首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Toxicity of four insecticides commonly used in rice pest management, chlorpyrifos, dimethoate, carbaryl and carbosulfan, to the fry of common carp was assessed through median lethal concentrations (LC50) and in vivo inhibition of the brain acetylcholinesterase (AChE) enzyme at sublethal concentrations. The 96‐h LC50 values for these four insecticides were determined to be 0.008, 26.11, 7.85 and 0.60 mg L?1 respectively. Exposure of fish to a series of sublethal concentrations (0.5–5% LC50) of each insecticide for 14 days resulted in concentration‐dependent inhibition in AChE activity in comparison with the controls. AChE activity was greatly inhibited in the fish exposed to sublethal concentrations of chlorpyrifos. Upon transfer to insecticide‐free water, AChE activities in fry exposed to 0.5 and 1% LC50 concentrations of carbaryl and carbosulfan were restored to the control level within 7–21 days whereas the fish exposed to chlorpyrifos or dimethoate did not fully recover from the insecticide‐induced anticholinesterase action. Of the four insecticides tested, chlorpyrifos was the most toxic for the fry of common carp. Although dimethoate was least toxic for the fish under acute exposure, the restoration level of normal AChE activity was slower under chronic exposure in comparison with carbaryl and carbosulfan. Hence, the use of carbamates, especially carbaryl, to control insect pests of rice in rice‐cum‐carp culture systems is recommended when considering survival, restoration of the normal AChE activity and stamina of the cultured fish.  相似文献   

2.
The aim was to study the effects of dimethoate on enzymatic targets and on the growth of Helix aspersa for different times and modes of exposure under laboratory conditions. Young snails were exposed to increasing dimethoate concentrations in the food (D.exp) or in an artificial substrate (S.exp) for 1, 2, 7 and 14 days. Both acetylcholinesterase (AChE) and carboxylesterase (CaE) activities were measured in the foot of the snails for each concentration and exposure time tested. Growth was evaluated after 7 days of exposure. AChE inhibition, dose-dependent for all lengths of exposure, was stronger in S.exp. AChE was more sensitive than CaE for both modes of exposure. IC50-7 days was 38.3μg g-1 in D.exp and 11.7μg g-1 in S.exp for AChE and was higher than 150 μg g-1 in two exposure modes for CaE. AChE activity decreased from the first day to reach maximum inhibition after 7 days of exposure. As noted for B-esterase activities, growth inhibition was stronger in S.exp and was only significant for AChE inhibition of >90%. The present results show that AChE activity could be used to give early warning of toxic effects of dimethoate in terrestrial gastropods.  相似文献   

3.
The aim was to study the effects of dimethoate on enzymatic targets and on the growth of Helix aspersa for different times and modes of exposure under laboratory conditions. Young snails were exposed to increasing dimethoate concentrations in the food (D.exp) or in an artificial substrate (S.exp) for 1, 2, 7 and 14 days. Both acetylcholinesterase (AChE) and carboxylesterase (CaE) activities were measured in the foot of the snails for each concentration and exposure time tested. Growth was evaluated after 7 days of exposure. AChE inhibition, dose-dependent for all lengths of exposure, was stronger in S.exp. AChE was more sensitive than CaE for both modes of exposure. IC50(-7) days was 38.3 micrograms g-1 in D.exp and 11.7 micrograms g-1 in S.exp for AChE and was higher than 150 micrograms g-1 in two exposure modes for CaE. AChE activity decreased from the first day to reach maximum inhibition after 7 days of exposure. As noted for B-esterase activities, growth inhibition was stronger in S.exp and was only significant for AChE inhibition of > 90%. The present results show that AChE activity could be used to give early warning of toxic effects of dimethoate in terrestrial gastropods.  相似文献   

