首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transendothelial trafficking model mimics in vivo differentiation of monocytes into dendritic cells (DC). The serum from patients with systemic lupus erythematosus promotes the differentiation of monocytes into mature DC. We have shown that selective inhibition of NF-κB by adenoviral gene transfer of a novel mutated IκBα (AdIκBαM) in DC contributes to T cell tolerance. Here we demonstrated for the first time that asthmatic serum facilitated human monocyte-derived DC (MDDC) maturation associated with increased NF-κB activation in this model. Furthermore, selective blockade of NF-κB by AdIκBαM in MDDC led to increased apoptosis, and decreased levels of CD80, CD83, CD86, and IL-12 p70 but not IL-10 in asthmatic serum-stimulated MDDC, accompanied by reduced proliferation of T cells. These results suggest that AdIκBαM-transferred MDDC are at a more immature stage which is beneficial to augment the immune tolerance in asthma.  相似文献   

2.
Dendritic cells (DC) are highly specialized APC that are critical for the initiation of T cell-dependent immune responses. DC exert a sentinel function while immature and, after activation by inflammatory stimuli or infectious agents, mature and migrate into lymphoid organs to prime T cells. We have analyzed integrin expression on monocyte-derived DC (MDDC) and found that expression of CD49d integrins (CD49d/CD29 and CD49d/beta7) was induced/up-regulated during TNF-alpha- or LPS-initiated MDDC maturation, reflecting the induction/up-regulation of CD49d and beta7 mRNA. CD49d mRNA steady-state level increased more than 10 times during maturation, with the highest levels observed 24 h after TNF-alpha treatment. CD49d integrin expression conferred mature MDDC with an elevated capacity to adhere to the CS-1 fragment of fibronectin, and also mediated transendothelial migration of mature MDDC. Up-regulation of CD49d integrin expression closely paralleled that of the mature DC marker CD83. CD49d integrin expression was dependent on cell maturation, as its induction was abrogated by N:-acetylcysteine, which inhibits NF-kappaB activation and the functional and phenotypic maturation of MDDC. Moreover, CD49d integrin up-regulation and MDDC maturation were prevented by SB203580, a specific inhibitor of p38 mitogen-activated protein kinase, but were almost unaffected by the mitogen-activated protein/extracellular signal-related kinase kinase 1/2 inhibitor PD98059. Our results support the existence of a link between functional and phenotypic maturation of MDDC and CD49d integrin expression, thus establishing CD49d as a maturation marker for MDDC. The differential expression of CD49d on immature and mature MDDC might contribute to their distinct motility capabilities and mediate mature DC migration into lymphoid organs.  相似文献   

3.
Vaccination of cynomolgus monkeys with the biologically active HIV-1 Tat protein induces specific Th1 responses, including CTLs. Similar responses are also induced by vaccination with tat DNA, but not by vaccination with inactivated Tat or Tat peptides. This suggested that the native Tat protein may act differently on APC as compared with inactivated Tat or peptide Ag. In this study, we show that biologically active Tat is very efficiently taken up by monocyte-derived dendritic cells (MDDC) in a time (within minutes)- and dose-dependent (starting from 0.1 ng/ml) fashion, whereas uptake is very poor or absent with other APC, including T cell blasts and B lymphoblastoid cell lines. Although maturation of MDDC reduces their pino/phagocytic activity, mature MDDC take up Tat much more efficiently than immature cells. In addition, Tat uptake is abolished or greatly hampered by oxidation/inactivation of the protein or by performing the experiments at 4 degrees C, suggesting that MDDC take up native Tat by a receptor-mediated endocytosis. After uptake, active Tat protein induces up-regulation of MHC and costimulatory molecules and production of IL-12, TNF-alpha, and beta chemokines, which drive Th1-type immune response. In contrast, these effects are lost by oxidation and inactivation of the protein. Finally, native Tat enhances Ag presentation by MDDC, increasing Ag-specific T cell responses. These data indicate that native Tat selectively targets MDDC, is taken up by these cells via specialized pathways, and promotes their maturation and Ag-presenting functions, driving Th1-type immune responses. Thus, Tat can act as both Ag and adjuvant, capable of driving T cell-mediated immune responses.  相似文献   

