatile solids (VS) destruction efficiency of 33 to 35% was achieved on waste-activated sludge, comparable to that obtained via mesophilic processes with low organic acid levels (<200 mg/liter chemical oxygen demand [COD]). Methane yield (VS basis) was 150 to 180 liters of CH4/kg of VSadded. According to 16S rRNA pyrotag sequencing and fluorescence in situ hybridization (FISH), the methanogenic community was dominated by members of the Methanosarcinaceae, which have a high level of metabolic capability, including acetoclastic and hydrogenotrophic methanogenesis. Loss of function at an HRT of 2 days was accompanied by a loss of the methanogens, according to pyrotag sequencing. The two acetate conversion pathways, namely, acetoclastic methanogenesis and syntrophic acetate oxidation, were quantified by stable carbon isotope ratio mass spectrometry. The results showed that the majority of methane was generated by nonacetoclastic pathways, both in the reactors and in off-line batch tests, confirming that syntrophic acetate oxidation is a key pathway at elevated temperatures. The proportion of methane due to acetate cleavage increased later in the batch, and it is likely that stable oxidation in the continuous reactor was maintained by application of the consistently low retention time.  相似文献   

3.
Successful start-up strategy for anaerobic digestion of waste-activated sludge using internal inoculum and relationship between the shift of methanogenic community and the digester performance during start-up was investigated. Combination of TS control of inoculum and batch operation during early days enabled the successful start-up operation without serious volatile fatty acid accumulation, followed by the stable continuous operation. However, the propionate degradation was rate-limiting step during the batch operation. The results of real-time quantitative polymerase chain reaction analysis suggested that there was a correlation between the population of the genus Methanosarcina and the methane production rate coupled with acetate consumption during batch operation, and the results of terminal-restriction fragment length polymorphism (T-RFLP) revealed that the increasing intensity of T-RF peaks of hydrogenotrophic methanogens was associated with a decrease in the level of C3-acids.  相似文献   

4.
The study investigated methane production from dehydrated waste-activated sludge (DWAS) with approximately 80% water content under thermophilic conditions. The repeated batch-wise treatment of DWAS using methanogenic sludge unacclimated to high concentrations of ammonia, increased the ammonia production up to 7,600 mg N per kilogram total wet sludge of total ammonia concentration, and stopped the methane production. Investigation revealed that the loading ratio of DWAS for methanogenic sludge influences anaerobic digestion. Methane production significantly decreased and ammonia concentration increased with the increase in loading ratio of DWAS. Since the semicontinuous culture revealed that approximately 50% of organic nitrogen in DWAS converted to ammonia at sludge retention time (SRT) after 4 days at 37 degrees C and 1.33 days at 55 degrees C, the previous stripping of the ammonia produced from DWAS was carried out. The stripping of ammonia increased methane production significantly. This ammonia-methane two-stage anaerobic digestion demonstrated a successful methane production at SRT 20 days in the semicontinuous operation using a laboratory-scale reactor system.  相似文献   

5.
A kinetic model for anaerobic digestion of biological sludge   总被引:3,自引:0,他引:3  
The principal objective of this study was the development and evaluation of a comprehensive kinetic model capable of predicting digester performance when fed biological sludge, preliminary conversion mechanisms such as cell death, lysis, and hydrolysis responsible for rendering viable biological sludge organisms to available substrate were studied in depth. The results of this study indicate that hydrolysis of the dead, particulate biomass-primarily consisting of protein-is the slowest step, and therefore kinetically controls the overall process of anaerobic digestion of biological sludge. A kinetic model was developed which could accurately describe digester performance and predict effluent quality.  相似文献   