4.
Survivors of Spilarctia obliqua derived from 3rd instars that had ingested LC50 of imidacloprid (0.025%), dichlorvos (0.014%) and endosulfan (0.012%) were studied through the life table method. Survivorship was reduced in insecticide exposed populations as compared to 45‐day in the control groups. Egg hatching was significantly decreased for the insecticide treated populations. Total larval mortality was the highest for endosulfan (36.76%) as compared to the individuals that died among control groups (14.29%). Life expectancy (ex) was decreased gradually over time and stage of development for insecticides tested and the control groups. Dichlorvos (0.014%) has caused a significant reduction in the potential fecundity i.e. 315 females/female/generation, while 415 in the unexposed cohorts. Net reproductive rate (Ro) was the lowest in endosulfan (118.47 females/female/generation) treatment followed by dichlorvos (141.97), imidacloprid (144.49) and the control groups (272.42). Similarly, the intrinsic rate of increase (rm) was substantially decreased after exposure with endosulfan (0.124 females/female/day) as compared to 0.135 in the unexposed cohort. The finite rate of increase (λ) was not significantly different among the insecticide treatments and control groups. Mean generation time was significantly reduced after exposure to dichlorvos (37.19 days). However, 41.34 days were required to complete one generation by S. obliqua in the absence of insecticides. Based on these results, population of S. obliqua would double in 5.19 days under the influence of dichlorvos while requiring 5.13 days for unexposed cohorts.  相似文献   

5.
BACKGROUND: Dimethoate (O,O-dimethyl-S-(N-methylcarbamoyl-methyl) phosphorodithioate), an organophosphate insecticide, was examined for its potential to produce developmental toxicity in rats after oral administration. METHODS: Pregnant Fischer 344 rats were given sublethal doses of 0 (corn oil), 7, 15, and 28 mg/kg/day dimethoate by gavage on gestation days (GD) 6-15. Maternal effects in 15 and 28 mg/kg/day dose groups included cholinergic signs such as tremors, diarrhea, weakness, and salivation, and depression in the maternal and fetal brain acetylcholinesterase (AChE) activities. Other maternal toxicity that included reduction in body weight and feed consumption was observed only in the treated group of 28 mg/kg/day. No maternal toxicity was apparent in the 7 mg/kg/day dose group. RESULTS: Maternal exposure to dimethoate during organogenesis significantly affected the number of live fetuses, early resorption, and mean fetal weight in the 28 mg/kg/day dose group. No external, visceral, and skeletal abnormalities were observed in any of the treated groups compared to the control. CONCLUSIONS: On the basis of the present results dimethoate can produce clinical signs of toxicity and significant inhibition of the maternal and fetal AChE activities in dose groups of 15 and 28 mg/kg/day and showed fetotoxicity without teratogenic effects at 28 mg/kg/day.  相似文献   

6.
《Biomarkers》2013,18(3):202-207
Abstract

Inhibition of cholinesterase (ChE) activity produced by a single acute intraperitoneal administration of dimethoate was studied in the wood mouse, Apodemus sylvaticus, and the common shrew, Sorex araneus, under laboratory conditions. ChE values from serum and whole blood were compared with those obtained from brain in order to obtain a non-destructive tool for predicting the severity of brain acetylcholinesterase (AChE) inhibition. In addition, serum and brain inhibition following oral exposure to dimethoate was also measured in the wood mouse. Normal ChE activity was higher in the brain and whole blood of the shrews than in wood mice. There was no difference between species in serum ChE activity. Exposure to dimethoate caused a dose-dependent reduction in ChE activity and there was a significant recovery in activity with increasing time after administration. In both species, serum and whole blood were more sensitive than brain for revealing organophosphate-induced ChE inhibition and serum was more sensitive than whole blood. Statistically significant relationships were defined between whole blood and brain ChE activity and between serum and brain ChE activity. Compared with serum, whole blood ChE activity was the more accurate predictor of brain AChE levels. The relationships between brain and serum ChE activity did not appear to be affected by the route of administration of the pesticide.  相似文献   

