首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitric-oxide synthase (NOS) catalyzes both coupled and uncoupled reactions that generate nitric oxide and reactive oxygen species. Oxygen is often the overlooked substrate, and the oxygen metabolism catalyzed by NOS has been poorly defined. In this paper we focus on the oxygen stoichiometry and effects of substrate/cofactor binding on the endothelial NOS isoform (eNOS). In the presence of both L-arginine and tetrahydrobiopterin, eNOS is highly coupled (>90%), and the measured stoichiometry of O(2)/NADPH is very close to the theoretical value. We report for the first time that the presence of L-arginine stimulates oxygen uptake by eNOS. The fact that nonhydrolyzable L-arginine analogs are not stimulatory indicates that the occurrence of the coupled reaction, rather than the accelerated uncoupled reaction, is responsible for the L-arginine-dependent stimulation. The presence of 5,6,7,8-tetrahydrobiopterin quenched the uncoupled reactions and resulted in much less reactive oxygen species formation, whereas the presence of redox-incompetent 7,8-dihydrobiopterin demonstrates little quenching effect. These results reveal different mechanisms for oxygen metabolism for eNOS as opposed to nNOS and, perhaps, partially explain their functional differences.  相似文献   

2.
Uncoupling of nitric-oxide synthase (NOS) by deficiency of the substrate L-arginine or the cofactor (6R)-5,6,7,8-tetrahydrobiopterin (BH4) is known to generate the reactive oxygen species H2O2 and superoxide. Discrimination between these two compounds is usually achieved by spin trapping of superoxide. We measured superoxide formation by uncoupled rat neuronal NOS, which contained one equivalent of tightly bound BH4 per dimer, using 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide (DEPMPO) as a spin trap. As expected, the Ca2+-stimulated enzyme exhibited reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity that was accompanied by generation of superoxide and H2O2 in the absence of added L-arginine and BH4. Addition of BH4 (10 microM) did not significantly affect the rate of H2O2 formation but almost completely inhibited the apparent formation of superoxide, suggesting direct formation of H2O2. Although L-arginine (0.1 mM) increased the rate of NADPH oxidation about two-fold, the substrate largely attenuated apparent formation of both superoxide and H2O2, indicating that the spin trap did not efficiently outcompete the reaction between NO and superoxide. The efficiency of DEPMPO to scavenge superoxide in the presence of NO was studied by measuring free NO with a Clark-type electrode under conditions of NO/superoxide cogeneration. Neuronal NOS half-saturated with BH4 and the donor compound 3-morpholinosydnonimine (SIN-1) were used as enzymatic and nonenzymatic sources of NO/superoxide, respectively. Neither of the two systems gave rise to considerable NO signals in the presence of 50-100 mM DEPMPO, and even at 400 mM the spin trap uncovered less than 50% of the NO release that was detectable in the presence of 5000 U/ml superoxide dismutase. These results indicate that DEPMPO and all other currently available superoxide spin traps do not efficiently outcompete the reaction with NO. In addition, the similar behavior of nNOS and SIN-1 provides further evidence for NO as initial product of the NOS reaction.  相似文献   

3.
Mechanism of superoxide generation by neuronal nitric-oxide synthase   总被引:8,自引:0,他引:8  
Neuronal nitric-oxide synthase (NOS I) in the absence of L-arginine has previously been shown to generate superoxide (O-2) (Pou, S., Pou, W. S., Bredt, D. S., Snyder, S. H., and Rosen, G. M. (1992) J. Biol. Chem. 267, 24173-24176). In the presence of L-arginine, NOS I produces nitric oxide (NO.). Yet the competition between O2 and L-arginine for electrons, and by implication formation of O-2, has until recently remained undefined. Herein, we investigated this relationship, observing O-2 generation even at saturating levels of L-arginine. Of interest was the finding that the frequently used NOS inhibitor NG-monomethyl L-arginine enhanced O-2 production in the presence of L-arginine because this antagonist attenuated NO. formation. Whereas diphenyliodonium chloride inhibited O-2, blockers of heme such as NaCN, 1-phenylimidazole, and imidazole likewise prevented the formation of O-2 at concentrations that inhibited NO. formation from L-arginine. Taken together these data demonstrate that NOS I generates O-2 and the formation of this free radical occurs at the heme domain.  相似文献   

