首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regulation of rat liver fructose 2,6-bisphosphatase   总被引:17,自引:0,他引:17  
An enzyme activity that catalyzes the hydrolysis of phosphate from the C-2 position of fructose 2,6-bisphosphate has been detected in rat liver cytoplasm. The S0.5 for fructose 2,6-bisphosphate was about 15 microM and the enzyme was inhibited by fructose 6-phosphate (Ki 40 microM) and activated by Pi (KA 1 mM). Fructose 2,6-bisphosphatase activity was purified to homogeneity by specific elution from phosphocellulose with fructose by specific elution from phosphocellulose with fructose 6-phosphate and had an apparent molecular weight of about 100,000, 6-phosphofructo 2-kinase activity copurified with fructose 2,6-bisphosphatase activity at each step of the purification scheme. Incubation of the purified protein with [gamma-32P]ATP and the catalytic subunit of the cAMP-dependent protein kinase resulted in the incorporation of 1 mol of 32P/mol of enzyme subunit (Mr = 50,000). Concomitant with this phosphorylation was an activation of the fructose 2,6-bisphosphatase and an inhibition of the 6-phosphofructo 2-kinase activity. Glucagon addition to isolated hepatocytes also resulted in an inhibition of 6-phosphofructo 2-kinase and activation of fructose 2,6-bisphosphatase measured in cell extracts, suggesting that the hormone regulates the level of fructose 2,6-bisphosphate by affecting both synthesis and degradation of the compound. These findings suggest that this enzyme has both phosphohydrolase and phosphotransferase activities i.e. that it is bifunctional, and that both activities can be regulated by cAMP-dependent phosphorylation.  相似文献   

2.
Rat hepatic 6-phosphofructo-1-kinase (ATP:d-fructose-6-phosphate 1-phosphotransferase) was purified to homogeneity and its phosphorylation by the catalytic subunit of the cyclic AMP-dependent protein kinase examined. Up to 4 mol of phosphate could be incorporated per mole of tetrameric enzyme, and the phosphate was incorporated into seryl residues. Phosphorylation did not alter the affinity of the enzyme for fructose 6-phosphate or fructose 2,6-bisphosphate. The rate of phosphorylation was enhanced by allosteric activators of 6-phosphofructo-1-kinase such as AMP and fructose 2,6-bisphosphate, and it was decreased by the allosteric inhibitors ATP and H+. The phosphopeptide region of the enzyme subunit was susceptible to limited proteolysis by trypsin. Removal of the phosphopeptide did not affect the subunit molecular weight nor the maximum activity of the enzyme, but it enhanced the apparent affinity of the enzyme for both fructose 6-phosphate and fructose 2,6-bisphosphate. It is concluded that the phosphopeptide region of the enzyme subunit is an important determinant of the affinity of the enzyme for its substrate as well as for the allosteric activator fructose 2,6-bisphosphate.  相似文献   

3.
The effects of cyclic AMP-dependent phosphorylation on the structural properties of rat liver fructose-1,6-bisphosphatase were investigated by uv difference spectroscopy and circular dichroism. The incorporation of 4 mol of phosphate per mole of fructose-1,6-bisphosphatase induces a significant increase in the alpha-helix content of the enzyme without affecting its spectrophotometric properties. The addition of fructose 1,6-bisphosphate or fructose 2,6-bisphosphate also affects the conformation of the enzyme. However, both the phosphorylated and the nonphosphorylated forms exhibit similar ligand-induced conformational changes. These results show that cyclic AMP-dependent phosphorylation of fructose-1,6-bisphosphatase induces a specific conformational change. They also suggest that this modification does not alter the interaction of the enzyme protein with fructose 1,6-bisphosphate and fructose 2,6-bisphosphate.  相似文献   