7.
  • 1 Mixtures of organophosphorus and pyrethroid insecticides are widely used to combat resistance in agricultural pests, although few studies have been conducted on the effects of pesticide mixtures on beneficial nontarget organisms.
  • 2 In the present study, we exposed adult females (F0) of Hylyphantes graminicola (Araneae: Linyphiidae) to fenvalerate, dimethoate and their commercially available 1 : 1 mixture (by mass). We investigated the acute toxicity of these pesticides to the exposed adults, as well as sublethal effects on reproduction and acetylcholinesterase and carboxylesterase activity. We also studied the effects of parental exposure on the size, development and enzyme activity of unexposed offspring.
  • 3 All three formulations were acutely toxic to H. graminicola, with synergism between dimethoate and fenvalerate leading to greater toxicity in the 1 : 1 mixture than for the two insecticides alone. The sublethal effects of direct pesticide exposure were a reduction in acetylcholinesterase and carboxylesterase activity and a reduction in the number of egg sacs produced by exposed spiders relative to the control spiders. The unexposed offspring of the fenvalerate and mixture exposed spiders were smaller and took longer to mature than the control spiders. Offspring of all exposed spiders also had significantly reduced carboxylesterase activity relative to control spiders.
  • 4 We concluded that the effects of parental exposure on the offspring were likely to increase their susceptibility to future pesticide exposures, and reduce the capacity of this spider to serve as a pest control agent.
  相似文献   

8.
The response of Salmonella typhimurium to low nutrient levels was determined by measuring the concentrations of lipids, carbohydrates, DNA, RNA, and proteins over a 32-day starvation period. Ultrastructural integrity was observed by transmission electron microscopy. Lipid and carbohydrate content of bacterial cells rapidly declined within the first 16 days, while DNA and proteins exhibited a more gradual decline over the 32 days of starvation. In contrast, RNA content did not decrease appreciably upon nutrient starvation. Structural damage occurred especially after 16 days of starvation. After 32 days of nutrient deprivation, we recorded degenerative cellular forms, a coccoidal cell shape, a decrease in cellular volume, and the loss of the three-layered outer membrane. The morphological and structural alterations correlated with virulence in infected animals. We observed a decrease in virulence of S. typhimurium after 9, 16, and 32 days of starvation, reaching a maximal decrease after 32 days of nutrient deprivation. The decrease in virulence correlated to surface hydrophobicity alterations, adherence to eukaryotic cells, and phagocytosis.Abbreviations BHI brain heart infusion - PBS phosphate-buffered saline - TE Tris-EDTA buffer - F t phagocytic index - K t Killing index  相似文献   

9.
Effects of starvation on the suryival period and the respiratory rate in adults of a wolf spider, Pardosa astrigera (L. Koch ), were investigated. The spiders used were divided into four groups: well-fed, starved and two limited food groups; in the latter two, each spider was supplied with one leafhopper every second or third day. Adult males and females of P. astrigera could survive for a long time; 28.8±2.7 days and 54.4±18.9 days, respectively, without any food. The longevities shown here were 73.8% for males and 78.6% for females of those of well-fed spiders, indicating that P. astrigera adults have a strong tolerance to starvation. The respiratory rate of well-fed adults showed no tendency to increase or decrease with their aging; the mean respiratory rates were 4.86×10−4 mg CO2/mg f.w. (fresh body weight)/hr for males and 3.80×10−4 mg CO2/mg f.w./hr for females. The respiratory rates of starved spiders increased during the first two days of starvation but decreased markedly from the third to the twelfth day, and thereafter retained an almost constant level for each sex. The mean respiratory rates after the twelfth day of starvation were 2.49×10−4 mg CO2/mg f.w./hr for males and 2.76×10−4 mg CO2/mg f.w./hr for females; these values were respectively 48.4% and 63.0% of those prior to starvation. The fresh body weight of starved spiders decreased linearly with time but the rate was small. The respiratory rates of the limited food groups tended to decline with time and thereby their weight losses were minimized. The decrease in the respiratory rate under starvation was considered not to be due to spider exhaustion or senescence but due to an intrinsic change in behaviour and/or metabolism, because when the spiders were supplied with ample food for five days after starvation, the respiratory rate and the body weight rapidly recovered to near the levels prior to starvation. It is suggested that starved spiders use a higher ratio of fat as catabolic substrate than normally fed or satiated ones. Feeding strategies of poikilo-therm predators are discussed.  相似文献   

