首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Brush border membranes from renal proximal tubules were solubilized with deoxycholate, and the proteins were incorporated into liposomes formed from cholesterol and phosphatidylserine by a freeze-thaw procedure. In the proteoliposomes Na+-D-glucose cotransport was demonstrated by showing that the D-glucose concentration in the liposomes increased far above the equilibrium value if a Na+ gradient was applied. The initial D-glucose uptake rate, stimulated by an inside directed gradient of 89 mM Na+, was 4 pmol/mg of protein-1 s-1. High affinity phlorizin binding could not be measured. After two precipitation steps with the solubilized membrane proteins, a protein fraction was obtained in which significantly high affinity phlorizin binding was detected. After reconstitution, proteoliposomes were formed in which more than 70% of the protein was represented by two polypeptides with molecular weights of 94,000 and 52,000. An initial Na+ gradient-dependent D-glucose uptake rate of 118 pmol/mg of protein-1 s-1 was obtained. In these liposomes, the D-glucose uptake rate could be inhibited by phlorizin (Ki = 0.3 microM), and 55-pmol phlorizin-binding sites per mg of protein (KD = 0.5 microM) were measured. In different liposomal preparations a correlation between Na+ gradient-dependent D-glucose uptake rate and the amount of 52,000 molecular weight polypeptide was observed.  相似文献   

2.
The driving forces for L-glutamate transport were determined in purified canalicular (cLPM) and basolateral (i.e. sinusoidal and lateral; blLPM) rat liver plasma membrane vesicles. Initial rates of L-glutamate uptake in cLPM vesicles were stimulated by a Na+ gradient (Na+o greater than Na+i), but not by a K+ gradient. Stimulation of L-glutamate uptake was specific for Na+, temperature sensitive, and independent of nonspecific binding. Sodium-dependent L-glutamate uptake into cLPM vesicles exhibited saturation kinetics with an apparent Km of 24 microM, and a Vmax of 21 pmol/mg X min at an extravesicular sodium concentration of 100 mM. Specific anionic amino acids inhibited L-[3H]glutamate uptake and accelerated the exchange diffusion of L-[3H]glutamate. An outwardly directed K+ gradient (K+i greater than K+o) further increased the Na+ gradient (Na+o greater than Na+i)-dependent uptake of L-glutamate in cLPM vesicles, resulting in a transient accumulation of L-glutamate above equilibrium values (overshoot). The K+ effect had an absolute requirement for Na+. In contrast, in blLPM the initial rates of L-glutamate uptake were only minimally stimulated by a Na+ gradient, an effect that could be accounted for by contamination of the blLPM vesicles with cLPM vesicles. These results indicate that hepatic Na+ gradient-dependent transport of L-glutamate occurs at the canalicular domain of the plasma membrane, whereas transport of L-glutamate across sinusoidal membranes results mainly from passive diffusion. These findings provide an explanation for the apparent discrepancy between the ability of various in vitro liver preparations to transport glutamate and suggest that a canalicular glutamate transport system may serve to reabsorb this amino acid from bile.  相似文献   

3.
In order to clarify contradictory reports on the electrogenicity of sodium/L-glutamate cotransport, this cotransport was studied using brush-border membrane vesicles isolated from rabbit renal cortex. Beforehand, the claim that the symport of L-glutamate with Na+ is linked to simultaneous antiport with K+ has been confirmed by the demonstration that equilibrium exchange of L-glutamate is inhibited by potassium. Concerning the electrogenicity of the system, the following results are reported: net uptake of sodium-dependent L-glutamate uptake was stimulated when the transmembranal electrical potential difference was increased by replacing a sodium sulfate gradient by a sodium nitrate gradient. At 100 mM Na+ the 'relative electrogenicity' of the initial uptake in the presence of intravesicular potassium was 2-times higher than in its absence. At a sodium concentration of 20 mM, when overall uptake was reduced, the relative electrogenicity in the presence of K+ was even 3-fold higher than in K+-free media. The relative electrogenicity of sodium/D-glucose cotransport measured under the same experimental conditions was not affected by K+. These results are discussed in terms of a model where the apparent electrogenicity of a cotransport system is dependent on the extent to which the charge translocating step is rate limiting ('rate limitancy'). It is proposed that potassium antiport, while decreasing charge stoichiometry of Na+/glutamate transport, increases the relative rate limitancy of the transport step translocating three cations (probably two Na+, one H+) together with one glutamate. Thereby the positive electrogenicity of glutamate uptake increases, in complete contrast to what would be expected from simple considerations of charge stoichiometry.  相似文献   