4.
Dendritic cell-specific ICAM-3 grabbing nonintegrin (DC-SIGN) is a monocyte-derived dendritic cell (MDDC)-specific lectin which participates in dendritic cell (DC) migration and DC-T lymphocyte interactions at the initiation of immune responses and enhances trans-infection of T cells through its HIV gp120-binding ability. The generation of a DC-SIGN-specific mAb has allowed us to determine that the acquisition of DC-SIGN expression during the monocyte-DC differentiation pathway is primarily induced by IL-4, and that GM-CSF cooperates with IL-4 to generate a high level of DC-SIGN mRNA and cell surface expression on immature MDDC. IL-4 was capable of inducing DC-SIGN expression on monocytes without affecting the expression of other MDDC differentiation markers. By contrast, IFN-alpha, IFN-gamma, and TGF-beta were identified as negative regulators of DC-SIGN expression, as they prevented the IL-4-dependent induction of DC-SIGN mRNA on monocytes, and a similar inhibitory effect was exerted by dexamethasone, an inhibitor of the monocyte-MDDC differentiation pathway. The relevance of the inhibitory action of dexamethasone, IFN, and TGF-beta on DC-SIGN expression was emphasized by their ability to inhibit the DC-SIGN-dependent HIV-1 binding to differentiating MDDC. These results demonstrate that DC-SIGN, considered as a MDDC differentiation marker, is a molecule specifically expressed on IL-4-treated monocytes, and whose expression is subjected to a tight regulation by numerous cytokines and growth factors. This feature might help in the development of strategies to modulate the DC-SIGN-dependent cell surface attachment of HIV for therapeutic purposes.  相似文献   

5.
It is widely believed that generation of mature dendritic cells (DCs) with full T cell stimulatory capacity from human monocytes in vitro requires 5-7 days of differentiation with GM-CSF and IL-4, followed by 2-3 days of activation. Here, we report a new strategy for differentiation and maturation of monocyte-derived DCs within only 48 h of in vitro culture. Monocytes acquire immature DC characteristics by day 2 of culture with GM-CSF and IL-4; they down-regulate CD14, increase dextran uptake, and respond to the inflammatory chemokine macrophage inflammatory protein-1alpha. To accelerate DC development and maturation, monocytes were incubated for 24 h with GM-CSF and IL-4, followed by activation with proinflammatory mediators for another 24 h (FastDC). FastDC expressed mature DC surface markers as well as chemokine receptor 7 and secreted IL-12 (p70) upon CD40 ligation in the presence of IFN-gamma. The increase in intracellular calcium in response to 6Ckine showed that chemokine receptor 7 expression was functional. When FastDC were compared with mature monocyte-derived DCs generated by a standard 7-day protocol, they were equally potent in inducing Ag-specific T cell proliferation and IFN-gamma production as well as in priming autologous naive T cells using tetanus toxoid as a model Ag. These findings indicate that FastDC are as effective as monocyte-derived DCs in stimulating primary, Ag-specific, Th 1-type immune responses. Generation of FastDC not only reduces labor, cost, and time required for in vitro DC development, but may also represent a model more closely resembling DC differentiation from monocytes in vivo.  相似文献   

6.
7.
Macrophages and dendritic cells (DC) play an essential role in the initiation and maintenance of immune response to pathogens. To analyze early interactions between Mycobacterium tuberculosis (Mtb) and immune cells, human peripheral blood monocyte-derived macrophages (MDM) and monocyte-derived dendritic cells (MDDC) were infected with Mtb. Both cells were found to internalize the mycobacteria, resulting in the activation of MDM and maturation of MDDC as reflected by enhanced expression of several surface Ags. After Mtb infection, the proinflammatory cytokines TNF-alpha, IL-1, and IL-6 were secreted mainly by MDM. As regards the production of IFN-gamma-inducing cytokines, IL-12 and IFN-alpha, was seen almost exclusively from infected MDDC, while IL-18 was secreted preferentially by macrophages. Moreover, Mtb-infected MDM also produce the immunosuppressive cytokine IL-10. Because IL-10 is a potent inhibitor of IL-12 synthesis from activated human mononuclear cells, we assessed the inhibitory potential of this cytokine using soluble IL-10R. Neutralization of IL-10 restored IL-12 secretion from Mtb-infected MDM. In line with these findings, supernatants from Mtb-infected MDDC induced IFN-gamma production by T cells and enhanced IL-18R expression, whereas supernatants from MDM failed to do that. Neutralization of IFN-alpha, IL-12, and IL-18 activity in Mtb-infected MDDC supernatants by specific Abs suggested that IL-12 and, to a lesser extent, IFN-alpha and IL-18 play a significant role in enhancing IFN-gamma synthesis by T cells. During Mtb infection, macrophages and DC may have different roles: macrophages secrete proinflammatory cytokines and induce granulomatous inflammatory response, whereas DC are primarily involved in inducing antimycobacterial T cell immune response.  相似文献   