6.
Granular sludge from an upflow anaerobic sludge blanket reactor treating synthetic waste water containing a mixture of volatile fatty acids and nitrate showed a removal efficiency of nearly 100% for both nitrogen and carbon. This activity was achieved by a combined process of denitrification and methanogenesis under conditions of surplus carbon. Under batch conditions the two processes proceeded clearly separated in time with first denitrification dominating and excluding methanogenesis. However, as soon as nitrate was depleted, methane production was initiated, showing that the inhibition of methanogenesis by nitrate was reversible. Of the volatile fatty acids supplied to the reactor, i.e. acetate, propionate, and butyrate, the denitrifying population clearly preferred butyrate and propionate even though acetate could also be metabolized. Consequently, growth of syntrophic volatile fatty acid degraders was suppressed by the denitrifiers in cases of low C:N ratios in the medium, leaving acetate as the major substrate for methanogenesis.Abbreviations UASB upflow anaerobic sludge blanket - COD chemical oxygen demand - VFA volatile fatty  相似文献   

7.
A dual irradiation process involving aerobic thermophilic irradiation pretreatment (ATIP) and intermittent irradiation anaerobic digestion was developed to improve the digestion of waste-activated sludge. First, the effect of ATIP on further anaerobic digestion of activated sludge in batch mode was investigated. When exposed to ATIP for 24 h, the digestion reactor gave the highest methane yield, removed the most dissolved organic carbon (DOC) and showed the most effective reduction of VS compared to other irradiation times. This process was further enhanced by using an anaerobic fluidised-bed reactor packed with carbon felt in semi-continuous mode for digesting the pretreated activated sludge under intermittent irradiation conditions. Dual irradiation for 24 h followed by 60 min of anaerobic irradiation processing per day turned out to be optimal. This resulted in 65.3% of VS reduction, 83.9% of DOC removal ratio and 538 ml/g-VS of methane yield.  相似文献   

8.
Azo dyes are nonspecifically reduced under anaerobic conditions but the slow rates at which reactive azo dyes are converted presents a serious problem for the application of anaerobic technology as a first stage in the complete biodegradation of these compounds. As quinones have been found to catalyze reductive transfers by acting as redox mediators, the application of anthraquinone-2,6-disulfonic acid (AQDS) during continuous anaerobic treatment of the reactive azo dye, Reactive Red 2 (RR2), was evaluated. A mixture of volatile fatty acids was used as the electron-donating primary substrate. Batch experiments demonstrated that AQDS could increase the first-order rate constant of RR2 reductive cleavage by one order of magnitude. In the continuous experiment, treatment of RR2 containing synthetic wastewater in a lab-scale upflow anaerobic sludge blanket (UASB) reactor yielded low dye removal efficiencies (<30%). Consequently, severe toxicity problems occurred, eventually resulting in almost complete inhibition of the methanogenic activity. Addition of catalytic concentrations of AQDS (19 microM) to the reactor influent caused an immediate increase in the dye removal efficiency and recovery of biological activity. Ultimately, RR2 removal efficiency stabilized at 88%, and higher AQDS loads resulted in higher RR2 removal efficiencies (up to 98% at 155 microM AQDS). Examination of the RR2 decolorizing properties of dye-adapted reactor sludge and of nonadapted reactor seed sludge revealed that RR2 decolorization was principally a biologically driven transfer of reducing equivalents from endogenous and added substrates to the dye. Hydrogen, added in bulk, was clearly the preferred electron donor. Bacteria that couple dye decolorization to hydrogen oxidation were naturally present in seed sludge. However, enrichment was required for the utilization of electrons from volatile fatty acids for dye reduction. The stimulatory effect of AQDS on RR2 decolorization by AQDS-unadapted sludge was mainly due to assisting the electron transfer from endogenous substrates in the sludge to the dye. The stimulatory effect of AQDS on RR2 decolorization by sludge from the AQDS-exposed reactor was, in addition, strongly associated with the transfer of electrons from hydrogen and acetate to the dye, probably due to enrichment of specialized AQDS-reducing bacteria.  相似文献   

