共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Fragile X syndrome, the most common form of inherited mental impairment in humans, is caused by the absence of the fragile X mental retardation protein (FMRP) due to a CGG trinucleotide repeat expansion in the 5′-untranslated region (UTR) and subsequent translational silencing of the fragile x mental retardation-1 (FMR1) gene. FMRP, which is proposed to be involved in the translational regulation of specific neuronal messenger RNA (mRNA) targets, contains an arginine-glycine-glycine (RGG) box RNA binding domain that has been shown to bind with high affinity to G-quadruplex forming mRNA structures. FMRP undergoes alternative splicing, and the binding of FMRP to a proposed G-quadruplex structure in the coding region of its mRNA (named FBS) has been proposed to affect the mRNA splicing events at exon 15. In this study, we used biophysical methods to directly demonstrate the folding of FMR1 FBS into a secondary structure that contains two specific G-quadruplexes and analyze its interactions with several FMRP isoforms. Our results show that minor splice isoforms, ISO2 and ISO3, created by the usage of the second and third acceptor sites at exon 15, bind with higher affinity to FBS than FMRP ISO1, which is created by the usage of the first acceptor site. FMRP ISO2 and ISO3 cannot undergo phosphorylation, an FMRP post-translational modification shown to modulate the protein translation regulation. Thus, their expression has to be tightly regulated, and this might be accomplished by a feedback mechanism involving the FMRP interactions with the G-quadruplex structures formed within FMR1 mRNA. 相似文献
3.
Imprinting effect in premature ovarian failure confined to paternally inherited fragile X premutations 总被引:6,自引:0,他引:6
下载免费PDF全文

Hundscheid RD Sistermans EA Thomas CM Braat DD Straatman H Kiemeney LA Oostra BA Smits AP 《American journal of human genetics》2000,66(2):413-418
Fragile X premutations are considered to be a risk factor for premature ovarian failure (POF), which is usually defined as menopause at age <40 years. Since premutations may be inherited from either the mother or the father, we evaluated the influence of the inheritance pattern on the duration of reproductive life in female carriers. The occurrence of POF and age at menopause in women with a paternally inherited fragile X premutation (PIP) were compared to those in women with a maternally inherited fragile X premutation (MIP). We identified 148 women in whom the parental origin of the premutation could be determined. In 109 of these women we were able to establish whether POF had occurred: 82 women had a PIP, and 27 had a MIP. Twenty-three of the women (28%) with a PIP had POF, versus only 1 (3.7%) with a MIP (two -tailed Fisher's exact test; P=. 007). Kaplan-Meier analysis of all 148 premutations showed that the age at menopause was significantly lower in the women with a PIP than in the woman with a MIP (Breslow test in Kaplan-Meier analysis; P=.003). Our data strongly suggest that, when POF occurs in fragile X premutation carriers, a considerable proportion of the premutations are inherited paternally (parent-of-origin effect). We hypothesize that this may be owing to a paternal genomic imprinting effect. 相似文献
4.
The Fragile X syndrome is, in the majority of cases, caused by CGG trinucleotide amplification within the FMR1 gene. The syndrome is rarely caused by point mutations or deletions. Here we describe a family with 2 sons and 1 daughter affected by Fragile X syndrome and 2 unaffected daughters whose carrier status was unknown prior to this study. Analysis of DNA from each of the 2 daughters revealed two alleles in the normal size range. However, 1 daughter carried one allele of 10 CGG repeats that was not present in either the mother or the father. No evidence for mosaicism could be detected. Haplotype analysis of flanking polymorphic markers revealed that the 10 CGG allele was derived from the mutated allele inherited from the mother. Thus, this case most likely represents an additional case of a reverse mutation from a premutation allele in a female to a normal-sized allele in the offspring. It remains unclear how frequently such reversion events occur. The observation has important consequences for genetic testing, because many laboratories prescreen for the Fragile X syndrome by determining the length of the CGG repeat using PCR. If this shows alleles in the normal size range, a diagnosis of Fragile X syndrome is considered to be excluded. Because the routine PCR and/or Southern blot analyses alone may yield false-negative results in cases of a regression of the number of CGG repeats, we strongly recommend the inclusion of fragment length or haplotype analysis when determining the carrier status within Fragile X syndrome families. 相似文献
5.