8.
Conserved structural motifs on pathogens trigger pattern recognition receptors present on APCs such as dendritic cells (DCs). An important class of such receptors is the Toll-like receptors (TLRs). TLR signaling triggers a cascade of events in DCs that includes modified chemokine and cytokine production, altered chemokine receptor expression, and changes in signaling through G protein-coupled receptors (GPCRs). One mechanism by which TLR signaling could modify GPCR signaling is by altering the expression of regulator of G protein signaling (RGS) proteins. In this study, we show that human monocyte-derived DCs constitutively express significant amounts of RGS2, RGS10, RGS14, RGS18, and RGS19, and much lower levels of RGS3 and RGS13. Engagement of TLR3 or TLR4 on monocyte-derived DCs induces RGS16 and RGS20, markedly increases RGS1 expression, and potently down-regulates RGS18 and RGS14 without modifying other RGS proteins. A similar pattern of Rgs protein expression occurred in immature bone marrow-derived mouse DCs stimulated to mature via TLR4 signaling. The changes in RGS18 and RGS1 expression are likely important for DC function, because both proteins inhibit G alpha(i)- and G alpha(q)-mediated signaling and can reduce CXC chemokine ligand (CXCL)12-, CC chemokine ligand (CCL)19-, or CCL21-induced cell migration. Providing additional evidence, bone marrow-derived DCs from Rgs1(-/-) mice have a heightened migratory response to both CXCL12 and CCL19 when compared with similar DCs prepared from wild-type mice. These results indicate that the level and functional status of RGS proteins in DCs significantly impact their response to GPCR ligands such as chemokines.  相似文献   

9.
Protective immunity to pathogens depends on efficient immune responses adapted to the type of pathogen and the infected tissue. Dendritic cells (DC) play a pivotal role in directing the effector T cell response to either a protective T helper type 1 (Th1) or type 2 (Th2) phenotype. Human monocyte-derived DC can be differentiated into Th1-, Th2- or Th1/Th2-promoting DC in vitro upon activation with microbial compounds or cytokines. Host defence is highly dependent on mobile leucocytes and cell trafficking is largely mediated by the interactions of chemokines with their specific receptors expressed on the surface of leucocytes. The production of chemokines by mature effector DC remains elusive. Here we assess the differential production of both inflammatory and homeostatic chemokines by monocyte-derived mature Th1/Th2-, Th1- or Th2-promoting DC and its regulation in response to CD40 ligation, thereby mimicking local engagement with activated T cells. We show that mature Th1- and Th1/Th2-, but not Th2-promoting DC, selectively express elevated levels of the inflammatory chemokines CCL2/MCP-1, CCL3/MIP-1alpha, CCL4/MIP-1beta and CCL5/RANTES, as well as the homeostatic chemokine CCL19/MIP-3beta. CCL21/6Ckine is preferentially expressed by Th2-promoting DC. Production of the Th1-attracting chemokines, CXCL9/Mig, CXCL10/IP-10 and CXCL11/I-TAC, is restricted to Th1-promoting DC. In contrast, expression of Th2-associated chemokines does not strictly correlate with the Th2-promoting DC phenotype, except for CCL22/MDC, which is preferentially expressed by Th2-promoting DC. Because inflammatory chemokines and Th1-associated chemokines are constitutively expressed by mature Th1-promoting DC and CCL22/MDC is constitutively expressed by mature Th2-promoting DC, we propose a novel role for mature DC present in inflamed peripheral tissues in orchestrating the immune response by recruiting appropriate leucocyte populations to the site of pathogen entry.  相似文献   

