首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 505 毫秒
1.
Of all NMR observable isotopes 19F is the one perhaps most convenient for studies on biodegradation of environmental pollutants. The reasons underlying this potential of 19F NMR are discussed and illustrated on the basis of a study on the biodegradation of fluorophenols by four Rhodococcus strains. The results indicate marked differences between the biodegradation pathways of fluorophenols among the various Rhodococcus species. This holds not only for the level and nature of the fluorinated biodegradation pathway intermediates that accumulate, but also for the regioselectivity of the initial hydroxylation step. Several of the Rhodococcus species contain a phenol hydroxylase that catalyses the oxidative defluorination of ortho-fluorinated di- and trifluorophenols. Furthermore, it is illustrated how the 19F NMR technique can be used as a tool in the process of identification of an accumulated unknown metabolite, in this case most likely 5-fluoromaleylacetate. Altogether, the 19F NMR technique proved valid to obtain detailed information on the microbial biodegradation pathways of fluorinated organics, but also to provide information on the specificity of enzymes generally considered unstable and, for this reason, not much studied so far.  相似文献   

2.
A method was developed to study the biodegradation and oxidative biodehalogenation of fluorinated phenols by 19F nuclear magnetic resonance (NMR). Characterization of the 19F NMR spectra of metabolite profiles of a series of fluorophenols, converted by purified phenol hydroxylase, catechol 1,2-dioxygenase, and/or by the yeast-like fungus Exophiala jeanselmei, provided possibilities for identification of the 19F NMR chemical shift values of fluorinated catechol and muconate metabolites. As an example, the 19F NMR method thus defined was used to characterize the time-dependent metabolite profiles of various halophenols in either cell extracts or in incubations with whole cells of E. jeanselmei. The results obtained for these two systems are similar, except for the level of muconates observed. Altogether, the results of the present study describe a 19F NMR method which provides an efficient tool for elucidating the metabolic pathways for conversion of fluorine-containing phenols by microorganisms, with special emphasis on possibilities for biodehalogenation and detection of the type of fluorocatechols and fluoromuconates involved. In addition, the method provides possibilities for studying metabolic pathways in vivo in whole cells.  相似文献   

3.
Transformations of 2-hydroxybenzoate and fluorobenzoate isomers were investigated in the strictly anaerobic Syntrophus aciditrophicus to gain insight into the initial steps of the metabolism of aromatic acids. 2-Hydroxybenzoate was metabolized to methane and acetate by S. aciditrophicus and Methanospirillum hungatei cocultures and reduced to cyclohexane carboxylate by pure cultures of S. aciditrophicus when grown in the presence of crotonate. Under both conditions, transient accumulation of benzoate but not phenol was observed, indicating that dehydroxylation occurred prior to ring reduction. Pure cultures of S. aciditrophicus reductively dehalogenated 3-fluorobenzoate with the stoichiometric accumulation of benzoate and fluorine. 3-Fluorobenzoate-degrading cultures produced a metabolite that had a fragmentation pattern almost identical to that of the trimethylsilyl (TMS) derivative of 3-fluorobenzoate but with a mass increase of 2 units. When cells were incubated with deuterated water, this metabolite had a mass increase of 3 or 4 units relative to the TMS derivative of 3-fluorobenzoate. 19F nuclear magnetic resonance spectroscopy (19F NMR) detected a metabolite in fluorobenzoate-degrading cultures with two double bonds, either 1-carboxyl-3-fluoro-2,6-cyclohexadiene or 1-carboxyl-3-fluoro-3,6-cyclohexadiene. The mass spectral and NMR data are consistent with the addition of two hydrogen or deuterium atoms to 3-fluorobenzoate, forming a 3-fluorocyclohexadiene metabolite. The production of a diene metabolite provides evidence that S. aciditrophicus contains dearomatizing reductase that uses two electrons to dearomatize the aromatic ring.  相似文献   

4.
We used isomeric fluorotoluenes as model substrates to study the catabolism of toluene by five deuteromycete fungi and one ascomycete fungus capable of growth on toluene as the sole carbon and energy source, as well as by two fungi (Cunninghamella echinulata and Aspergillus niger) that cometabolize toluene. Whole cells were incubated with 2-, 3-, and 4-fluorotoluene, and metabolites were characterized by 19F nuclear magnetic resonance. Oxidation of fluorotoluene by C. echinulata was initiated either at the aromatic ring, resulting in fluorinated o-cresol, or at the methyl group to form fluorobenzoate. The initial conversion of the fluorotoluenes by toluene-grown fungi occurred only at the side chain and resulted in fluorinated benzoates. The latter compounds were the substrate for the ring hydroxylation and, depending on the fluorine position, were further metabolized up to catecholic intermediates. From the 19F nuclear magnetic resonance metabolic profiles, we propose that diverse fungi that grow on toluene assimilate toluene by an initial oxidation of the methyl group.  相似文献   