4.
Fructose 2,6-bisphosphate is the most potent activator of 6-phosphofructo-1-kinase, a key regulatory enzyme of glycolysis in animal tissues. This study was prompted by the finding that the content of fructose 2,6-bisphosphate in frog skeletal muscle was dramatically increased at the initiation of exercise and was closely correlated with the glycolytic flux during exercise. 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, the enzyme system catalyzing the synthesis and degradation of fructose 2,6-bisphosphate, was purified from frog (Rana esculenta) skeletal muscle and its properties were compared with those of the rat muscle type enzyme expressed in Escherichia coli using recombinant DNA techniques. 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase from frog muscle was purified 5600-fold. 6-Phosphofructo-2-kinase and fructose-2,6-bisphosphatase activities could not be separated, indicating that the frog muscle enzyme is bifunctional. The enzyme preparation from frog muscle showed two bands on sodium dodecylsulphate polyacrylamide gel electrophoresis. The minor band had a relative molecular mass of 55800 and was identified as a liver (L-type) isoenzyme. It was recognized by an antiserum raised against a specific amino-terminal amino acid sequence of the L-type isoenzyme and was phosphorylated by the cyclic AMP-dependent protein kinase. The major band in the preparations from frog muscle (relative molecular mass = 53900) was slightly larger than the recombinant rat muscle (M-type) isoenzyme (relative molecular mass = 53300). The pH profiles of the frog muscle enzyme were similar to those of the rat M-type isoenzyme, 6-phosphofructo-2-kinase activity was optimal at pH 9.3, whereas fructose-2,6-bisphosphatase activity was optimal at pH 5.5. However, the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase from frog muscle differed from other M-type isoenzymes in that, at physiological pH, the maximum activity of 6-phosphofructo-2-kinase exceeded that of fructose-2,6-bisphosphatase, the activity ratio being 1.7 (at pH 7.2) compared to 0.2 in the rat M-type isoenzyme. 6-Phosphofructo-2-kinase activity from the frog and rat muscle enzymes was strongly inhibited by citrate and by phosphoenolpyruvate whereas glycerol 3-phosphate had no effect. Fructose-2,6-bisphosphatase activity from frog muscle was very sensitive to the non-competitive inhibitor fructose 6-phosphate (inhibitor concentration causing 50% decrease in activity = 2 mol · l-1). The inhibition was counteracted by inorganic phosphate and, particularly, by glycerol 3-phosphate. In the presence of inorganic phosphate and glycerol 3-phosphate the frog muscle fructose-2,6-bisphosphatase was much more sensitive to fructose 6-phosphate inhibition than was the rat M-type fructose-2,6-bisphosphatase. No change in kinetics and no phosphorylation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase from frog muscle was observed after incubation with protein kinase C and a Ca2+/calmodulin-dependent protein kinase. The kinetics of frog muscle 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, although they would favour an initial increase in fructose 2,6-bisphosphate in exercising frog muscle, cannot fully account for the changes in fructose 2,6-bisphosphate observed in muscle of exercising frog. Regulatory mechanisms not yet studied must be involved in working frog muscle in vivo.Abbreviations BSA bovine serum albumin - Ca/CAMK Ca2+/calmodulin-dependent protein kinase (EC 2.7.1.37) - CL anti-l-type PFK-21 FBPase-2 antiserum - DTT dithiothreitol - EP phosphorylated enzyme intermediate - FBPase-2 fructose-2,6-bisphosphatase (EC 3.1.3.46) - F2,6P2 fructose 2,6-bisphosphate - I0,5 inhibitor concentration required to decrease enzyme activity by 50% - MCL-2 anti-PFK-2/FBPase-2 antiserum - Mr relative molecular mass - PEG polyethylene glycol - PFK-1 6-phosphofructo-1-kinase (EC 2.7.1.11) - PKF-2 6-phosphofructo-2-kinase (EC 2.7.1.105) - PKA protein kinase A = cyclic AMP-dependent protein kinase (EC 2.7.1.37) - PKC protein kinase C (EC 2.7.1.37) - SDS sodium dodecylsulphate - SDS-PAGE sodium dodecylsulphate polyacrylamide gel electrophoresis - U unit of enzyme activity  相似文献   