10.
All free-living animals must make choices regarding which foods to eat, with the choices influencing their health and fitness. An important goal in nutritional ecology is therefore to understand what governs animals’ diet selection. Despite large variation in the availability of different food items, Peruvian spider monkeys (Ateles chamek) maintain a relatively stable daily protein intake, but allow total energy intake to vary as a function of the composition of available food items. This is referred to as protein-dominated macronutrient balancing. Here we assess the influence of this nutritional strategy on daily and seasonal nutritional intakes, estimate the nutritional value of different foods, and interpret unusual food choices. We conducted continuous all-day observations of focal spider monkeys inhabiting a semideciduous forest in Bolivia. We recorded feeding events, collected foods, and analyzed their nutrient content. By using the Geometric Framework for nutrition, we show that individuals reached their daily end-point in nutrient space —balance between protein and nonprotein energy intake— by consuming nutritionally balanced foods or by alternating between nutritionally complementary foods. The macronutritionally balanced figs of Ficus boliviana were their primary staple food and therefore dominated their overall nutritional intake. Our results also demonstrate that spider monkeys consumed a diverse array of ripe fruits to overcome periods of fig scarcity rather than vice versa; they could obtain sufficient protein on a diet of pure fruit; and unripe figs constituted a nutritionally rewarding and reliable food resource. We hope that the approaches taken and the conclusions reached in this study will catalyze further inquiries into the nutritional ecology of frugivorous primates.  相似文献   

11.
Acetylcholinesterace (AChE) is known to be the major target for organophophate and carbamate insecticides and biomolecular changes to AChE have been demonstrated to be an important mechanism for insecticide resistance in many insect species. In this study, AChE from three field populations of Liposcelis entomophila (Enderlein) (Psocoptera: Liposcelididae) was purified by affinity chromatography and subsequently characterized by its Michaelis‐Menten kinetics to determine if detectable changes to AChE have occurred. Bioassays revealed that the potential resistance threat of psocids in Sichuan Province (GH) was greater than either Hubei Province (WH) or Chongqing Municipality (BB). Compared to the other two populations, the WH population possessed the highest specific activity of purified AChE. Kinetic analyses indicated that the purified AChE from GH population expressed a significantly lower affinity to the substrate and a higher catalytic activity toward acetylthiocholine iodide (ATChI) (i.e., higher Km and Vmax values) than BB and WH populations. In vitro studies of AChE suggest that five inhibitors (aldicarb, eserine, BW284C51, omethoate, and propoxur) all possess strong inhibitory effects with eserine having the strongest inhibitory effect against purified AChE. According to bimolecular rate constants (ki), the purified AChE from GH population was least sensitive to all inhibitors except for omethoate. The differences in AChE among the three populations may be partially attributed to the differences in pesticide application and control practices for psocids among the three locations. © 2010 Wiley Periodicals, Inc.  相似文献   

12.
Pardosa pseudoannulata is an important predatory enemy against insect pests, such as rice planthoppers and leafhoppers. In order to understand the insecticide selectivity between P. pseudoannulata and insect pests, two acetylcholinesterase genes, Pp-ace1 and Pp-ace2, were cloned from this natural enemy. The putative proteins encoded by Pp-ace1 and Pp-ace2 showed high similarities to insect AChE1 (63% to Liposcelis entomophila AChE1) and AChE2 (36% to Culex quinquefasciatus AChE2) with specific functional motifs, which indicated that two genes might encode AChE1 and AChE2 proteins respectively. The recombinant proteins by expressing Pp-ace1 and Pp-ace2 genes in insect sf9 cells showed high AChE activities. The kinetic parameters, Vmax and Km, of two recombinant AChE proteins were significantly different. The sensitivities to six insecticides were determined in two recombinant AChEs. Pp-AChE1 was more sensitive to all tested insecticides than Pp-AChE2, such as fenobucarb (54 times in Ki ratios), isoprocarb (31 times), carbaryl (13 times) and omethoate (6 times). These results indicated that Pp-AChE1 might be the major synaptic enzyme in the spider. By sequence comparison of P. pseudoannulata and insect AChEs, the key amino acid differences at or close to the functional sites were found. The locations of some key amino acid differences were consistent with the point mutation sites in insect AChEs that were associated with insecticide resistance, such as Phe331 in Pp-AChE2 corresponding to Ser331Phe mutation in Myzus persicae and Aphis gossypii AChE2, which might play important roles in insecticide selectivity between P. pseudoannulata and insect pests. Of course, the direct evidences are needed through further studies.  相似文献   