Weerasak Chonchaiya Flora Tassone Paul Ashwood David Hessl Andrea Schneider Luis Campos Danh V. Nguyen Randi J. Hagerman 《Human genetics》2010,128(5):539-548
An increased prevalence of autoimmune diseases in family members of children with autism spectrum disorders (ASD) has been previously reported. ASD is also a common problem co-occurring in children with fragile X syndrome (FXS). Why ASD occurs in some individuals with FXS, but not all, is largely unknown. Furthermore, in premutation carrier mothers, there is an increased risk for autoimmune diseases. This study compared the rate of ASD and other neurodevelopmental/behavioral problems in 61 children with FXS born to 41 carrier mothers who had autoimmune disease and in 97 children with FXS of 78 carrier mothers who did not have autoimmune disease. There were no significant differences in the mean age (9.61 ± 5.59 vs. 9.41 ± 6.31, P = 0.836), cognitive and adaptive functioning in children of mothers with and without autoimmune disease. Among children whose mothers had autoimmune disease, the odds ratio (OR) for ASD was 1.27 (95% CI 0.62–2.61, P = 0.5115). Interestingly, the OR for seizures and tics was 3.81 (95% CI 1.13–12.86, P = 0.031) and 2.94 (95% CI 1.19–7.24, P = 0.019), respectively, in children of mothers with autoimmune disease compared to children of mothers without autoimmune disease. In conclusion, autoimmune disease in carrier mothers was not associated with the presence of ASD in their children. However, seizures and tics were significantly increased in children of mothers with autoimmune disease. This suggests a potential new mechanism of seizure and tic exacerbation in FXS related to an intergenerational influence from autoimmunity in the carrier mother. 相似文献
6.
Variability among individuals in the severity of fragile X syndrome (FXS) is influenced by epigenetic methylation mosaicism, which may also be common in other complex disorders. The epigenetic signal of dense promoter DNA methylation is usually associated with gene silencing, as was initially reported for FMR1 alleles in individuals with FXS. A paradox arose when significant levels of FMR1 mRNA were reported for some males with FXS who had been reported to have predominately methylated alleles. We have used hairpin-bisufite PCR, validated with molecular batch-stamps and barcodes, to collect and assess double-stranded DNA methylation patterns from these previously studied males. These patterns enable us to distinguish among three possible forms of methylation mosaicism, any one of which could explain FMR1 expression in these males. Our data indicate that cryptic inter-cell mosaicism in DNA methylation can account for the presence of FMR1 mRNA in some individuals with FXS. 相似文献
7.
Castellví-Bel S Fernández-Burriel M Rifé M Jiménez D Mallolas J Sánchez A Ramos F Milà M 《Human genetics》2000,107(2):195-196
Molecular screening programs in mentally retarded individuals have been performed in several populations worldwide. One finding has been an excess of FMR1 intermediate alleles in a population with learning difficulties. However, other published reports with similar characteristics did not corroborate those previous results. In order to contribute additional data from our population, we studied 563 patients affected with nonspecific mental retardation (MRX) that did not present a CGG expansion in the FMR1 gene and 208 individuals as a control population. Forty MRX patients presented alleles within the intermediate range. Among them, one case showed a pattern of expression of the FMR1 protein (FMRP) concordant with a fragile X syndrome case with an intermediate allele/full mutation mosaicism, although it was not detected by Southern blot analysis. Statistical analysis was performed again showing no statistically significant difference regarding the intermediate allele frequency in the MRX and control populations. This finding is in agreement with the hypothesis that the incidence of intermediate FMR1 alleles in MRX populations does not seem to be higher than in control populations, and it emphasizes the importance of FMRP detection as a diagnostic tool for fragile X syndrome. 相似文献
8.