4.
We studied catalysis by tetrahydrobiopterin (H4B)-free neuronal nitric-oxide synthase (nNOS) to understand how heme and H4B participate in nitric oxide (NO) synthesis. H4B-free nNOS catalyzed Arg oxidation to N(omega)-hydroxy-l-Arg (NOHA) and citrulline in both NADPH- and H(2)O(2)-driven reactions. Citrulline formation was time- and enzyme concentration-dependent but was uncoupled relative to NADPH oxidation, and generated nitrite and nitrate without forming NO. Similar results were observed when NOHA served as substrate. Steady-state and stopped-flow spectroscopy with the H4B-free enzyme revealed that a ferrous heme-NO complex built up after initiating catalysis in both NADPH- and H(2)O(2)-driven reactions, consistent with formation of nitroxyl as an immediate product. This differed from the H4B-replete enzyme, which formed a ferric heme-NO complex as an immediate product that could then release NO. We make the following conclusions. 1) H4B is not essential for Arg oxidation by nNOS, although it helps couple NADPH oxidation to product formation in both steps of NO synthesis. Thus, the NADPH- or H(2)O(2)-driven reactions form common heme-oxy species that can react with substrate in the presence or absence of H4B. 2) The sole essential role of H4B is to enable nNOS to generate NO instead of nitroxyl. On this basis we propose a new unified model for heme-dependent oxygen activation and H4B function in both steps of NO synthesis.  相似文献   

5.
Adhikari S  Ray S  Gachhui R 《FEBS letters》2000,475(1):35-38
Nitric oxide synthases (NOSs) catalyze the formation of nitric oxide from L-arginine. We purified the heme containing, tetrahydrobiopterin-free, oxygenase domain of rat neuronal nitric oxide synthase (nNOSox) overexpressed in Escherichia coli. We found catalase activity in nNOSox. This is significant because H(2)O(2) may also be a product of nitric oxide synthases. We found H(2)O(2) assisted product formation from N-hydroxy-L-arginine and even from L-arginine both in the presence and in absence of tetrahydrobiopterin. We propose how heme moiety of the oxygenase domain alone is sufficient to carry out both steps of the NOS catalysis.  相似文献   

6.
In the presence of substrates not favourable for hydroxylation, more than 80% of the dioxygen consumed by purified, reconstituted 4-methoxybenzoate monooxygenase appears in the reaction mixture as hydrogen peroxide. We have investigated whether under these conditions (a) reduced putidamonooxin, the oxygenase of this enzyme system, either autoxidizes in the presence of dioxygen, with liberation of superoxide anion radicals which then disproportionate to H2O2 and O2, or (b) dioxygen is reduced by two sequential single-electron steps leading to the active oxygen species that forms hydrogen peroxide directly when inactivated by protonation. Quantitative estimation of O-2 radicals, with either succinylated ferricytochrome c or epinephrine used as O-2 scavengers, revealed that only about 6% of the total electron flux channelled via putidamonooxin to dioxygen led to the monovalent reduction on dioxygen. This means that not more than 3% of the hydrogen peroxide found under uncoupling conditions arises from the rapid bimolecular disproportionation of initially formed O-2 radicals. Inconsistent results were obtained when lactoperoxidase was used as an O-2 trap. Our measurements indicate that the conversion of lactoperoxidase into compound III is an inappropriate method of detecting any O-2 radicals that may be found by the uncoupled 4-methoxybenzoate monooxygenase. The stoichiometry of about 1:1 for O2 uptake: H2O2 formation indicates that under uncoupling conditions H2O is virtually not formed. The role of [FeO2]+ as the active oxygenating species of putidamonooxin is discussed.  相似文献   