9.
Xu M  Wen X  Yu Z  Li Y  Huang X 《Bioresource technology》2011,102(10):5617-5625
Anaerobic membrane bioreactor and online ultrasonic equipment used to enhance membrane filtration were coupled to form a hybrid system (US-AnMBR) designed for long-term digestion of waste activated sludge. The US-AnMBR was operated under volatile solids loading rates of 1.1-3.7 gVS/L·d. After comprehensive studies on digestion performance and membrane fouling control in the US-AnMBR, the final loading rate was determined to be 2.7 gVS/L·d with 51.3% volatile solids destruction. In the US-AnMBR, the improved digestion was due to enhanced sludge disintegration, as indicated by soluble matter comparison in the supernatant and particle size distribution in the digested sludge. Maximum specific methanogenic activity revealed that ultrasound application had no negative effect on anaerobic microorganisms. Furthermore, implementing ultrasound effectively controlled membrane fouling and successfully facilitated membrane bioreactor operation. This lab-scale study demonstrates the potential feasibility and effectiveness of setting up a US-AnMBR system for sludge digestion.  相似文献   

10.
The reproducibility of low-temperature anaerobic biological wastewater treatment trials was evaluated. Two identical anaerobic expanded granular sludge bed bioreactors were used to treat synthetic volatile fatty acid-based industrial wastewater under ambient conditions (18-20 degrees C) and to investigate the effect of various environmental perturbations on reactor performance and microbial community dynamics, which were assessed by chemical oxygen demand removal or effluent volatile fatty acid determination and terminal restriction fragment length polymorphism analysis, respectively. Methanogenic activity was monitored using specific methanogenic activity assays. Reactor performance and microbial community dynamics were each well replicated between Reactor 1 and Reactor 2. Archaeal dynamics, in particular, were associated with reactor operating parameters. Terminal restriction fragment length polymorphism data suggested dynamic acetoclastic and hydrogenophilic methanogenic populations and were in agreement with temporal specific methanogenic activity data. Putative psychrophilic populations were observed in anaerobic bioreactor sludge for the first time.  相似文献   

11.
污泥厌氧消化是在消化污泥微生物组的协调下将剩余污泥中有机物转化为甲烷的微生物过程。与传统厌氧消化过程不同,污泥厌氧消化系统的进料底物为含有大量微生物细胞及胞外多聚物等复杂大分子有机物的剩余污泥。因此,厌氧消化污泥微生物组的种群组成、功能及种群间互作关系等异常复杂,使厌氧消化污泥微生物组分析成为难点问题。但近年来高通量测序技术及生物信息学分析方法的快速发展为消化污泥微生物组研究提供了契机,并迅速推动了该研究领域的发展。本文从4个方面梳理、总结厌氧消化污泥微生物组的研究及应用现状:剩余活性污泥结构、组成及其厌氧消化;基于16SrRNA基因序列测序的微生物组研究;基于宏基因组及宏转录组分析的微生物组研究;厌氧消化污泥微生物组研究案例分析。最后我们提出了厌氧消化污泥微生物组研究亟待解决的关键科学问题。  相似文献   

12.
Among different conversion processes for biomass, biological anaerobic digestion is one of the most economic ways to produce biogas from various biomass substrates. In addition to hydrolysis of polymeric substances, the activity and performance of the methanogenic bacteria is of paramount importance during methanogenesis. The aim of this paper is primarily to review the recent literature about the occurrence of both acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of particulate biomass to methane (not wastewater treatment), while this review does not cover the activity of the acetate oxidizing bacteria. Both acetotrophic and hydrogenotrophic methanogens are essential for the last step of methanogenesis, but the reports about their roles during this phase of the process are very limited. Despite, some conclusions can still be drawn. At low concentrations of acetate, normally filamentous Methanosaeta species dominate, e.g., often observed in sewage sludge. Apparently, high concentrations of toxic ionic agents, like ammonia, hydrogen sulfide (H2S) and volatile fatty acids (VFA), inhibit preferably Methanosaetaceae and especially allow the growth of Methanosarcina species consisting of irregular cell clumps, e.g., in cattle manure. Thermophilic conditions can favour rod like or coccoid hydrogenotrophic methanogens. Thermophilic Methanosarcina species were also observed, but not thermophilic Methanosaetae. Other environmental factors could favour hydrogentrophic bacteria, e.g., short or low retention times in a biomass reactor. However, no general rules regarding process parameters could be derivated at the moment, which favours hydrogenotrophic methanogens. Presumably, it depends only on the hydrogen concentration, which is generally not mentioned in the literature.  相似文献   