10.
11.
Chemokine receptors are differentially expressed on immature and mature dendritic cells (DC). Herein, we demonstrate for the first time that murine antimicrobial peptides beta-defensins 2 and 3 bind murine CCR6, similarly to inflammatory chemokine macrophage-inflammatory protein 3alpha, and they chemoattract bone marrow-derived immature, but not mature DC. Using various chemokines or defensins fused with nonimmunogenic tumor Ags, we studied their capacity to delivery Ags to subsets of immune cells to elicit antitumor immunity. We demonstrate that DNA immunizations with fusion constructs with beta-defensin 2 or inflammatory chemokines that target immature DC, but not homeostatic chemokines secondary lymphoid tissue chemokine, CCL21, or stromal cell-derived factor 1, CXCL12, which chemoattract mature DC, elicit humoral, protective, and therapeutic immunity against two different syngeneic lymphomas.  相似文献   

12.
Human dendritic cells (DC) have polarized responses to chemokines as a function of maturation state, but the effect of maturation on DC trafficking in vivo is not known. We have addressed this question in a highly relevant rhesus macaque model. We demonstrate that immature and CD40 ligand-matured monocyte-derived DC have characteristic phenotypic and functional differences in vitro. In particular, immature DC express CC chemokine receptor 5 (CCR5) and migrate in response to macrophage inflammatory protein-1alpha (MIP-1alpha), whereas mature DC switch expression to CCR7 and respond exclusively to MIP-3beta and 6Ckine. Mature DC transduced to express a marker gene localized to lymph nodes after intradermal injection, constituting 1.5% of lymph node DC. In contrast, cutaneous DC transfected in situ via gene gun were detected in the draining lymph node at a 20-fold lower frequency. Unexpectedly, the state of maturation at the time of injection had no influence on the proportion of DC that localized to draining lymph nodes, as labeled immature and mature DC were detected in equal numbers. Immature DC that trafficked to lymph nodes underwent a significant up-regulation of CD86 expression indicative of spontaneous maturation. Moreover, immature DC exited completely from the dermis within 36 h of injection, whereas mature DC persisted in large numbers associated with a marked inflammatory infiltrate. We conclude that in vitro maturation is not a requirement for effective migration of DC in vivo and suggest that administration of Ag-loaded immature DC that undergo natural maturation following injection may be preferred for DC-based immunotherapy.  相似文献   

13.
Professional APC are characterized by their ability to present peptide via HLA class II in the presence of costimulatory molecules (CD40, CD80, and CD86). The efficiency of Ag presentation can be classed as follows: mature dendritic cells (DC) are most efficient, immature DC and macrophages are intermediate, and monocytes are considered poor APC. There is a large body of evidence demonstrating that HLA-DR transmits signals in the APC. In this study, we have addressed the question of the outcome of HLA-DR signals on APC of the monocyte/DC lineages throughout their differentiation from immature to mature APC. DC were generated from both monocytes and CD34+ cells of the same individual, macrophages were differentiated from monocytes. Immunophenotypical analysis clearly distinguished these populations. HLA-DR-mediated signals led to marked apoptosis in mature DC of either CD34 or monocytic origin. Significantly less apoptosis was observed in immature DC of either origin. Nonetheless, even immature DC were more susceptible to HLA-DR-mediated apoptosis than macrophages, whereas monocytes were resistant to HLA-DR-mediated apoptosis. The mechanism of HLA-DR-mediated apoptosis was independent of caspase activation. Taken together, these data lead to the notion that signals generated via HLA-DR lead to the demise of mature professional APC, thereby providing a means of limiting the immune response.  相似文献   

14.
Dendritic cells (DCs) are indispensable for initiation of primary T cell responses and a host's defense against infection. Many proinflammatory stimuli induce DCs to mature (mDCs), but little is known about the ability of chemokines to modulate their maturation. In the present study, we report that CCL16 is a potent maturation factor for monocyte-derived DCs (MoDCs) through differential use of its four receptors and an indirect regulator of Th cell differentiation. MoDCs induced to mature by CCL16 are characterized by increased expression of CD80 and CD86, MHC class II molecules, and ex novo expression of CD83 and CCR7. They produce many chemokines to attract monocytes and T cells and are also strong stimulators in activating allogeneic T cells to skew toward Th1 differentiation. Interestingly, they are still able to take up Ag and express chemokine receptors usually bound by inflammatory ligands and can be induced to migrate to different sites where they capture Ags. Our findings indicate that induction of MoDC maturation is an important property of CCL16 and suggest that chemokines may not only organize the migration of MoDCs, but also directly regulate their ability to prime T cell responses.  相似文献   