7.
Despite numerous approaches to measuring nitric oxide ((.-)NO) formation from purified NO synthase (NOS), it is still not clear whether (.-)NO is a direct or indirect product of the NO synthase reaction. The direct detection of catalytically formed (.-)NO is complicated by side reactions with reactive oxide species like H(2)O(2) and superoxide. The aim of the present study was therefore to reinvestigate these reactions both electrochemically and by chemiluminescence detection with particular emphasis on the requirement for cofactors and their interference with (.-)NO detection. Flavins were found to generate large amounts of H(2)O(2) and were therefore excluded from subsequent incubations. Under conditions of both coupled and uncoupled catalysis, SOD was absolutely required to detect (.-)NO from NOS. H(2)O(2) formation took place also in the presence of SOD and gave a smaller yet significant interfering signal. Similar data were obtained when the proposed intermediate N(omega)-hydroxy-l-arginine was utilized as substrate. In conclusion, standard Clark-type ()NO electrodes are cross-sensitive to H(2)O(2) and therefore both SOD and catalase are absolutely required to specifically detect (.-)NO from NOS.  相似文献   

8.
We are combining stopped-flow, stop-quench, and rapid-freezing kinetic methods to help clarify the unique redox roles of tetrahydrobiopterin (H(4)B) in NO synthesis, which occurs via the consecutive oxidation of L-arginine (Arg) and N-hydroxy-L-arginine (NOHA). In the Arg reaction, H(4)B radical formation is coupled to reduction of a heme Fe(II)O(2) intermediate. The tempo of this electron transfer is important for coupling Fe(II)O(2) formation to Arg hydroxylation. Because H(4)B provides this electron faster than can the NOS reductase domain, H(4)B appears to be a kinetically preferred source of the second electron for oxygen activation during Arg hydroxylation. A conserved Trp (W457 in mouse inducible NOS) has been shown to influence product formation by controlling the kinetics of H(4)B electron transfer to the Fe(II)O(2) intermediate. This shows that the NOS protein tunes H(4)B redox function. In the NOHA reaction the role of H(4)B is more obscure. However, existing evidence suggests that H(4)B may perform consecutive electron donor and acceptor functions to reduce the Fe(II)O(2) intermediate and then ensure that NO is produced from NOHA.  相似文献   

9.
Using 4-methoxybenzoate monooxygenase from Pseudomonas putida, the substrate deuterium isotope effect on product formation and the solvent isotope effect on the stoichiometry of oxygen uptake, NADH oxidation, product and/or H2O2 (D2O2) formation for tight couplers, partial uncouplers, and uncouplers as substrates were measured. These studies revealed for the true, intrinsic substrate deuterium isotope effect on the oxygenation reaction a k1H/k2H ratio of < 2.0, derived from the inter- and intramolecular substrate isotope effects. This value favours a concerted oxygenation mechanism of the substrate. Deuterium substitution in a tightly coupling substrate initiated a partial uncoupling of oxygen reduction and substrate oxygenation, with release of H2O2 corresponding to 20% of the overall oxygen uptake. This H2O2 (D2O2) formation (oxidase reaction) almost completely disappeared when the oxygenase function was increased by deuterium substitution in the solvent. The electron transfer from NADH to oxygen, however, was not affected by deuterium substitution in the substrate and/or the solvent. With 4-trifluoromethylbenzoate as uncoupling substrate and D2O as solvent, a reduction (peroxidase reaction) of the active oxygen complex was initiated in consequence of its extended lifetime. These additional two electron-transfer reactions to the active oxygen complex were accompanied by a decrease of both NADH oxidation and oxygen uptake rates. These findings lead to the following conclusions: (a) under tightly coupling conditions the rate-limiting step must be the formation time and lifetime of an active transient intermediate within the ternary complex iron/peroxo/substrate, rather than an oxygenative attack on a suitable C-H bond or electron transfer from NADH to oxygen. Water is released after the monooxygenation reaction; (b) under uncoupling conditions there is competition in the detoxification of the active oxygen complex between its protonation (deuteronation), with formation of H2O2 (D2O2) and its further reduction to water. The additional two electron-transfer reactions onto the active oxygen complex then become rate limiting for the oxygen uptake rate.  相似文献   