13.
Predators are often food limited in their habitat, and some are limited by specific macronutrients (protein, lipid or carbohydrate). It is unresolved, however, to what extent and in what way food and macronutrient limitation are connected. Using a carabid beetle (Nebria brevicollis), we compared macronutrient self-selection of the animals three times: immediately after collection in the field, after being fed to satiation and nutritional balance and after a subsequent period of starvation. Both sexes were food and females lipid limited in the field; after 7–21 days of starvation both sexes increased proportional carbohydrate intake significantly. Thus, starvation created a nutrient deficit that was different from what the animals had experienced in the field. We conclude that while macronutrient limitation in nature may be influenced by hunger due to food limitation, this is not its main determinant. A nutritional imbalance of available food may override this effect.  相似文献   

14.
Changes in the susceptibility and detoxifying enzyme activity were measured in laboratory strains of Banks grass mite, Oligonychus pratensis (Banks), and twospotted spider mite, Tetranychus urticae Koch, that were repeatedly exposed to three insecticides. Three strains of each mite species were exposed to one of two pyrethroids, bifenthrin, and lambda-cyhalothrin, or an organophosphate, dimethoate, for 10 selection cycles at the LC60 for each insecticide. A reference or nonselected strain of each mite species was not exposed to insecticides. After 10 cycles of exposure, susceptibility to the corresponding insecticides, bifenthrin, lambda-cyhalothrin, and dimethoate, decreased 4.5-, 5.9-, and 289.2-fold, respectively, relative to the reference strain in the respective O. pratensis strains, and 14.8-, 5.7-, and 104.7-fold, respectively, relative to the reference strain in the respective T. urticae strains. In the bifenthrin-exposed O. pratensis strain, there was a 88.9-fold cross-resistance to dimethoate. In the dimethoate-exposed T. urticae strain, there was a 15.9-fold cross-resistance to bifenthrin. These results suggest that there may be cross-resistance between dimethoate and bifenthrin. The reduced susceptibility to dimethoate remained stable for three months in the absence of selection pressure in both mites. The decrease in susceptibility in the O. pratensis strains exposed to bifenthrin, lambda-cyhalothrin, and dimethoate was associated with a 4.7-, 3.0-, and 3.6-fold increase in general esterase activity, respectively. The decrease in susceptibility in the T. urticae strains exposed to bifenthrin and lambda-cyhalothrin was associated with a 1.3- and 1.1-fold increase in general esterase activity, respectively. The mean general esterase activity was significantly higher in the pyrethroid-exposed O. pratensis and T. urticae strains than in the nonselected strain. There was no significant increase in esterase activity in the dimethoate-exposed T. urticae strain. The decrease in susceptibility to insecticides was also associated with reduced glutathione S-transferase 1-chloro-2, 4-dinitrobenzene conjugation activity, but this did not appear to be related to changes in insecticide susceptibility. These results suggest that in these mites, the general esterases may play a role in conferring resistance to pyrethroids. However, some other untested mechanism, such as target site insensitivity, must be involved in conferring dimethoate resistance.  相似文献   