Sung YJ Dolzhanskaya N Nolin SL Brown T Currie JR Denman RB 《The Journal of biological chemistry》2003,278(18):15669-15678
Loss of the RNA-binding protein FMRP (fragile X mental retardation protein) leads to fragile X syndrome, the most common form of inherited mental retardation. Although some of the messenger RNA targets of this protein, including FMR1, have been ascertained, many have yet to be identified. We have found that Xenopus elongation factor 1A (EF-1A) mRNA binds tightly to recombinant human FMRP in vitro. Binding depended on protein determinants located primarily in the C-terminal end of hFMRP, but the hnRNP K homology domain influenced binding as well. When hFMRP was expressed in cultured cells, it dramatically reduced endogenous EF-1A protein expression but had no effect on EF-1A mRNA levels. In contrast, the translation of several other mRNAs, including those coding for dynamin and constitutive heat shock 70 protein, was not affected by the hFMRP expression. Most importantly, EF-1A mRNA and hFMR1 mRNA were coimmunoprecipitated with hFMRP. Finally, in fragile X lymphoblastoid cells in which hFMRP is absent, human EF-1A protein but not its corresponding mRNA is elevated compared with normal lymphoblastoid cells. These data suggest that hFMRP binds to EF-1A mRNA and also strongly argue that FMRP negatively regulates EF-1A expression in vivo. 相似文献
9.
Tzountzouris J Kennedy D Skuterud M Connolly-Wilson M Holden JJ Lin CC Mak-Tam E Somerville MJ Summers AM Allingham-Hawkins DJ 《Genetic testing》2000,4(3):235-239
The Fragile X syndrome is a common form of X-linked mental retardation, affecting approximately 1 in 4,000 males. Since the discovery of the FMR1 gene responsible for the syndrome, molecular, rather than cytogenetic, diagnosis of Fragile X syndrome has become the gold standard. Numerous molecular diagnostic centers worldwide use PCR and Southern blotting to characterize the size of the CGG repeats within the gene, expansion of which has been shown to be associated with the vast majority of cases of Fragile X syndrome. Instability of this repeat through successive generations has been demonstrated in many patients and has been associated with numerous factors, including repeat length and molecular structure of the repeat. Nine males with normal-size alleles that exhibit repeat length instability by the presence of a second normal length distinct band by repeated PCR analysis from peripheral lymphocytes are reported. Many hypotheses addressing the reason for this apparent instability were tested without elucidating the underlying molecular causes, including cytogenetic analysis, sequence analysis of the repeat locus, and analysis of flanking dinucleotide repeat loci. All patients exhibited a normal complement of sex chromosomes by cytogenetic and molecular analysis. These results from the widely used PCR analysis illustrate an interesting molecular phenomenon and raise many questions relating to the factors and mechanisms involved in trinucleotide instability as well as having implications for the diagnostic testing of the Fragile X syndrome. 相似文献
10.
The CGG triplet repeat found within the 5'UTR of the FMR1 gene is involved in the pathogenesis of both fragile X syndrome and fragile X-associated tremor/ataxia syndrome (FXTAS). The repeat has been shown to form both hairpins and tetraplexes in DNA; however, the secondary structure of CGG-repeat RNA has not been well defined. To this end, we have performed NMR spectroscopy on in vitro transcribed CGG-repeat RNAs and see clear evidence of intramolecular hairpins, with no evidence of tetraplex structures. Both C*G and G*G base pairs form in the hairpin stem, though in a dynamic equilibrium of conformations. In addition, we investigated the effect of an AGG repeat interruption on hairpin stability; such interruptions are often interspersed within the CGG repeat element and are thought to modulate secondary structure of the RNA. While the AGG repeat lowers the Tm of the hairpin at low Mg2+ concentrations, this difference disappears at physiological Mg2+ levels. 相似文献
11.
12.
13.
14.
Summary Light and electron microscopic studies on testicular biopsies were carried out in two men, 40 and 44 year old, with the fra(X) form of mental retardation and macroorchidism. Distinct interstitial edema, an increased amount of lysosomal inclusions in Sertoli cells, and disturbance of spermatid differentiation were found in both probands. Additionally, some extent of tubular atrophy was demonstrated in one patient. The impairment of spermatogenesis is discussed with respect to pressure effects on the germinal epithelium due to the edema. 相似文献
15.
Summary Chromosomes at first meiosis from two males with the fra(X) form of mental retardation were studied using pachytene surface spreads and air-dried preparations. The pachytene sex bivalents showed no discontinuation of the synaptonemal complex in the terminal part of Xq corresponding to band Xq27–28 of the mitotic chromosomes. In both cases the frequency of a secondary association of Xq and Yq appeared to be increased compared with controls. The pairing behavior of autosomal bivalents in pachytene and the frequency and distribution of chiasmata in diakinesis were normal. The impairment of spermatogenesis found in these males may not be caused by a meiotic disorder, but could be related to peritubular or intratubular pressure effects on germ cells. 相似文献
16.