10.
Reactive nitrogen species (RNS) and oxygen species (ROS) have been reported to modulate the function of nitric oxide synthase (NOS); however, the precise dose-dependent effects of specific RNS and ROS on NOS function are unknown. Questions remain unanswered regarding whether pathophysiological levels of RNS and ROS alter NOS function, and if this alteration is reversible. We measured the effects of peroxynitrite (ONOO-), superoxide (O2.-), hydroxyl radical (.OH), and H2O2 on nNOS activity. The results showed that NO production was inhibited in a dose-dependent manner by all four oxidants, but only O2.- and ONOO- were inhibitory at pathophysiological concentrations (50muM). Subsequent addition of tetrahydrobiopterin (BH4) fully restored activity after O2.- exposure, while BH4 partially rescued the activity decrease induced by the other three oxidants. Furthermore, treatment with either ONOO- or O2.- stimulated nNOS uncoupling with decreased NO and enhanced O2.- generation. Thus, nNOS is reversibly uncoupled by O2.- (50muM), but irreversibly uncoupled and inactivated by ONOO-. Additionally, we observed that the mechanism by which oxidative stress alters nNOS activity involves not only BH4 oxidation, but also nNOS monomerization as well as possible degradation of the heme.  相似文献   

11.
Song Y  Cardounel AJ  Zweier JL  Xia Y 《Biochemistry》2002,41(34):10616-10622
Besides NO, neuronal NO synthase (nNOS) also produces superoxide (O(2)(-.) at low levels of L-arginine. Recently, heat shock protein 90 (hsp90) was shown to facilitate NO synthesis from eNOS and nNOS. However, the effect of hsp90 on the O(2)(-.) generation from NOS has not been determined yet. The interrelationship between its effects on O(2)(-.) and NO generation from NOS is also unclear. Therefore, we performed electron paramagnetic resonance measurements of O(2)(-.) generation from nNOS to study the effect of hsp90. Purified rat nNOS generated strong O(2)(-.) signals in the absence of L-arginine. In contrast to its effect on NO synthesis, hsp90 dose-dependently inhibited O(2)(-.) generation from nNOS with an IC(50) of 658 nM. This inhibition was not due to O(2)(-.) scavenging because hsp90 did not affect the O(2)(-.) generated by xanthine oxidase. At lower levels of L-arginine where marked O(2)(-.) generation occurred, hsp90 caused a more dramatic enhancement of NO synthesis from nNOS as compared to that under normal L-arginine. Significant O(2)(-.) production was detected from nNOS even at intracellular levels of L-arginine. Adding hsp90 prevented this O(2)(-.) production, leading to enhanced nNOS activity. Thus, these results demonstrated that hsp90 directly inhibited O(2)(-.) generation from nNOS. Inhibition of O(2)(-.) generation may be an important mechanism by which hsp90 enhances NO synthesis from NOS.  相似文献   

12.
Nitric oxide synthases (NOS) are enzymes that catalyze the generation of nitric oxide (NO) from L-arginine and require nicotinamide adenine dinucleotide phosphate (NADPH) as a cofactor. At least three isoforms of NOS have been identified: neuronal NOS (nNOS or NOS I), inducible NOS (iNOS or NOS II), and endothelial NOS (eNOS or NOS II). Recent studies implicate NO in the regulation of gastric acid secretion. The aim of the present study was to localize the cellular distribution and characterize the isoform of NOS present in oxyntic mucosa. Oxyntic mucosal segments from rat stomach were stained by the NADPH-diaphorase reaction and with isoform-specific NOS antibodies. The expression of NOS in isolated, highly enriched (>98%) rat parietal cells was examined by immunohistochemistry, Western blot analysis, and RT-PCR. In oxyntic mucosa, histochemical staining revealed NADPH-diaphorase and nNOS immunoreactivity in cells in the midportion of the glands, which were identified as parietal cells in hematoxylin and eosin-stained step sections. In isolated parietal cells, decisive evidence for nNOS expression was obtained by specific immunohistochemistry, Western blotting, and RT-PCR. Cloning and sequence analysis of the PCR product confirmed it to be nNOS (100% identity). Expression of nNOS in parietal cells suggests that endogenous NO, acting as an intracellular signaling molecule, may participate in the regulation of gastric acid secretion.  相似文献   