5.
The pathways of biotransformation of 4-fluorobiphenyl (4FBP) by the ectomycorrhizal fungus Tylospora fibrilosa and several other mycorrhizal fungi were investigated by using 19F nuclear magnetic resonance (NMR) spectroscopy in combination with 14C radioisotope-detected high-performance liquid chromatography (14C-HPLC). Under the conditions used in this study T. fibrillosa and some other species degraded 4FBP. 14C-HPLC profiles indicated that there were four major biotransformation products, whereas 19F NMR showed that there were six major fluorine-containing products. We confirmed that 4-fluorobiphen-4′-ol and 4-fluorobiphen-3′-ol were two of the major products formed, but no other products were conclusively identified. There was no evidence for the expected biotransformation pathway (namely, meta cleavage of the less halogenated ring), as none of the expected products of this route were found. To the best of our knowledge, this is the first report describing intermediates formed during mycorrhizal degradation of halogenated biphenyls.  相似文献   

6.
An up-flow immobilized cell bioreactor was developed using a microbial consortium, consisting of Bacillus sp., Alcaligenes sp. and Aeromonas sp., immobilized on refractory brick pieces as immobilization support. malachite green, a model triphenylmethane dye was decolourized by more than 93% within 48 h (operating conditions: initial dye concentration 30 mg l−1; flow rate 6 ml h−1). The analytical studies based on TLC and 1H NMR showed degradation of the aromatic rings of the malachite green into simpler metabolic intermediates.  相似文献   

7.
19F NMR has recently emerged as an efficient, sensitive tool for analyzing protein binding to small molecules, and surface plasmon resonance (SPR) is also a popular tool for this purpose. Herein a combination of 19F NMR and SPR was used to find novel binders to the ATP-binding pocket of MAP kinase extracellular regulated kinase 2 (ERK2) by fragment screening with an original fluorinated-fragment library. The 19F NMR screening yielded a high primary hit rate of binders to the ERK2 ATP-binding pocket compared with the rate for the SPR screening. Hit compounds were evaluated and categorized according to their ability to bind to different binding sites in the ATP-binding pocket. The binding manner was characterized by using isothermal titration calorimetry and docking simulation. Combining 19F NMR with other biophysical methods allows the identification of multiple types of hit compounds, thereby increasing opportunities for drug design using preferred fragments.  相似文献   

8.
In spite of the variety of initial reactions, the aerobic biodegradation of aromatic compounds generally yields dihydroxy intermediates for ring cleavage. Recent investigation of the degradation of nitroaromatic compounds revealed that some nitroaromatic compounds are initially converted to 2-aminophenol rather than dihydroxy intermediates by a number of microorganisms. The complete pathway for the metabolism of 2-aminophenol during the degradation of nitrobenzene by Pseudomonas pseudoalcaligenes JS45 has been elucidated previously. The pathway is parallel to the catechol extradiol ring cleavage pathway, except that 2-aminophenol is the ring cleavage substrate. Here we report the elucidation of the pathway of 2-amino-4-methylphenol (6-amino-m-cresol) metabolism during the degradation of 4-nitrotoluene by Mycobacterium strain HL 4-NT-1 and the comparison of the substrate specificities of the relevant enzymes in strains JS45 and HL 4-NT-1. The results indicate that the 2-aminophenol ring cleavage pathway in strain JS45 is not unique but is representative of the pathways of metabolism of other o-aminophenolic compounds.  相似文献   

9.
Fluorine atoms are often incorporated into drug molecules as part of the lead optimization process in order to improve affinity or modify undesirable metabolic and pharmacokinetic profiles. From an NMR perspective, the abundance of fluorinated drug leads provides an exploitable niche for structural studies using 19F NMR in the drug discovery process. As 19F has no interfering background signal from biological sources, 19F NMR studies of fluorinated drugs bound to their protein receptors can yield easily interpretable and unambiguous structural constraints. 19F can also be selectively incorporated into proteins to obtain additional constraints for structural studies. Despite these advantages, 19F NMR has rarely been exploited for structural studies due to its broad lines in macromolecules and their ligand complexes, leading to weak signals in 1H/19F heteronuclear NOE experiments. Here we demonstrate several different experimental strategies that use 19F NMR to obtain ligand–protein structural constraints for ligands bound to the anti-apoptotic protein Bcl-xL, a drug target for anti-cancer therapy. These examples indicate the applicability of these methods to typical structural problems encountered in the drug development process.  相似文献   