Mapping of FMR1, the gene implicated in fragile X-linked mental retardation, on the mouse X chromosome 总被引:2,自引:0,他引:2
A genetic map of the Cf-9 to Dmd region of the mouse X chromosome has been established by typing 100 offspring from a Mus musculus x Mus spretus interspecific backcross for the four loci Cf-9, Cdr, Gabra3, and Dmd. The following order and genetic distances in centimorgans were determined: (Cf-9)-2.4 +/- 1.7-(Cdr)-2.0 +/- 1.4-(Gabra3)-4.1 +/- 2.0-(Dmd). Six backcross offspring carrying X chromosomes with recombination events in the Cdr-Dmd region were identified. These recombination events were used to define the position of Fmr-1, the murine homologue of FMR1, which is the gene implicated in the fragile X syndrome in man, and that of DXS296h, the murine homologue of DXS296. Both Fmr-1 and DXS296h were mapped into the same recombination interval as Gabra3 on the mouse X chromosome. These findings provide strong support for the concept that the order of loci lying in the Cf-9 to Gabra3 segment of the X chromosome is highly conserved between human and mouse. 相似文献
17.
Dissecting FMR1, the protein responsible for fragile X syndrome, in its structural and functional domains. 总被引:9,自引:0,他引:9
下载免费PDF全文

S Adinolfi C Bagni G Musco T Gibson L Mazzarella A Pastore 《RNA (New York, N.Y.)》1999,5(9):1248-1258
FMR1 is an RNA-binding protein that is either absent or mutated in patients affected by the fragile X syndrome, the most common inherited cause of mental retardation in humans. Sequence analysis of the FMR1 protein has suggested that RNA binding is related to the presence of two K-homologous (KH) modules and an RGG box. However, no attempt has been so far made to map the RNA-binding sites along the protein sequence and to identify possible differential RNA-sequence specificity. In the present article, we describe work done to dissect FMR1 into regions with structurally and functionally distinct properties. A semirational approach was followed to identify four regions: an N-terminal stretch of 200 amino acids, the two KH regions, and a C-terminal stretch. Each region was produced as a recombinant protein, purified, and probed for its state of folding by spectroscopical techniques. Circular dichroism and NMR spectra of the N-terminus show formation of secondary structure with a strong tendency to aggregate. Of the two homologous KH motifs, only the first one is folded whereas the second remains unfolded even when it is extended both N- and C-terminally. The C-terminus is, as expected from its amino acid composition, nonglobular. Binding assays were then performed using the 4-nt homopolymers. Our results show that only the first KH domain but not the second binds to RNA, and provide the first direct evidence for RNA binding of both the N-terminal and the C-terminal regions. RNA binding for the N-terminus could not be predicted from sequence analysis because no known RNA-binding motif is identifiable in this region. Different sequence specificity was observed for the fragments: both the N-terminus of the protein and KH1 bind preferentially to poly-(rG). The C-terminal region, which contains the RGG box, is nonspecific, as it recognizes the bases with comparable affinity. We therefore conclude that FMR1 is a protein with multiple sites of interaction with RNA: sequence specificity is most likely achieved by the whole block that comprises the first approximately 400 residues, whereas the C-terminus provides a nonspecific binding surface. 相似文献
18.
19.
Fragile X syndrome, caused by a mutation in the Fmr1 gene, is characterized by mental retardation. Several studies reported the absence of long-term potentiation (LTP) at neocortical synapses in Fmr1 knockout (FMR1-KO) mice, but underlying cellular mechanisms are unknown. We find that in the prefrontal cortex (PFC) of FMR1-KO mice, spike-timing-dependent LTP (tLTP) is not so much absent, but rather, the threshold for tLTP induction is increased. Calcium signaling in dendrites and spines is compromised. First, dendrites and spines more often fail to show calcium transients. Second, the activity of L-type calcium channels is absent in spines. tLTP could be restored by improving reliability and amplitude of calcium signaling by increasing neuronal activity. In FMR1-KO mice that were raised in enriched environments, tLTP was restored to WT levels. Our results show that mechanisms for synaptic plasticity are in place in the FMR1-KO mouse PFC, but require stronger neuronal activity to be triggered. 相似文献
20.