13.
Recently, we obtained x-ray crystallographic data showing the presence of a ZnS4 center in the structure of Escherichia coli-expressed bovine endothelial nitric-oxide synthase (eNOS) and rat neuronal nitric-oxide synthase (nNOS). The zinc atom is coordinated by two CXXXXC motifs, one motif being contributed by each NOS monomer (cysteine 326 through cysteine 331 in rat nNOS). Mutation of the nNOS cysteine 331 to alanine (C331A) results in the loss of NO. synthetic activity and also results in an inability to bind zinc efficiently. Although prolonged incubation of the C331A mutant of nNOS with high concentrations of L-arginine results in a catalytically active enzyme, zinc binding is not restored. In this study, we investigate the zinc stoichiometry in wild-type nNOS and eNOS, as well as in the C331A-mutated nNOS, using a chelation assay and electrothermal vaporization-inductively coupled plasma-mass spectrometry. The data reveal an approximate 2:1 stoichiometry of heme to zinc in (6R)-5,6,7,8-tetrahydro-L-biopterin-replete, wild-type nNOS and eNOS and show that the reactivated C331A mutant of nNOS has a limited ability to bind zinc. The present study substantiates that the zinc in NOS is structural rather than catalytic and is important for maintaining optimally functional, enzymatically active, constitutive NOSs.  相似文献   

14.
Nitric-oxide synthases (NOS) are heme-thiolate enzymes that generate nitric oxide (NO) from L-arginine. Mammalian and bacterial NOSs contain a conserved tryptophan (Trp) that hydrogen bonds with the heme-thiolate ligand. We mutated Trp(66) to His and Phe (W66H, W66F) in B. subtilis NOS to investigate how heme-thiolate electronic properties control enzyme catalysis. The mutations had opposite effects on heme midpoint potential (-302, -361, and -427 mV for W66H, wild-type (WT), and W66F, respectively). These changes were associated with rank order (W66H < WT < W66F) changes in the rates of oxygen activation and product formation in Arg hydroxylation and N-hydroxyarginine (NOHA) oxidation single turnover reactions, and in the O(2) reactivity of the ferrous heme-NO product complex. However, enzyme ferrous heme-O(2) autoxidation showed an opposite rank order. Tetrahydrofolate supported NO synthesis by WT and the mutant NOS. All three proteins showed similar extents of product formation (L-Arg → NOHA or NOHA → citrulline) in single turnover studies, but the W66F mutant showed a 2.5 times lower activity when the reactions were supported by flavoproteins and NADPH. We conclude that Trp(66) controls several catalytic parameters by tuning the electron density of the heme-thiolate bond. A greater electron density (as in W66F) improves oxygen activation and reactivity toward substrate, but decreases heme-dioxy stability and lowers the driving force for heme reduction. In the WT enzyme the Trp(66) residue balances these opposing effects for optimal catalysis.  相似文献   