4.
Vesiculated fragments of presynaptic plasma membranes have been isolated from the purely cholinergic electromotor nerve terminals of Torpedo marmorata. Synaptosomes, generated from the terminals by homogenization, were separated on a discontinuous Ficoll gradient and then lysed by osmotic shock at 2 degrees C, pH 8.5 in the presence of 0.1 mM MgCl2. These conditions for lysis were optimal for choline transport. Electron micrographs of lysed synaptosomes showed vesiculated membranes with diameters smaller than those of synaptosomes; occasionally, synaptic vesicles were observed attached to them. Intact mitochondria or synaptosomes and basal laminae were not present. High-affinity (KT = 1.7 microM) uptake of choline into these vesiculated membrane fragments showed: an absolute dependence on the Na+ gradient (outside greater than inside), a transient Na+-gradient-dependent accumulation of choline over the equilibrium concentration (over-shoot), electrogenicity and rheogenicity, since the uptake was further stimulated in the presence of a Na+ gradient by valinomycin, dependence on the presence of external Cl-, and partial dependence on a Cl- gradient (outside greater than inside), high-affinity (Ki = 25 nM) inhibition by hemicholinium-3 and temperature sensitivity. The plasma membranes were further purified by centrifugal density gradient fractionation on a 4-12% Ficoll gradient. Several enzymes and polypeptides copurified with the specific binding sites for choline present in the membranes. The fraction with the most binding sites was one denser than 12% Ficoll. This was also the fraction richest in acetylcholinesterase, 5'-nucleotidase and polypeptides of relative molecular mass, Mr (X 10(-3)) of greater than 200, 140, 68 (doublet), 57, 54 and 28. Acetylcholinesterase was positively identified as a Mr 68 000 component by immune blot. By contrast the ouabain-sensitive ATPase showed a negative correlation with choline binding sites. When the solubilized proteins of the vesiculated membranes were transferred to liposomes, they conferred on the latter the capacity to take up choline in a manner closely resembling its transport in natural membranes but with an initial (one minute) rate of uptake approximately 10-times greater per mg of protein. Several proteins were selectively transferred to the liposomes including ones of Mr (X 10(-3)) 34, 42, 47, 54, 60, 68, 92, 160 and greater than 200. The polypeptides of Mr (X 10(-3)) 140, 57 and 28 were lost in the transfer.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
The Na+/L-glutamate (L-aspartate) cotransport system present at the level of rat intestinal brush-border membrane vesicles is specifically activated by the ions K+ and Cl-. The presence of 100 mM K+ inside the vesicles drastically enhances the uptake rate and the transient intravesicular accumulation (overshoot) of the two acidic amino acids. It has been demonstrated that the activation of the transport system depended only in the intravesicular K+ concentration and that in the absence of any sodium gradient, an outward K+ gradient was unable to influence the Na+/acidic amino acid transport system. It was also found that Cl- could specifically activate the Na+-dependent L-glutamate (L-aspartate) uptake either in the presence or in the absence of K+. Also the effect of Cl- was observed only in the presence of an inward Na+ gradient and it was noted to be higher when chloride ion was present on both sides of the membrane vesicles. No influence (activation or accumulation) was observed in the absence of the Na+ gradient and in the presence of chloride gradient. L-Glutamate uptake measured in the presence of an imposed diffusion potential and in the presence of K+ or Cl- did not show any translocation of net charge.  相似文献   