15.
低剂量杀虫剂对星豹蛛捕食效应的影响及其机理   总被引:3,自引:0,他引:3  
李锐  李娜  刘佳  李生才  洪坚平 《生态学报》2014,34(10):2629-2637
探讨低剂量杀虫剂对蜘蛛捕食效应的影响及其生化机理。采用药膜法,测定了低剂量吡虫啉作用下,星豹蛛和甘蓝蚜敏感性、捕食效应以及成蛛体内乙酰胆碱酯酶(AChE)、谷胱甘肽S-转移酶(GSTs)、超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和中肠蛋白消化酶的活力变化。低剂量农药作用下,星豹蛛对甘蓝蚜的功能反应类型为HollingⅡ型,与对照组相比,随着猎物密度的增大星豹蛛的捕食量增加,寻找效应降低,对猎物的处理时间Th缩短,从而增强了对猎物的捕食作用;低剂量农药处理后,星豹蛛体内AChE和GSTs活性均显著低于对照组(P0.05),说明酶活性受到抑制,且抑制作用随吡虫啉浓度的增大而加强,随作用时间的延长而减弱;SOD,CAT和中肠蛋白消化酶活性显著增强,与对照组相比存在显著或极显著差异(P0.05),且随吡虫啉浓度增大和作用时间的延长而逐渐降低,最后接近对照组。低剂量杀虫剂作用下,蜘蛛体内AChE活性受到抑制,AChE敏感性降低,对神经递质乙酰胆碱的分解作用下降,使蜘蛛的兴奋性增加;GSTs、SOD、CAT等代谢酶活性发生变化,使蜘蛛的新陈代谢加速,从而刺激捕食;中肠蛋白消化酶的活性增强,提高了对猎物的消化吸收功能。总之,在低剂量杀虫剂作用下,星豹蛛通过外在的捕食行为和体内一系列酶系生理生化反应的综合作用促进蜘蛛对害虫的控制作用。  相似文献   

16.
Pesticides are an essential part of agricultural practices that ward off pathogens and diseases from the agricultural crop. However, apart from target organisms, these chemicals also have adverse effects on non-target organisms. Dimethoate is an insecticide used extensively in agriculture and horticulture practices worldwide. We used the silkworm Bombyx mori as a model organism to study the effect of commercial formulation of dimethoate (Dimethoate-30% EC) on the gut, silk gland, and fat body tissues. LD50 of dimethoate-30% EC on silkworm (B. mori) was 997 ppm, as reported in a previous study. We used concentrations of 25, 50, and 100 ppm in our experiments. Our results showed that sub-lethal doses of dimethoate caused weight loss and induced damage at the histological level to the mid-gut, silk gland, and fat body of B. mori. It also caused a decrease in the level of antioxidants like CAT, SOD, GPx, GSH, and GST, indicating that dimethoate has produced a shift of ROS balance towards free radical generation and therefore resulted in overall damage to this organism. Sub-lethal doses of this pesticide also caused lipid peroxidation in the silk gland, gut, and fat body of B. mori, damaging these tissues. The disruption was also seen in the mid-gut and middle silk gland at the DNA level, where it caused single-strand breaks, as was revealed by single cell gel electrophoresis studies. Damage at histological, biochemical, and molecular levels was most extreme at a concentration of 100 ppm, the highest sub-lethal concentration given to B. mori.  相似文献   

17.
Abstract

Food deprivation tests indicate that most sub-adult and adult female Latrodectus hasselti spiders would be able to endure long periods of starvation if incarcerated in cargo. The data show that, under appropriate conditions, sub-adults survive for up to 160 days and some adults for more that 300 days. Temperature is an important variable with longevity being greatest at 10°C and markedly reduced at 25°C. Sluggishness is more pronounced at lower temperatures and probably reflects reduced metabolic rates. Even after 2–3 months without food, most spiders recover when fed.

Five stages mark the progress of starvation (Indices of Starvation) and reflect a gradual decline in the spider’s normal functions. As the abdomen shrinks, with a concomitant loss of hydraulic pressure, there is a gradual decline in web-building and locomotory activities which ultimately end in the spider’s death. It is assumed that nutritional deficiency and, to a lesser extent, dehydration contribute to mortality.  相似文献   