15.
Neuronal nitric oxide synthase (NOS I) has been shown to generate nitric oxide (NO*) and superoxide (O(2)* during enzymatic cycling, and the ratio of each free radical is dependent upon the concentration of L-arginine. Using spin trapping and electron paramagnetic resonance spectroscopy, we detected alpha-hydroxyethyl radical (CH(3)*CHOH), produced during the NOS I metabolism of ethanol (EtOH). The generation of CH(3)*CHOH by NOS I was found to be Ca(2+)/calmodulin dependent. Superoxide dismutase prevented CH(3)*CHOH formation in the absence of L-arginine. However, in the presence of L-arginine, the production of CH(3)*CHOH was independent of O(2)* but dependent upon the concentration of L-arginine. Formation of CH(3)*CHOH was inhibited by substituting D-arginine for L-arginine, or inclusion of the NOS inhibitors N(G)-nitro-L-arginine methyl ester, N(G)-monomethyl-L-arginine and the heme blocker, sodium cyanide. The addition of potassium hydrogen persulfate to NOS I, generating the perferryl complex (NOS-[Fe(5+)=O](3+)) in the absence of oxygen and Ca(2+)/calmodulin, and EtOH resulted in the formation of CH(3)*CHOH. NOS I was found to produce the corresponding alpha-hydroxyalkyl radical from 1-propanol and 2-propanol, but not from 2-methyl-2-propanol. Data demonstrated that the perferryl complex of NOS I in the presence of L-arginine was responsible for catalyses of these secondary reactions.  相似文献   

16.
Tetrahydrobiopterin (BH4), which is an essential cofactor for nitric oxide synthase (NOS), is generally accepted as an important molecular target for oxidative stress. This study examined whether hydrogen peroxide (H(2)O(2)), one of the reactive oxygen species (ROS), affects the BH4 level in vascular endothelial cells (ECs). Interestingly, the addition of H(2)O(2) to ECs markedly increased the BH4 level, but not its oxidized forms. The H(2)O(2)-induced increase in the BH4 level was blocked by the inhibitor of GTP-cyclohydrolase I (GTPCH), which is the rate-limiting enzyme of BH4 synthesis. Moreover, H(2)O(2) induced the expression of GTPCH mRNA, and the inhibitors of protein synthesis blocked the H(2)O(2)-induced increase in the BH4 level. The expression of the inducible isoform of NOS (iNOS) was slightly induced by the treatment with H(2)O(2). Additionally, the L-citrulline formation from L-arginine, which is the marker for NO synthesis, was stimulated by the treatment with H(2)O(2), and the H(2)O(2)-induced L-citrulline formation was strongly attenuated by NOS or GTPCH inhibitor. These results suggest that H(2)O(2) induces BH4 synthesis via the induction of GTPCH, and the increased BH4 is coupled with NO production by coinduced iNOS. H(2)O(2) appears to be one of the important signaling molecules to regulate the BH4-NOS system.  相似文献   

17.
Palumbo A  d'Ischia M  Cioffi FA 《FEBS letters》2000,485(2-3):109-112
2-thiouracil (TU), an established antithyroid drug and melanoma-seeker, was found to selectively inhibit neuronal nitric oxide synthase (nNOS) in a competitive manner (K(i)=20 microM), being inactive on the other NOS isoforms. The drug apparently interfered with the substrate- and tetrahydrobiopterin (BH(4))-binding to the enzyme. It caused a 60% inhibition of H(2)O(2) production in the absence of L-arginine and BH(4), and antagonised BH(4)-induced dimerisation of nNOS, but did not affect cytochrome c reduction. These results open new perspectives in the understanding of the antithyroid action of TU and provide a new lead structure for the development of selective nNOS inhibitors to elucidate the interdependence of the substrate and pteridine sites and to modulate pathologically aberrant NO formation.  相似文献   