5.
The addition of glucagon (10?6 M) to an incubation mixture containing 32Pi and hepatocytes isolated from livers of rats fed ad libitum results in both a 3-fold increased incorporation of 32P into L-type pyruvate kinase and a decreased catalytic activity. The 32P incorporated into pyruvate kinase was covalently bound to the enzyme as evidenced by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. In addition, exogenous cyclic AMP (10?3 M) stimulated the phosphorylation and the suppression of catalytic activity to a similar extent. On the other hand, insulin (10?7 M) had essentially no effect on the incorporation of 32P into pyruvate kinase or on its catalytic activity under the conditions used in this study. These results suggest that phosphorylation of pyruvate kinase invivo is stimulated by glucagon via cyclic AMP and cyclic AMP-dependent protein kinase and that the activity of the enzyme is, at least in part, regulated by a phosphorylation-dephosphorylation mechanism.  相似文献   

6.
Fructose 2,6-bisphosphate was identified in Saccharomyces cerevisiae grown on glucose both by its property to be an acid-labile stimulator of 6-phosphofructo 1-kinase and by its ability to be quantitatively converted into fructose 6-phosphate under mild acid conditions. Fructose 2,6-bisphosphate was undetectable in cells grown on non-glucose sources. When glucose was added to the culture, fructose 2,6-bisphosphate was rapidly synthesized, reaching within 1 min concentrations able to cause a profound inhibition of fructose 1,6-bisphosphatase and a great stimulation of 6-phosphofructo 1-kinase.  相似文献   

7.
Pieces of rat epididymal adipose tissue were incubated in medium containing [32P]phosphate for 2 h to achieve steady-state labelling of intracellular phosphoproteins and then with or without hormones for a further 15 min. Phosphofructokinase was rapidly isolated from the tissue by use of either Blue Dextran-Sepharose chromatography or immunoprecipitation with antisera raised against phosphofructokinase purified from rat interscapular brown adipose tissue. Similar extents of incorporation of 32P into phosphofructokinase were measured by both techniques. Exposure of the tissue to adrenaline or the beta-agonist isoprenaline increased phosphorylation by about 5-fold (to about 1.4 mol of phosphate/mol of enzyme tetramer). No change in phosphorylation was detected with the alpha-agonist phenylephrine, but exposure to insulin resulted in an approx. 2-fold increase. The increased phosphorylation observed with isoprenaline was found to be associated with a decrease in the apparent Ka for fructose 2,6-bisphosphate similar to that observed on phosphorylation of phosphofructokinase purified from rat epididymal white adipose tissue with the catalytic subunit of cyclic AMP-dependent protein kinase. These results support the view [Sale & Denton (1985) Biochem. J. 232, 897-904] that an increase in cyclic AMP in adipose tissue may result in an increase in glycolysis through the phosphorylation of phosphofructokinase by cyclic AMP-dependent protein kinase.  相似文献   

8.
6-Phosphofructo-2-kinase and fructose-2,6-bisphosphatase activities were copurified to homogeneity from bovine liver. The purification scheme consisted of polyethylene glycol precipitation, anion-exchange and Blue-Sepharose chromatography, substrate elution from phosphocellulose, and gel filtration. The bifunctional enzyme had an apparent molecular weight of 102,000 and consisted of two subunits (Mr 49,000). The kinase had a Km for ATP of 12 microM and a S0.5 for fructose 6-phosphate of 150 microM while the bisphosphatase had a Km for fructose 2,6-bisphosphate of 7 microM. Both activities were subject to modulation by various effectors. Inorganic phosphate stimulated both activities, while alpha-glycerolphosphate inhibited the kinase and stimulated the bisphosphatase. The pH optimum for the 6-phosphofructo-2-kinase activity was 8.5, while the fructose-2,6-bisphosphatase reaction was maximal at pH 6.5. Incubation of the purified enzyme with [gamma-32P]ATP and the catalytic subunit of the cAMP-dependent protein kinase resulted in 32P incorporation to the extent of 0.7 mol/mol enzyme subunit with concomitant inhibition of the kinase activity and activation of the bisphosphatase activity. The mediation of the bisphosphatase reaction by a phosphoenzyme intermediate was suggested by the isolation of a stable labeled phosphoenzyme when the enzyme was incubated with fructose 2,6-[2-32P]bisphosphate. The pH dependence of hydrolysis of the phospho group suggested that it was linked to the N3 of a histidyl residue. The 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase from bovine liver has properties essentially identical to those of the rat liver enzyme, suggesting that hepatic fructose 2,6-bisphosphate metabolism is under the same control in both species.  相似文献   