15.
Human respiratory syncytial virus (HRSV) and, to a lesser extent, human metapneumovirus (HMPV) and human parainfluenza virus type 3 (HPIV3), can re-infect symptomatically throughout life without significant antigenic change, suggestive of incomplete or short-lived immunity. In contrast, re-infection by influenza A virus (IAV) largely depends on antigenic change, suggestive of more complete immunity. Antigen presentation by dendritic cells (DC) is critical in initiating the adaptive immune response. Antigen uptake by DC induces maturational changes that include decreased expression of the chemokine receptors CCR1, CCR2, and CCR5 that maintain DC residence in peripheral tissues, and increased expression of CCR7 that mediates the migration of antigen-bearing DC to lymphatic tissue. We stimulated human monocyte-derived DC (MDDC) with virus and found that, in contrast to HPIV3 and IAV, HMPV and HRSV did not efficiently decrease CCR1, 2, and 5 expression, and did not efficiently increase CCR7 expression. Consistent with the differences in CCR7 mRNA and protein expression, MDDC stimulated with HRSV or HMPV migrated less efficiently to the CCR7 ligand CCL19 than did IAV-stimulated MDDC. Using GFP-expressing recombinant virus, we showed that the subpopulation of MDDC that was robustly infected with HRSV was particularly inefficient in chemokine receptor modulation. HMPV- or HRSV-stimulated MDDC responded to secondary stimulation with bacterial lipopolysaccharide or with a cocktail of proinflammatory cytokines by increasing CCR7 and decreasing CCR1, 2 and 5 expression, and by more efficient migration to CCL19, suggesting that HMPV and HRSV suboptimally stimulate rather than irreversibly inhibit MDDC migration. This also suggests that the low concentration of proinflammatory cytokines released from HRSV- and HMPV-stimulated MDDC is partly responsible for the low CCR7-mediated migration. We propose that inefficient migration of HRSV- and HMPV-stimulated DC to lymphatic tissue contributes to reduced adaptive responses to these viruses.  相似文献   

16.
Bordetella pertussis has a distinctive cell wall lipooligosaccharide (LOS) that is released from the bacterium during bacterial division and killing. LOS directly participates in host-bacterial interactions, in particular influencing the dendritic cells' (DC) immune regulatory ability. We analyze LOS mediated toll-like receptor (TLR) activation and dissect the role played by LOS on human monocyte-derived (MD)DC functions and polarization of the host T cell response. LOS activates TLR4-dependent signaling and induces mature MDDC able to secrete IL-10. LOS-matured MDDC enhance allogeneic presentation and skew T helper (Th) cell polarization towards a Th2 phenotype. LOS protects MDDC from undergoing apoptosis, prolonging their longevity and their functions. Compared to Escherichia coli lipopolysaccharide (LPS), the classical DC maturation stimulus, LOS was a less efficient inducer of TLR4 signaling, MDDC maturation, IL-10 secretion and allogeneic T cell proliferation and it was not able to induce IL-12p70 production in MDDC. However, the MDDC apoptosis protection exerted by LOS and LPS were comparable. In conclusion, LOS treated MDDC are able to perform antigen presentation in a context that promotes licensing of Th2 effectors. Considering these properties, the use of LOS in the formulation of acellular pertussis vaccines to potentiate protective and adjuvant capacity should be taken into consideration.  相似文献   

17.
Human dendritic cells (DC) obtained in vitro from CD34(+) progenitors (CD34-DC) or blood monocytes (mo-DC) are different DC which may be used in a model of T. gondii infection. We compared the survival, infection rate and cell surface receptor expression of both DC types after living T. gondii tachyzoite infection. CD34-DC appeared less resistant to the parasite than mo-DC. At 48h post-infection, chemokine receptors responsible for DC homing and migration were absent in mo-DC, while down regulation of CCR6 and up regulation of CCR7 was observed in CD34-DC. This result, suggesting migration ability of CD34-DC, was confirmed by in vitro migration experiments against different chemokines. Tachyzoite supernatant, used as chemokine, attracted immature CD34-DC as observed by MIP3alpha, while MIP3beta, as expected, attracted mature CD34-DC. Under similar conditions, no significant difference was noticed between mature or immature mo-DC. These data indicated that CD34-DC represent an alternative model that allows migration assay of infected DC by T. gondii.  相似文献   