6.
Shono M  Wada M  Fujii T 《Plant physiology》1995,108(4):1615-1621
A Na+ -ATPase was partially purified from plasma membranes of the marine alga Heterosigma akashiwo. The plasma membranes of H. akashiwo cells were collected by differential centrifugation with subsequent discontinuous gradient centrifugation. Na+ -ATPase activity was associated with the resultant plasma membrane fraction and was stimulated to the greatest extent in the presence of 100 to 200 mM Na+, 10 mM K+, and 5 mM Mg2+ ions, pH 8.0. The Km value for Na+ ions was 12.2 mM. An apparent Km value for ATP was 880 [mu]M. A 140-kD phosphorylated intermediate was also detected in the same fraction in the presence of both Mg2+ and Na+ ions, and this protein was dephosphorylated upon the addition of K+ ions. We could partially purify the 140-kD protein after solubilization by Suc monolaurate and fractionation by sequential column chromatography on Sephacryl S-300, DEAE-Sepharose CL-6B, and Mono-Q columns. The purified 140-kD polypeptide could also be phosphorylated and be detected after acid sodium dodecyl sulfate-polyacryl-amide gel electrophoresis in the presence of Na+ and Mg2+ ions.  相似文献   

7.
(Na+ + K+)-ATPase was isolated from the grey matter of brain and incorporated into liposomes. Most of the reconstituted enzyme was oriented 'inside-out' with respect to its in vivo orientation and externally added ATP promoted Na+ uptake that was inhibitable by internally trapped ouabain. Using the same proteoliposomes, an Na+ - Ca2+ exchange system was observed as indicated by the following pieces of evidence. (1) The Na+ gradient provided the only readily apparent driving force for acceleration of Ca2+ accumulation into proteoliposomes. (2) The antiporter was specific for Ca2+, high Mg2+ excess did not inhibit Ca2+ antiport. (3) The Na+ efflux was dependent on the extravesicular Ca2+ concentration. (4) The Na+ efflux was not inhibited by tetrodotoxin. The demonstrated Na+ - Ca2+ exchange could not be related to (Na+ + K+)-ATPase protein, since it was not purified with (Na+ + K+)-ATPase, as followed from transport studies with liposomes containing (Na+ + K+)-ATPase of different specific activity. The results strongly indicate that plasma membranes isolated from the grey matter of brain contain an Na+ - Ca2+ exchange system and that the proteoliposomes are suitable for further purification of the carrier molecule.  相似文献   

8.
The effects of K+, Na+ and nucleotides (ATP or ADP) on the steady-state phosphorylation from [32P]Pi (0.5 and 1 mM) and acetyl [32P]phosphate (AcP) (5 mM) were studied in membrane fragments and in proteoliposomes with partially purified pig kidney Na,K-ATPase incorporated. The experiments were carried out at 20 degrees C and pH 7.0. In broken membranes, the Pi-induced phosphoenzyme levels were reduced to 40% by 10 mM K+ and to 20% by 10 mM K+ plus 1 mM ADP (or ATP); in the presence of 50 mM Na+, no E-P formation was detected. On the other hand, with AcP, the E-P formation was reduced by 10 mM K+ but was 30% increased by 50 mM Na+. In proteoliposomes E-P formation from Pi was (i) not influenced by 5-10 mM K+cyt or 100 mM Na+ext, (ii) about 50% reduced by 5, 10 or 100 mM K+ext and (iii) completely prevented by 50 mM Na+cyt. Enzyme phosphorylation from AcP was 30% increased by 10 mM K+cyt or 50 mM Na+cyt; these E-P were 50% reduced by 10-100 mM K+ext. However, E-P formed from AcP without K+cyt or Na+cyt was not affected by extracellular K+. Fluorescence changes of fluorescein isothiocyanate labelled membrane fragments, indicated that E-P from AcP corresponded to an E2 state in the presence of 10 mM Na+ or 2 mM K+ but to an E1 state in the absence of both cations. With pNPP, the data indicated an E1 state in the absence of Na+ and K+ and also in the presence of 20 mM Na+, and an E2 form in the presence of 5 mM K+. These results suggest that, although with some similarities, the reversible Pi phosphorylation and the phosphatase activity of the Na,K-ATPase do not share the whole reaction pathway.  相似文献   