9.
The enzyme, D-erythrodihydroneopterin triphosphate synthetase from rat brain was observed to have a significantly lower specific activity than that from liver due to their degree of dephosphorylation during preparation. The brain enzyme could be phosphorylated in vitro in presence of [32P]-ATP and protein kinase, resulting in an increased specific activity. Isolation of brain enzyme in presence of 0.8 M NaF allowed recovery of the enzyme phosphorylated at residue 67 (serine) as determined by a new assay for phosphate. This enzyme is present in synaptosomes and its state of phosphorylation may regulate the rate at which dihydrobiopterin, the precursor of the hydroxylase cofactor (tetrahydrobiopterin, BH4), is synthesized by synaptosomes.  相似文献   

10.
The plastid isozyme of phosphofructokinase from developing castor oil seeds is stimulated by low concentrations of fructose 2,6-bisphosphate when assayed at pH 7.0. The stimulation involves a shift in fructose 6-phosphate kinetics from sigmoidal to near hyperbolic. The plastid isozyme is unaffected by fructose 2,6-bisphosphate when assayed at pH 8.0, and the cytosolic isozyme is unaffected at either pH 7.0 or 8.0. There is no interaction between fructose 2,6-bisphosphate and the other regulators of the Ricinus phosphofructokinases; phosphoenolpyruvate, 2-phosphoglycerate, 3-phosphoglycerate and inorganic phosphate.  相似文献   

11.
A purification procedure for rat hepatic fructose-1,6-bisphosphatase, described earlier, has been improved, resulting in an enzyme preparation with a neutral pH optimum and with both phosphorylatable serine residues present. The subunit Mr was 40,000. Phosphorylation in vitro with cyclic AMP-dependent protein kinase resulted in the incorporation of 1.4 mol of phosphate/mol of subunit and led to an almost 2-fold decrease in apparent Km for fructose-1,6-bisphosphate. In contrast to yeast fructose-1,6-bisphosphatase, fructose-2,6-bisphosphate had no effect on the rate of phosphorylation or dephosphorylation of the intact enzyme. The effects of the composition of the assay medium, with regard to buffering substance and Mg2+ concentration, on the apparent Km values of phosphorylated and unphosphorylated enzyme were investigated. The kinetics of phosphorylated and unphosphorylated fructose-1,6-bisphosphatase were studied with special reference to the inhibitory effects of adenine nucleotides and fructose-2,6-bisphosphate. Unphosphorylated fructose-1,6-bisphosphatase was more susceptible to inhibition by both AMP and fructose 2,6-bisphosphate than phosphorylated enzyme, at high and low substrate concentrations. Both ATP and ADP had a similar effect on the two enzyme forms, ADP being the more potent inhibitor. Finally, the combined effect of several inhibitors at physiological concentrations was studied. Under conditions resembling the gluconeogenic state, phosphorylated fructose-1,6-bisphosphatase was found to have twice the activity of the unphosphorylated enzyme.  相似文献   

12.
Direct phosphorylation of purified rat brain guanylate cyclase by cyclic AMP-dependent protein kinase is demonstrated. In the presence of [γ-32P]ATP, 32P was incorporated into the protein to the extent of 0.8 to 0.9 mol/mol of guanylate cyclase. The presence of 32P in the guanylate cyclase molecule was demonstrated by gel-filtration and by autoradiography after gel electrophoresis. The phosphorylation was accompanied by an increase in enzyme activity, characterized by an increase of VM. These results suggest that the activity of guanylate cyclase may be regulated in vivo by phosphorylation.  相似文献   

13.
Fructose-1,6-bisphosphatase purified from Saccharomyces cerevisiae is phosphorylated in vitro by a cAMP-dependent protein kinase. The phosphorylation reaction incorporates 1 mol of phosphate/mol of enzyme and is greatly stimulated by fructose 2,6-bisphosphate. Fructose 2,6-bisphosphate acts upon fructose-1,6-bisphosphatase, not on the protein kinase. The phosphorylation of fructose 1,6-bisphosphatase lowers its activity by about 50%. The characteristics of the phosphorylation reaction in vitro show that this modification is responsible for the inactivation of fructose-1,6-bisphosphatase observed in vivo.  相似文献   