10.
《ImmunoMethods》1994,4(2):148-162
In this paper, we review our NMR studies of human peripheral blood T lymphocytes. These studies focus on the physiological and biochemical alterations accompanying cell cycle progression. In particular, we have characterized phosphorus metabolism, glucose utilization and lactate production, and pH regulation using 31P, 13C, and 19F NMR, respectively. These studies required developing new methods for monitoring on-line stimulation of quiescent T cells under sterile, physiological conditions (i.e., CO2/HCO3 buffer, 37°C) for prolonged periods of time. A perfusion system optimized for T lymphocytes inside agarose beads is described. In addition, custom-designed 19F NMR pH indicators were synthesized, characterized, and used to determine intracellular pH in quiescent lymphocytes, stimulated lymphocytes, and lymphocytes undergoing the G0-G1, transition. These unique molecular probes are described in detail. Finally, the physiological relevance of our findings regarding carbon metabolism and pH regulation is considered in the context of mitogenesis .  相似文献   

11.
Nucleophilic aromatic substitution (SNAr) chemistry has been applied to develop many functionalized pentafluorobenzene derivatives. Those compounds are highly specific at the para position of the fluorinated ring. Therefore, they are typical adducts for the preparation of antioxidant molecular systems. In this context, we report the use of SNAr chemistry as a suitable and simple approach for the synthesis of fluorescent antioxidant perfluorinated materials bearing ether bonds in various para-substituted alkoxy chains and with high purity and excellent yields. The fluoroterphenyl core was prepared via alkylation, Cu(I)-assisted decarboxylation, and cross-coupling using the potassium salt of fluorobenzoate, followed by the reaction with different alcohols. The structures of the synthesized fluoroterphenyl adducts were investigated using FT-IR, 1H NMR, 13C NMR, and 19F NMR spectroscopy. The emission spectra and absorption spectra showed solvatochromism. The newly prepared tetrafluoroterphenyl analogues were investigated by antioxidant examination using the 2,2-diphenyl-1-picrylhydrazyl assay. Results were compared with ascorbic acid and butylated hydroxytoluene as references, and revealed that the tetrafluoroterphenyl analogues containing a decyl chain had the highest activity, with an IC50 value of 22.36 ± 0.19 g/ml. The produced tetrafluoroterphenyl analogues were used in molecular docking strategies with a Protein Data Bank protein ID 5IKQ. The antioxidant investigations and docking results were convergent.  相似文献   

12.
Manganese-dependent homoprotocatechuate 2,3-dioxygenase (MndD) is an enzyme taking part in the catabolism of aromatic compounds in the environment. It uses molecular oxygen to perform an extradiol cleavage of the ring of the ortho-dihydroxylated aromatic compound homoprotocatechuate. A theoretical investigation of the reaction path for MndD was performed using hybrid density functional theory with the B3LYP functional, and a catalytic mechanism has been suggested. Models of different size were built from the crystal structure of the enzyme and were used in the search for intermediates and transition states. It was found that the substrate first binds at the active site as a monoanion. Next the dioxygen is bound, forming a hydroperoxo intermediate. The O–O bond, activated in this way undergoes homolytic cleavage leading to an oxyl and then to an extra epoxide radical with subsequent opening of the aromatic ring. The lactone ring is then hydrolyzed by the Mn-bound OH group, and the final product is obtained in the last reaction steps. Alternative reaction paths were considered, and their calculated barriers were found to be higher than for the suggested mechanism. The selectivity between the extra- and intra-cleavage pathways was found to be determined by the barriers for the decay of the radical state.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