13.
Sugar beet pulp is a by-product of sugar production and consists mainly of cellulose, hemicellulose and pectin. Its composition is suitable for biological degradation. A possible alternative for the utilization of this material (besides cattle feeding) can be anaerobic methanogenic degradation. It has an additional advantage – biogas production. Beet pulp was treated by a two-step anaerobic process. The first step consisted of hydrolysis andacidification. The second step was methanogenesis. In this paper, observation ofthe process of anaerobic degradation and determination of optimal parameters is discussed. A laboratory-scale model for sugar beet pulp anaerobic biodegradation was operated. Results of model performance have shown very good pulp digestion characteristics. In addition, high efficiency removal of organic matter was achieved. Methane yield was over 0.360 m3 kg-1 dried pulp and excess sludge production was 0.094 g per gram COD added.  相似文献   

14.
城市污泥中邻苯二甲酸酯(PAEs)的厌氧微生物降解   总被引:1,自引:1,他引:0  
邻苯二甲酸酯(PAEs)是城市污泥中普遍存在的一类具有内分泌干扰性作用的有机污染物.研究污泥厌氧生物处理过程中PAEs的微生物降解对保障污泥农用的安全性十分必要.本文以污泥中两种主要的PAEs——邻苯二甲酸二丁酯(DBP)和邻苯二甲酸(2-乙基己)酯(DEHP)为研究对象,通过比较PAEs在污泥厌氧消化系统与发酵产氢系统中降解过程的差异及系统污泥特性的变化,分析不同污泥厌氧生物处理系统中影响PAEs降解的可能因素.结果表明: 在污泥厌氧发酵系统中,DBP在6 d内降解率达99.6%, DEHP在整个14 d的培养期间也降解了46.1%;在发酵产氢系统中,在14 d培养过程DBP的降解率仅为19.5%,DEHP则没有明显的降解.与厌氧消化系统相比,PAEs在发酵产氢系统中的降解受到明显抑制,这与发酵产氢过程中微生物量下降、革兰氏阳性菌/革兰氏阴性菌(G+/G-)和真菌/细菌变小及挥发性脂肪酸(包括乙酸、丙酸及丁酸)浓度升高有关.  相似文献   

15.
Ammonia increases buffer capacity of methanogenic medium in mesophilic anaerobic reactor thus increasing the stability of anaerobic digestion process. Optimal ammonia concentration ensures sufficient buffer capacity while not inhibiting the process. It was found out in this paper that this optimum depends on the quality of anaerobic sludge under investigation. The optimal concentrations for methanogens were 2.1, 2.6 and 3.1 g/L of ammonia nitrogen in dependence on inoculum origin. High ammonia nitrogen concentration (4.0 g/L) inhibited methane production, while low ammonia nitrogen concentration (0.5 g/L) caused low methane yield, loss of biomass (as VSS) and loss of the aceticlastic methanogenic activity. It was found out that negative effect of low ammonia nitrogen concentration on biomass is caused not only by low buffer capacity but also by insufficiency of nitrogen as nutrient. It was also found out that anaerobic sludge with higher ammonia nitrogen concentration (4.2 g/L) tolerates even concentration of volatile fatty acids (160 mmol/L) which causes inhibition of the process with low ammonia nitrogen concentration (0.2 g/L).  相似文献   

16.
Summary A continuous two stage anaerobic digestion process was established using a homoacetogen,Acetogenium kivui, as the acidogenic organism and an acetoclastic culture for the methanogenic stage. In continuous culture,A.kivui fermented 83% of a glucose carbon source to acetate at a critical dilution rate of 0.13/h. The effluent acetate from this culture was readily utilised by an acetoclastic methanogenic culture enriched from sewage sludge. The long term stability of this system was demonstrated under a range of conditions, and the potential process advantages discussed.  相似文献   