14.
A new procedure for the purification of phosphofructokinase using Blue Dextran-Sepharose is described. This allowed an approx. 1000-fold purification of phosphofructokinase from rat white and brown adipose tissue to be achieved in essentially a single step. The purified enzymes from both tissues were found to exhibit hyperbolic kinetics with fructose 6-phosphate, to be inhibited by ATP and citrate, and to be activated by 5'-AMP, phosphate and fructose 2,6-bisphosphate. The enzymes were phosphorylated by the catalytic subunit of cyclic AMP-dependent protein kinase, and phosphorylation was found to be associated with increases in activity when the enzymes were assayed under appropriate sub-optimal conditions. In particular, the phosphorylated enzymes exhibited less inhibition by ATP and the white-adipose-tissue enzyme was more sensitive to activation by fructose 2,6-bisphosphate. It is suggested that an increase in the cytoplasmic concentration of cyclic AMP in tissues other than liver may result in an increase in glycolysis through the phosphorylation of phosphofructokinase by cyclic AMP-dependent protein kinase.  相似文献   

15.
Glycogen and fructose 2,6-bisphosphate levels in rat liver decreased quickly after partial hepatectomy. After 7 days the glycogen level was normalized and fructose 2,6-bisphosphate concentration still remained low. The 'active' (non-phosphorylated) form of 6-phosphofructo-2-kinase varied in parallel with fructose 2,6-bisphosphate levels, whereas the 'total' activity of the enzyme decreased only after 24 h, similarly to glucokinase. The response of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase from hepatectomized rats (96 h) to sn-glycerol 3-phosphate and to cyclic AMP-dependent protein kinase was different from that of the enzyme from control animals and similar to that of the foetal isoenzyme.  相似文献   

16.
Binding of hexose bisphosphates to muscle phosphofructokinase   总被引:3,自引:0,他引:3  
L G Foe  S P Latshaw  R G Kemp 《Biochemistry》1983,22(19):4601-4606
On the basis of kinetic activation assays, the apparent affinity of muscle phosphofructokinase for fructose 2,6-bisphosphate was about 9-fold greater than that for fructose 1,6-bisphosphate, which in turn was about 10 times higher than that for glucose 1,6-bisphosphate. Equilibrium binding experiments showed that both fructose bisphosphates bind to phosphofructokinase with negative cooperativity; the affinity for fructose 2,6-bisphosphate was about 1 order of magnitude greater than the affinity for fructose 1,6-bisphosphate. Binding of fructose 2,6-bisphosphate to phosphofructokinase was antagonized by fructose 1,6-bisphosphate and glucose 1,6-bisphosphate and vice versa. Both fructose bisphosphates promoted aggregation of the enzyme to higher polymers as indicated by sucrose density gradient centrifugation. Other indicators of phosphofructokinase conformation such as thiol reactivity and maximum activation of in vitro phosphorylation by the catalytic subunit of cyclic AMP-dependent protein kinase gave identical results in the presence of fructose 2,6-bisphosphate, fructose 1,6-bisphosphate, or glucose 1,6-bisphosphate, indicating a common conformation is produced by all three ligands. It is concluded that the sugar bisphosphates bind to a single site on the enzyme.  相似文献   

17.
Perfused rat hearts were treated with isoprenaline (10?6M) or ouabain (5.5 × 10?6M). The phosphate contents of troponin-I and myosin P light chains were established by radiolabelling with 32P; in the case of the light chains, direct chemical analysis of total and of specifically alkali-labile phosphate was also performed. Addition of isoprenaline caused phosphorylation of both troponin-I and myosin P light chains, reaching a maximum increment, after several minutes, of 1 mol/mol and 0.30 mol/mol, respectively. The Mg2+-ATPase activities, at saturating Ca2+ concentrations, of natural actomyosin isolated from treated hearts were significantly depressed, and an inverse correlation was established between the phosphate content of troponin-I and the Vmax[Ca2+] of this ATPase activity. The Ca2+ sensitivity of the Ca2+Mg2+-ATPase was also decreased. These changes were all reversed by an incubation permitting dephosphorylation of proteins by endogenous phosphatases.Treatment of hearts with ouabain caused no increment in troponin-I phosphorylation, but increased the P light chain phosphate content to a maximum of 0.30 mol/mol after some minutes. A positive correlation was evident between phosphate content of the light chains (in all experiments) and the maximum myosin Ca2+-ATPase activities. In addition, the Vmax[ATP] of the Ca2+Mg2+-ATPase of natural actomyosin was increased when light chain phosphorylation had occurred in the absence of troponin-I phosphorylation. P-light chain phosphorylation did not affect the Ca2+ sensitivity of Ca2+Mg2+-ATPase activity.We suggest that the effects of phosphorylation of troponin-I are to diminish thin filament sensitivity to Ca2+, and to decrease the efficiency of the transduction process along neighbouring actin monomers, such that the number of actin-myosin crossbridge interactions is decreased even in the presence of Ca2+ excess. Phosphorylation of P light chains of myosin has an activating effect on myosin Ca2+-ATPase activity, as well as on the rate of cross-bridge formation.  相似文献   