13.
Anaerobic benzoate degradation by the phototrophic bacterium Rhodopseudomonas palustris has been proposed to proceed via aromatic ring reduction reactions leading to cyclohex-1-ene-1-carboxyl-coenzyme A (CoA) formation. The alicyclic product is then proposed to undergo three β-oxidation-like modifications resulting in ring cleavage. Illuminated suspensions of benzoate-grown cells converted [7-14C]cyclohex-1-ene-1-carboxylate to intermediates that comigrated with cyclohex-1-ene-1-carboxyl-CoA, 2-hydroxycyclohexanecar-boxyl-CoA, 2-ketocyclohexanecarboxyl-CoA, and pimelyl-CoA by thin-layer chromatography. This set of intermediates was also formed by cells grown anaerobically or aerobically on cyclohex-1-ene-1-carboxylate, indicating that benzoate-grown and cyclohex-1-ene-1-carboxylate-grown cells degrade this alicyclic acid by the same catabolic route. Four enzymatic activities proposed to be required for conversion of cyclohex-1-ene-1-carboxylate to pimelyl-CoA were detected at 3- to 10-fold-higher levels in benzoate-grown cells than in succinate-grown cells. These were cyclohex-1-ene-1-carboxylate-CoA ligase, cyclohex-1-ene-1-carboxyl-CoA hydratase, 2-hydroxycyclohexanecarboxyl-CoA dehydrogenase, and 2-ketocyclohexanecarboxyl-CoA hydrolase (ring cleaving). Pimelyl-CoA was identified in hydrolase reaction mixtures as the product of alicyclic ring cleavage. The results provide a first demonstration of an alicyclic ring cleavage activity.  相似文献   

14.
An aerobic bacterial consortium was shown to degrade 2,4,6-trinitrotoluene (TNT). At an initial concentration of 100 ppm, 100% of the TNT was transformed to intermediates in 108 h. Radiolabeling studies indicated that 8% of [14C]TNT was used as biomass and 3.1% of [14C]TNT was mineralized. The first intermediates observed were 4-amino-2,6-dinitrotoluene and its isomer 2-amino-4,6-dinitrotoluene. Prolonged incubation revealed signs of ring cleavage. Succinate or another substrate—e.g., malic acid, acetate, citrate, molasses, sucrose, or glucose—must be added to the culture medium for the degradation of TNT. The bacterial consortium was composed of variousPseudomonas spp. The results suggest that the degradation of TNT is accomplished by co-metabolism and that succinate serves as the carbon and energy source for the growth of the consortium. The results also suggest that this soil bacterial consortium may be useful for the decontamination of environmental sites contaminated with TNT.  相似文献   

15.
Substituted N-Cbz and N-Boc protected arylamino acrylic acids and esters have been prepared and used in asymmetric hydrogenations catalyzed by PROPRAPHOSRh. Stereoselectivities > 90% ee could be achieved, the rate of which is dependent on the position of the substituent in the aromatic ring. The N-Boc derivatives provide advantages compared with the N-Cbz analogues. The amino acid derivatives were fully characterized by 19F, 13C, and 1H NMR spectroscopy. © 1996 Wiley-Liss, Inc.  相似文献   

16.
Because of its high electron deficiency, initial microbial transformations of 2,4,6-trinitrotoluene (TNT) are characterized by reductive rather than oxidation reactions. The reduction of the nitro groups seems to be the dominating mechanism, whereas hydrogenation of the aromatic ring, as described for picric acid, appears to be of minor importance. Thus, two bacterial strains enriched with TNT as a sole source of nitrogen under aerobic conditions, a gram-negative strain called TNT-8 and a gram-positive strain called TNT-32, carried out nitro-group reduction. In contrast, both a picric acid-utilizing Rhodococcus erythropolis strain, HL PM-1, and a 4-nitrotoluene-utilizing Mycobacterium sp. strain, HL 4-NT-1, possessed reductive enzyme systems, which catalyze ring hydrogenation, i.e., the addition of a hydride ion to the aromatic ring of TNT. The hydride-Meisenheimer complex thus formed (H-TNT) was further converted to a yellow metabolite, which by electrospray mass and nuclear magnetic resonance spectral analyses was established as the protonated dihydride-Meisenheimer complex of TNT (2H-TNT). Formation of hydride complexes could not be identified with the TNT-enriched strains TNT-8 and TNT-32, or with Pseudomonas sp. clone A (2NT), for which such a mechanism has been proposed. Correspondingly, reductive denitration of TNT did not occur.  相似文献   