9.
Membranous (Na+ + K+)-ATPase from the electric eel was solubilized with 3-[3-cholamidopropyl)-dimethylammonio)-1-propanesulfonate (Chaps). 50 to 70% of the solubilized enzyme was reconstituted in egg phospholipid liposomes containing cholesterol by using Chaps. The obtained proteoliposomes consisted of large vesicles with a diameter of 134 +/- 24 nm as the major component, and their protein/lipid ratio was 1.25 +/- 0.07 g protein/mol phospholipid. The intravesicular volume of these proteoliposomes is too small to consistently sustain the intravesicular concentrations of ligands, especially K+, during the assay. The decrease in K+ concentration was cancelled by the addition of 20 microM valinomycin in the assay medium. The low value of the protein/lipid ratio suggests that these proteoliposomes contain one Na+/K+-pump particle with a molecular mass of 280 kDa per one vesicle as the major component. In these proteoliposomes, the specific activity of the (Na+ + K+)-ATPase reaction was 10 mumol Pi/mg protein per min, and the turnover rate of the ATP-hydrolysis was 3500 min-1, the same as the original enzyme under the same assay condition. The ratio of transported Na+ to hydrolyzed ATP was 3, the same as that in the red cell. The proteoliposomes could be disintegrated by 40-50 mM Chaps without any significant inactivation. This disintegration of proteoliposomes nearly tripled the ATPase activity compared to the original ones and doubled the specific ATPase activity compared to the membranous enzyme, but the turnover rate was the same as the original proteoliposomes and the membranous enzyme. This disintegration of proteoliposomes by Chaps suggests the selective incorporation of the (Na+ + K+)-ATPase particle into the liposomes and the asymmetric orientation of the (Na+ + K+)-ATPase particle in the vesicle.  相似文献   

10.
The glutamate transporters GltP(Ec) from Escherichia coli and GltP(Ph) from Pyrococcus horikoshii were overexpressed in E. coli and purified to homogeneity with a yield of 1-2 mg/L of culture. Single-particle analysis and electron microscopy indicate that GltP(Ph) is a trimer in detergent solution. Electron microscopy of negatively stained GltP(Ph) two-dimensional crystals shows that the transporter is a trimer also in the membrane. Gel filtration of GltP(Ec) indicates a reversible equilibrium of two oligomeric states in detergent solution that we identified as a trimer and hexamer by blue-native gel electrophoresis and cross-linking. The purified transporters were fully active upon reconstitution into liposomes, as demonstrated by the uptake of radioactively labeled L-aspartate or L-glutamate. L-aspartate/L-glutamate transport of GltP(Ec) involves the cotransport of protons and depends only on pH, whereas GltP(Ph) catalyzes L-glutamate transport with a cotransport of H+ or Na+. L-glutamate induces a fast transient current in GltP(Ph) proteoliposomes coupled to a solid supported membrane (SSM). We show that the electric signal depends on the concentration of Na+ or H+ outside the proteoliposomes and that GltP(Ph) does not require K+ inside the proteoliposomes. In addition, the electrical currents are inhibited by TBOA and HIP-B. The half-saturation concentration for activation of GltP(Ph) glutamate transport (K0.5(glut)) is 194 microM.  相似文献   