18.
Abstract

Dimethoate is one of the organophosphate insecticides widely used in agriculture throughout the world and is an inhibitor of cholinesterase in animals. The objective of the present study was to detect oxidative stress and DNA damage induced by dimethoate in the freshwater fish Channa punctatus (C. punctatus). The LC50-96 h value of technical grade dimethoate was estimated at 19.10 μg L-1 in a semi-static system and, on the basis of the LC50 value, three concentrations were determined. The fish were exposed to these concentrations of dimethoate for 96 h and samplings were done at 24 and 96 h for assessment of oxidative stress and DNA damage. After exposure to dimethoate, the level of superoxide dismutase declined while lipid peroxidation, glutathione, induction of micronucleus and DNA damage were increased in C. punctatus as the concentration and exposure time increased. Thus our results suggest that dimethoate induces genotoxic effects which invariably accompanied and correlated with oxidative stress.  相似文献   

19.
Adult female twospotted spider mites, Tetranychus urticae Koch, reared on lima bean plants were moved to cucumber, maize, or new lima bean plants (the latter being a control) and evaluated after 24 h or 7 d for changes in susceptibility to three pesticides and in levels of related detoxification enzymes. The largest and most consistent changes were observed in mites feeding on cucumber. Susceptibility of mites on cucumber to the synthetic pyrethroids bifenthrin and lambda-cyhalothrin was greater than that of mites reared on lima bean and maize after only 24 h on the plants, and remained higher after 7 d. Mites on cucumber also were more susceptible to the organophosphate dimethoate than were mites on lima bean, but only after 7 d on the host. Susceptibility was inversely related to activities of both general esterase and glutathione S-transferase (GST) in mites on cucumber; general esterase and GST activities were 60 and 25% lower, respectively, than activities of twospotted spider mite on lima bean after 7 d of feeding. Mites on maize were slightly but significantly more susceptible than those on lima bean to bifenthrin, but not to lambda-cyhalothrin, after 7 d and to dimethoate after 24 h but not after 7 d. General esterase and GST activities in twospotted spider mite fed on maize for 24 h were 20 and 16% higher, respectively, than activities in twospotted spider mite on lima bean, but general esterase activity was 30% lower than lima bean-fed mites and GST was not different after 7 d. Thus, plant-induced changes in general esterase activity, perhaps in combination with GST activity, in twospotted spider mite appear to be inversely related to, and possibly responsible for, changes in susceptibility of twospotted spider mite to several pesticides, particularly the synthetic pyrethroids. General esterases appear to play less of a role in the detoxification of the organophosphate insecticide dimethoate.  相似文献   

20.
Expcsure of adult male albino rats to higher environmental temperature (HET) at 35° for 2–12 hr or at 45° for 1–2 hr increases hypothalamic synaptosomal acetylcholinesterase (AChE) activity. Synaptosomal AChE activity in cerebral cortex of rats exposed to 35° for 12 hr and in cerebral cortex and pons-medulla of rats exposed to 45° for 1–2 hr are also activated. AChE activity of synaptosomes prepared from normal rat brain regions incubated in-vitro at 39° or 41° for 0.5 hr increases significantly in cerebral cortex and hypothalamus. The activation of AChE in ponsmedulla is also observed when this brain region is incubated at 41° for 0.5 hr. Increase of (a) the duration of incubation at 41° and (b) the incubation temperature to 43° under in-vitro condition decreases the synaptosomal AChE activity. Lioneweaver-Burk plots indicate that (a) in-vivo and invitro HET-induced increases of brain regional synaptosomal AChE activity are coupled with an increase ofV max without any change inK m (b) very high temperature (43° under in-vitro condition) causes a decrease inV max with an increase inK m of AChE activity irrespective of brain regions. Arrhenius plots show that there is a decrease in transition temperature in hypothalamus of rats exposed to either 35° or 45°; whereas such a decrease in transition temperature of the pons-medulla and cerebral cortex regions are observed only after exposure to 45°. These results suggests that heat exposure increases the lipid fluidity of synaptosomal membrane depending on the brain region which may expose the catalytic site of the enzyme (AChE) and hence activate the synaptosomal membrane bound AChE activity in brain regions. Further the in-vitro higher temperature (43°C)-induced inhibition of synaptosomal AChE activity irrespective of brain regions may be the cause iof partial proteolysis/disaggregation of AChE oligomers and/or solubilization of this membrane-bound enzyme.To whom to address reprint requests:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号