17.
l-5-hydroxytryptophan (5-HTP) with two types of multiple 19F-atom tags bonded at various positions onto the indole ring (positions 4, 6, or 7) was exposed to aromatic l-amino acid decarboxylase (AADC) in lysates of Escherichia coli JM109 which had been transformed with the plasmid pKKAADCII. Resulting samples were analyzed with HPLC. In the first study, which investigated a straight-chain seven-atom tag, a novel peak, putatively perfluoro-tagged serotonin, was detected. A second study demonstrated that 5-HTP was converted to 5-HT in transformed E.coli lysate but not in untransformed lysate. A third study, investigating a tag with nine fluorine atoms all in the same nuclear environment, identified the isomer serving as the best substrate for AADC. This novel molecule had the tag bonded at the 6 position on the indole ring. Isomers that fit into the active site of AADC are likely to follow the biosynthetic path for serotonin in vivo and are potentially useful in 19F magnetic resonance spectroscopy studies. The enzymatic assay described here provides an efficient and cost-effective tool for screening new compounds.  相似文献   

18.
The polycyclic aromatic hydrocarbon phenanthrene was mineralized in two stages by soil, estuarine water, and sediment microbial populations. At high concentrations, phenanthrene was degraded, with the concomitant production of biomass and accumulation of Folin-Ciocalteau-reactive aromatic intermediates. Subsequent consumption of these intermediates resulted in a secondary increase in biomass. Analysis of intermediates by high-performance liquid chromatography, thin-layer chromatography, and UV absorption spectrometry showed 1-hydroxy-2-naphthoic acid (1H2NA) to be the predominant product. A less pronounced two-stage mineralization pattern was also observed by monitoring 14CO2 production from low concentrations (0.5 mg liter−1) of radiolabeled phenanthrene. Here, mineralization of 14C-labeled 1H2NA could explain the incremental 14CO2 produced during the later part of the incubations. Accumulation of 1H2NA by isolates obtained from enrichments was dependent on the initial phenanthrene concentration. The production of metabolites during polycyclic aromatic hydrocarbon biodegradation is discussed with regard to its possible adaptive significance and its methodological implications.  相似文献   

19.
Aromatic compounds derived from lignin are of great interest for renewable biotechnical applications. They can serve in many industries e.g. as biochemical building blocks for bioplastics or biofuels, or as antioxidants, flavor agents or food preservatives. In nature, lignin is degraded by microorganisms, which results in the release of homocyclic aromatic compounds. Homocyclic aromatic compounds can also be linked to polysaccharides, tannins and even found freely in plant biomass. As these compounds are often toxic to microbes already at low concentrations, they need to be degraded or converted to less toxic forms. Prior to ring cleavage, the plant- and lignin-derived aromatic compounds are converted to seven central ring-fission intermediates, i.e. catechol, protocatechuic acid, hydroxyquinol, hydroquinone, gentisic acid, gallic acid and pyrogallol through complex aromatic metabolic pathways and used as energy source in the tricarboxylic acid cycle. Over the decades, bacterial aromatic metabolism has been described in great detail. However, the studies on fungal aromatic pathways are scattered over different pathways and species, complicating a comprehensive view of fungal aromatic metabolism. In this review, we depicted the similarities and differences of the reported aromatic metabolic pathways in fungi and bacteria. Although both microorganisms share the main conversion routes, many alternative pathways are observed in fungi. Understanding the microbial aromatic metabolic pathways could lead to metabolic engineering for strain improvement and promote valorization of lignin and related aromatic compounds.  相似文献   

20.
In vivo or in situ nuclear magnetic resonance (NMR) offers a powerful tool to study the degradation of xenobiotics by microorganisms. Most studies reported are based on the use of heteronuclei, and experiments with xenobiotics have been limited because specifically labeled xenobiotics are not commercially available, with the exception of 19F and 31P. 1H NMR is, thus, of great interest in this area. To avoid problems caused by the presence of water and intrinsic metabolite signals, some studies were performed using a deuterated medium or specific detection of protons linked to the 13C–15N enriched pattern. We report here the application of in situ 1H NMR, performed directly on culture media, to study the metabolism of heterocyclic compounds. In this review, we show that a common pathway is involved in the biodegradation of morpholine, piperidine, and thiomorpholine by Mycobacterium aurum MO1 and Mycobacterium sp. RP1. In all cases, the first step is the cleavage of the C–N bond, which results in an amino acid. Thiomorpholine is first oxidized to sulfoxide before the opening of the ring. The second step is the deamination of the intermediate amino acid, which leads to the formation of a diacid. We have shown that the cleavage of the C–N bond and the oxidation of thiomorpholine are initiated by reactions involving a cytochrome P450. Journal of Industrial Microbiology & Biotechnology (2001) 26, 2–8. Received 27 December 1999/ Accepted in revised form 08 May 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号