11.
In Necturus gallbladder epithelial cells the intracellular electrical potential, as recorded with microelectrodes, varied from -28 mV in the mucosal end to about -50 mV in the serosal end of the transporting cell. The Na+ activity varied concurrently from about 39 mM to between 8 and 19 mM. Thus, within the cell both the recorded electrical and chemical gradients caused Na+ to move towards the serosal end. Serosal addition of ouabain (5 X 10(-4) M) caused the intracellular Na+ activity to attain electrochemical equilibrium within 30 min. However, the intracellular electrical potential gradient was only slowly affected. In cells from animals stored at 5 degrees C, the Cl- activity varied from about 55 mM in the mucosal end to 28 mM in the serosal end, and the K+ activity from 50 mM to between 95 and 131 mM. Both ions were close to electrochemical equilibrium within the cytoplasm but were too concentrated to be in equilibrium with the mucosal solution. Bubbling CO2 through the mucosal solution caused the intracellular gradients to vanish. When Na+ in the bathing solutions was exchanged for K+, the intracellular electrical potential became roughly constant at about -5 mV. The Cl- activity became constant in 65 mM, and the K+ activity became constant at 109 mM, both close to equilibrium with the mucosal solution. The Na+ activity was reduced to about 1 mM. The ratio of cytoplasmic resistivities between cells bathed in K+-rich saline to cells bathed in Na+-rich saline was measured by means of triple-barreled electrodes and compared to the same ratio as assessed from the activity measurements. The two values were equal only if one assumes the mobility of Na+ inside the cell to be less than 1/10 of the mobility of K+ or Cl-. The same conclusion was reached by comparing the intracellular Na+ flux calculated from the gradient of electrochemical potential to that flux assess from the net solute absorption. Animals kept at 15 degrees C had lower intracellular Na+ activities, higher Cl- and K+ activities, and higher rates of absorption than animals stored at 5 degrees C. Finally, the degree to which the intracellularly recorded electrical and chemical potentials could reflect an electrode artefact is discussed.  相似文献   

12.
L-Glutamate and L-aspartate transport into osmotically active intestinal brush border membrane vesicles is specifically increased by Na+ gradient (extravesicular greater than intravesicular) which in addition energizes the transient accumulation (overshoot) of the two amino acids against their concentration gradients. The "overshoot" is observed at minimal external Na+ concentration of 100 mM for L-glutamate and 60 mM for L-aspartate; saturation with respect to [Na+] was observed at a concentration near 100 mM for both amino acids. Increasing amino acid concentration, saturation of the uptake rate was observed for L-glutamate and L-aspartate in the concentration range between 1 and 2 mM. Experiments showing mutual inhibition and transtimulation of the two amino acids indicate that the same Na+ -dependent transport system is shared by the two acidic amino acids. The imposition of diffusion potentials across the membrane vesicles artificially induced by addition of valinomycin in the presence of a K+ gradient supports the conclusion that the cotransport Na+/dicarboxylic amino acid in rat brush border membrane vesicles is electroneutral.  相似文献   

13.
Strain OKM-9 is a mesophilic, mixotrophic iron-oxidizing bacterium that absolutely requires ferrous iron as its energy source and L-amino acids (including L-glutamate) as carbon sources for growth. The properties of the L-glutamate transport system were studied with OKM-9 resting cells, plasma membranes, and actively reconstituted proteoliposomes. L-Glutamate uptake into resting cells was totally dependent on ferrous iron that was added to the reaction mixture. Potassium cyanide, an iron oxidase inhibitor, completely inhibited the activity at 1 mM. The optimum pH for Fe2+-dependent uptake activity of L-glutamate was 3.5-4.0. Uptake activity was dependent on the concentration of the L-glutamate. The Km and Vmax for L-glutamate were 0.4 mM and 11.3 nmol x min(-1) x mg(-1), respectively. L-Aspartate, D-aspartate, D-glutamate, and L-cysteine strongly inhibited L-glutamate uptake. L-Aspartate competitively inhibited the activity, and the apparent Ki for this amino acid was 75.9 microM. 2,4-Dinitrophenol, carbonyl cyanide m-chlorophenylhydrazone, gramicidin D, valinomycin, and monensin did not inhibit Fe2+-dependent L-glutamate uptake. The OKM-9 plasma membranes had approximately 40% of the iron-oxidizing activity of the resting cells and approximately 85% of the Fe2+-dependent uptake activity. The glutamate transport system was solubilized from the membranes with 1% n-octyl-beta-D-glucopyranoside and reconstituted into a lecithin liposome. The L-glutamate transport activity of the reconstituted proteoliposomes was 8-fold than that of the resting cells. The Fe2+-dependent L-glutamate uptake observed here seems to explain the mixotrophic nature of this strain, which absolutely requires Fe2+ oxidation when using amino acids as carbon sources.  相似文献   