18.
A radical species of monochlorodimedone has been characterized by its high reactivity with molecular O2. Horseradish peroxidase greatly accelerated O2 uptake by acidic solutions of this substrate; the enzymatic reaction required exogenous H2O2 only with freshly prepared substrate solutions, and the total substrate oxidized was equal to the sum of H2O2 added and O2 consumed. However, with excess Br- and horseradish peroxidase, or high Br- or Cl- and chloroperoxidase, a 1:1 stoichiometry between H2O2 and substrate was observed. In the absence of halide, the stoichiometry of the chloroperoxidase-catalyzed oxidation of monochlorodimedone changed to two molecules of the organic donor per H2O2. Moreover, in the absence of halide, at substrate:H2O2 ratios greater than 2.0, chloroperoxidase catalyzed significant O2 uptake; this enzyme-dependent autoxidation of monochlorodimedone also occurred in the presence of Cl- or Br-, when H2O2 was limiting. These data, and recent evidence from this laboratory for free hypohalous acid as the first product of chloroperoxidase-catalyzed halide oxidation [B. W. Griffin (1983) Biochem. Biophys. Res. Commun. 116, 873-879], strongly support a mixed enzymatic/nonenzymatic radical chain process as the mechanism for halogenation of monochlorodimedone by chloroperoxidase. Both horseradish peroxidase and chloroperoxidase can catalyze either bromination or oxidation of this substrate, depending on the experimental conditions. Implications of these results for the mechanism of HOCl formation catalyzed by chloroperoxidase are considered.  相似文献   

19.
Single turnover reactions of the inducible nitric oxide synthase oxygenase domain (iNOSoxy) in the presence of several non alpha-amino acid N-hydroxyguanidines and guanidines were studied by stopped-flow visible spectroscopy, and compared with reactions using the native substrates L-arginine (L-arg) or N(omega)-hydroxy-L-arginine (NOHA). In experiments containing dihydrobiopterin, a catalytically incompetent pterin, and each of the studied substrates, L-arg, butylguanidine (BuGua), para-fluorophenylguanidine (FPhGua), NOHA, N-butyl- and N-(para-fluorophenyl)-N'-hydroxyguanidines (BuNOHG and FPhNOHG), the formation of a iron(II) heme-dioxygen intermediate (Fe(II)O2) was always observed. The Fe(II)O2 species then decayed to iron(III) iNOSoxy at rates that were dependent on the nature of the substrate. Identical reactions containing the catalytically competent cofactor tetrahydrobiopterin (BH4), iNOSoxy and the three N-hydroxyguanidines, all exhibited an initial formation of an Fe(II)O2 species that was successively converted to an Fe(III)NO complex and eventually to high-spin iron(III) iNOSoxy. The formation and decay kinetics of the Fe(III)NO complex did not vary greatly as a function of the N-hydroxyguanidine structure, but the formation of Fe(III)NO was substoichiometric in the cases of BuNOHG and FPhNOHG. Reactions between BH4-containing iNOSoxy and BuGua exhibited kinetics similar to those of the corresponding reaction with L-arginine, with formation of an Fe(II)O2 intermediate that was directly converted to high-spin iron(III) iNOSoxy. In contrast, no Fe(II)O2 intermediate was observed in the reaction of BH4-containing iNOSoxy and FPhGua. Multi-turnover reaction of iNOS with FPhGua did not lead to formation of NO or to hydroxylation of the substrate, contrary to reactions with BuGua or L-arg. Our results reveal how different structural and chemical properties of NOS substrate analogues can impact on the kinetics and reactivity of the Fe(II)O2 intermediate, and support an important role for substrate pKa during NOS oxygen activation.  相似文献   

20.
The hydroxylation of proline and lysine residues by the collagen hydroxylases is coupled with a stoichiometric decarboxylation of 2-oxoglutarate. Ascorbate is virtually a specific requirement for these enzymes, but previous studies have demonstrated that it is not consumed during most catalytic cycles. Prolyl 4-hydroxylase and lysyl hydroxylase are known also to catalyze an uncoupled decarboxylation of 2-oxoglutarate in the absence of the peptide substrate. It is shown here that, unlike the complete hydroxylation reaction, the uncoupled decarboxylation reaction involves stoichiometric ascorbate consumption. This stoichiometric ascorbate consumption was also seen when the rate of the uncoupled prolyl 4-hydroxylase reaction was enhanced by the addition of poly(L-proline). Since collagen hydroxylases may catalyze occasional uncoupled reaction cycles even in the presence of the peptide substrates, the main function of ascorbate in these reactions in vivo is suggested to be that of reactivating the enzymes after such uncoupled cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号