18.
Although macrophages (Mphi) and monocyte-derived dendritic cells (MDDC) come from a common precursor, they are distinct cell types. This report compares the two cell types with respect to the metabolism of platelet-activating factor (PAF), a biologically active lipid mediator. These experiments were prompted by our studies of localized juvenile periodontitis, a disease associated with high IgG2 production and a propensity of monocytes to differentiate into MDDC. As the IgG2 Ab response is dependent on PAF, and MDDC selectively induce IgG2 production, we predicted that PAF levels would be higher in MDDC than in Mphi. To test this hypothesis, human MDDC were prepared by treating adherent monocytes with IL-4 and GM-CSF, and Mphi were produced by culture in M-CSF. Both Mphi and MDDC synthesized PAF; however, MDDC accumulated significantly more of this lipid. We considered the possibility that PAF accumulation in MDDC might result from reduced turnover due to lower levels of PAF acetylhydrolase (PAFAH), the enzyme that catabolizes PAF. Although PAFAH increased when monocytes differentiated into either cell type, MDDC contained significantly less PAFAH than did Mphi and secreted almost no PAFAH activity. The reduced levels of PAFAH in MDDC could be attributed to lower levels of expression of the enzyme in MDDC and allowed these cells to produce PGE(2) in response to exogenous PAF. In contrast, Mphi did not respond in this manner. Together, these data indicate that PAF metabolism may impinge on regulation of the immune response by regulating the accessory activity of MDDC.  相似文献   

19.
Herpes simplex viruses (HSV) have developed several immunoevasive strategies. Here we demonstrate a novel mechanism by which HSV type 1 may interfere with the immune response through infection of immature dendritic cells (DC) and selective downmodulation of costimulatory molecules. In our study we show productive infection of immature monocyte-derived DC, which closely resemble sessile Langerhans cells, by sequential expression of immediate-early, early, and late viral proteins and of glycoprotein D mRNA, as well as production of infectious virus of moderate titers. Infection was cytopathic, with the progressive loss of 20 to 45% of cells from 24 to 48 h after infection, with no more than 80% of DC found to be infected. These results are in contrast to those of previous findings of nonpermissive or abortive infection of monocytes and mature monocyte-derived DC. Infection of immature DC also led to selective and asynchronous downregulation of CD1a, CD40, CD54 (ICAM-1) (12 h postinfection), CD80 (24 h postinfection), and CD86 (48 h postinfection) but not of CD11c or major histocompatibility complex class I and II molecules when compared to DC exposed to UV-inactivated virus. Thus, we propose that productive infection of epidermal Langerhans cells in vivo may lead to delayed activation of T cells, allowing more time for replication of HSV type 1 in epidermal cells.  相似文献   

20.
The bactericidal/permeability-increasing protein (BPI) is thought to play an important role in killing and clearance of Gram-negative bacteria and the neutralization of endotoxin. A possible role for BPI in clearance of cell-free endotoxin has also been suggested based on studies with purified endotoxin aggregates and blood monocytes. Because the interaction of BPI with cell-free endotoxin, during infection, occurs mainly in tissue and most likely in the form of shed bacterial outer membrane vesicles ("blebs"), we examined the effect of BPI on interactions of metabolically labeled ([(14)C]-acetate) blebs purified from Neisseria meningitidis serogroup B with either human monocyte-derived macrophages or monocyte-derived dendritic cells (MDDC). BPI produced a dose-dependent increase (up to 3-fold) in delivery of (14)C-labeled blebs to MDDC, but not to monocyte-derived macrophages in the presence or absence of serum. Both, fluorescently labeled blebs and BPI were internalized by MDDC under these conditions. The closely related LPS-binding protein, in contrast to BPI, did not increase association of the blebs with MDDC. BPI-enhanced delivery of the blebs to MDDC did not increase cell activation but permitted CD14-dependent signaling by the blebs as measured by changes in MDDC morphology, surface expression of CD80, CD83, CD86, and MHC class II and secretion of IL-8, RANTES, and IP-10. These findings suggest a novel role of BPI in the interaction of bacterial outer membrane vesicles with dendritic cells that may help link innate immune recognition of endotoxin to Ag delivery and presentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号