18.
The aim of this work was to identify the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2) isozyme(s) present in white adipose tissue. Ion-exchange chromatography of PFK-2 from rat epididymal fat pads yielded an elution pattern compatible with the presence of both the L (liver) and M (muscle) isozymes. This was consistent with a study of the phosphorylation of the purified adipose tissue enzyme by cAMP-dependent protein kinase, by specific labelling of the preparation with [2-32P]fructose 2,6-bisphosphate and by reaction with antibodies. Characterization of the PFK-2/FBPase-2 mRNAs showed that mature adipocytes express the mRNA that codes for the L isozyme and the two mRNAs that code for the M isozyme. Preadipocytes expressed mRNA that codes for the M isozyme. Incubation of rat epididymal fat pads with adrenaline stimulated glycolysis but decreased fructose 2,6-bisphosphate concentrations without significant inactivation of PFK-2. These results support previous findings showing that fructose 2,6-bisphosphate is not involved in the adrenaline-induced stimulation of glycolysis in white adipose tissue.  相似文献   

19.
The kinetics of fructose uptake was determined in perfused rat liver during steady-state fructose elimination. On the basis of the corresponding values of fructose concentration in the affluent and in the effluent medium, and the fructose and ATP concentration in biopsies, the kinetics of membrane transport and intracellular phosphorylation in the intact organ was calculated according to a model system. Carrier-mediated fructose transport has a high Km (67 mM) and V (30 μmoles · min?1 ·g?1). The calculated kinetic constants of the intracellular phosphorylation were compared with values obtained with an acid-treated rat liver high speed supernatant (values given in parentheses). Km with fructose 1.0 mM (0.7 mM), Km with ATP 0.54 mM (0.37 mM), V 10.3 μmoles · min?1 · g?1 (10.1 μmoles · min?1 · g?1, calculated on the basis of the highest measured rate of fructose uptake correcting the ATP concentration to saturating values). The kinetics of fructose uptake reveals that at Physiological fructose concentrations the membrane transport limits the rate of fructose uptake, thus protecting the liver from severe depletion of adenine nucleotides.  相似文献   

20.
The cytoplasmic form of fructose 1,6-bisphosphatase (FBPase) was purified over 60-fold from germinating castor bean endosperm (Ricinus communis). The kinetic properties of the purified enzyme were studied. The preparation was specific for fructose 1,6-bisphosphate and exhibited optimum activity at pH 7.5. The affinity of the enzyme for fructose 1,6-bisphosphate was reduced by AMP, which was a mixed linear inhibitor. Fructose 2,6-bisphosphate also inhibited FBPase and induced a sigmoid response to fructose 1,6-bisphosphate. The effects of fructose 2,6-bisphosphate were enhanced by low levels of AMP. The latter two compounds interacted synergistically in inhibiting FBPase, and their interaction was enhanced by phosphate which, by itself, had little effect. The enzyme was also inhibited by ADP, ATP, UDP and, to a lesser extent, phosphoenolpyruvate. There was no apparent synergism between UDP, a mixed inhibitor, and fructose 2,6-bisphosphate. Similarly ADP, a predominantly competitive inhibitor, did not interact with fructose 2,6-bisphosphate. Possible roles for fructose 2,6-bisphosphate and the other effectors in regulating FBPase are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号