17.
A hybrid anaerobic solid-liquid bioreactor for food waste digestion   总被引:5,自引:0,他引:5  
A hybrid anaerobic solid-liquid (HASL) bioreactor is an enhanced two-phase anaerobic system, that consists of a solid waste reactor as the acidification reactor and a wastewater reactor, i.e. an upflow anaerobic sludge blanket (UASB) reactor as the methanogenic reactor. Food waste digestion in HASL bioreactors with pre-acidification and HASL operation stages was investigated in two separate runs. After 8 days of pre-acidification in Run A and 4 days in Run B, total volatile fatty acid (TVFA) and chemical oxygen demand (COD) concentrations in the leachates of both acidification reactors were similar. During HASL operation stage, TVFA and COD removal in the methanogenic phase were 77–100% and 75–95%, respectively. Some 99% of the total methane generated was from the methanogenic phase with a content of 68–70% methane. At the end of operation, about 59–60% of the added volatile solids (VS) were removed with a methane yield of 0.25 l g–1 VS.  相似文献   

18.
In this study we investigated whether a relationship exists between the methanogenic activity and the content of specific methanogenic cofactors of granular sludges cultured on different combinations of volatile fatty acids in upflow anaerobic sludge blanket or fluidized-bed reactors. Significant correlations were measured in both cases between the contents of coenzyme F420−2 or methanopterin and the maximum specific methanogenic activities on propionate, butyrate, and hydrogen, but not acetate. For both sludges the content of sarcinapterin appeared to be correlated with methanogenic activities on propionate, butyrate, and acetate, but not hydrogen. Similar correlations were measured with regard to the total content of coenzyme F420−4 and F420−5 in sludges from fluidized-bed reactors. The results indicate that the contents of specific methanogenic cofactors measured in anaerobic granular sludges can be used to estimate the hydrogenotrophic or acetotrophic methanogenic potential of these sludges.  相似文献   

19.
Sludge minimisation technologies   总被引:1,自引:0,他引:1  
The treatment and disposal of excess sludge represents a bottleneck of wastewater treatment plants all over the world, due to environmental, economic, social and legal factors. There is therefore a growing interest in developing technologies to reduce the wastewater sludge generation. The goal of this paper is to present the state-of-the-art of current minimisation techniques for reducing sludge production in biological wastewater treatment processes. An overview of the main technologies is given considering three different strategies: The first option is to reduce the production of sludge by introducing in the wastewater treatment stage additional stages with a lower cellular yield coefficient compared to the one corresponding to the activated sludge process (lysis-cryptic growth, uncoupling and maintenance metabolism, predation on bacteria, anaerobic treatment). The second choice is to act on the sludge stage. As anaerobic digestion is the main process in sewage sludge treatment for reducing and stabilising the organic solids, two possibilities can be considered: introducing a pre-treatment process before the anaerobic reaction (physical, chemical or biological pre-treatments), or modifying the digestion configuration (two-stage and temperature-phased anaerobic digestion, anoxic gas flotation). And, finally, the last minimisation strategy is the removal of the sludge generated in the activated sludge plant (incineration, gasification, pyrolysis, wet air oxidation, supercritical water oxidation).  相似文献   

20.
Laboratory and pilot-scale experiments were carried out in order to evaluate the influence of thermal pre-treatment time on waste-activated sludge properties and anaerobic biodegradability. Six experimental conditions were analyzed from 0 to 30 min of hydrolysis time. Solubilization of macromolecular compounds, changes in the main sludge properties and anaerobic biodegradability of the sewage sludge were evaluated. A similar carbohydrate solubilization degree was achieved, from 53% to 70% and 59% to 75% for lab- and pilot-scale experiments, respectively. In the case of proteins, the values of solubilization were lower in the pilot-scale experiment than in the laboratory, with 31-45% and 47-70%, respectively. Ammonia and volatile fatty acid did not undergo important changes; however the sludge dewaterability enhanced at increased pre-treatment times. All the pre-treatment conditions had a positive effect with regard to anaerobic biodegradability and by fitting experimental data with a simplified mathematical model, it was concluded that the maximum biogas production rate is more influenced by the pre-treatment time than the total biogas production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号