14.
Transmembrane potential and ionic content of rat alveolar macrophages   总被引:4,自引:0,他引:4  
The cell volume, cell water, intracellular ionic concentrations, and transmembrane potential of rat alveolar macrophages were determined. The measurements were made on cells which had been separated from the medium by centrifugation through dibutyl phthalate in order to greatly reduce the trapped extracellular space. The mean cell volume of the alveolar macrophages is 1,525 cubic microns and 72% of this volume is water. The intracellular fluid is high in Na+ (97 mM) and lower in K+ (50 mM) and the intracellular Cl- concentration in 64 mM. The transmembrane potential, as measured from the equilibrium distribution of tritiated triphenylmethyl phosphonium and by using the fluorescent probe, Di-S-C3(5), is approximately -37 millivolts. Neither Na+, K+, nor Cl- is distributed at equilibrium. However, the K+ permeability of alveolar macrophage membranes appears to be greater than Na+ permeability.  相似文献   

15.
The rate of efflux of L-glutamate from renal brush-border membrane vesicles was enhanced by Na+ and by extravesicular L-glutamate, but not by D-glutamate nor analogs of L-glutamate that do not share the Na+-L-glutamate co-transport system. These results suggest that efflux was mediated by the Na+-L-glutamate carrier. The efflux of L-glutamate was increased by extravesicular K+ or Rb+ but not by Li+, choline+, or Tris+. These findings, together with previous results showing that intravesicular K+ or Rb+ increased L-glutamate uptake and that a K+ gradient energized the concentrative uptake of the acidic amino acid in the absence of other gradients, provide evidence consistent with the hypothesis that the co-transport of Na+-L-glutamate is coupled to the transmembrane flux of K+.  相似文献   

16.
Artificially generated K+ gradient from the sarcoplasmic reticulum vesicles enhances the ATP-dependent Ca2+ transport. The effect is not specific for K+, and is observed when K+ is replaced by Na+ or choline. Dissipation of the K+, Na+, choline gradient does not influence the ATP-dependent Ca2+ transport in proteoliposomes from asolectin and purified Ca2+-ATPase. The K gradient in the presence of valinomycin stimulates the ATP-dependent Ca2+ transport in proteoliposomes.  相似文献   

17.
Advantage was taken of a preparation of proteoliposomes made using Torpedo presynaptic membranes in which both the internal and external media can be controlled to investigate the effects of membrane potential and the Na+ gradient on choline transport activity. Under control conditions, Na+ outside and K+ inside, choline was concentrated by proteoliposomes and this phenomenon was sensitive to hemicholinium-3 and high levels of external choline. While proteoliposomes showed no permeability towards K+ spontaneously, in the presence of valinomycin a transmembrane potential was developed. The rate of transport was higher, the greater the inside negative potential. Both the affinity and the maximal velocity of high affinity transport rose in the presence of a potential. Likewise, the affinity and velocity of this transporter increased with increasing external Na+. Increasing internal Na+, on the other hand, caused a decrease in affinity and had little effect on the maximal velocity. The low affinity component was much less, if at all, affected by these changes. These results are consistent with a model of high affinity choline transport in which Na+ binds before choline and the carrier-Na+-choline complex is positively charged. However, these results do not provide a direct explanation for choline transport activation by nerve activity, underlining the need to study the effects of parameters other than membrane potential and the Na+ gradient on choline transport activity.  相似文献   

18.
The existence of an endogenous Na(+)-glutamate cotransporter in the oocytes of Xenopus laevis is demonstrated. The transporter does not accept D-glutamate as substrate. The dependence on substrate displays two saturating components with low (K1/2 = 9 mM) and high (K1/2 = 0.35 microM) affinities for L-glutamate. The dependence on external Na+ exhibits a saturating component with a K1/2 value of about 5 mM and a component that has not saturated up to 110 mM Na+. In voltage-clamped oocytes, it is possible to demonstrate that Na(+)-dependent L-glutamate transport is directly coupled to countertransport of Rb+. The analysis of the voltage dependence of the Na+,K(+)-dependent L-glutamate uptake suggests that positive charges are moved inwardly during the transport cycle.  相似文献   

19.
The present study was designed to investigate Cl- transport across rat ileal basolateral membranes. Basolateral membrane vesicles were prepared by a well-validated technique. The purity of the basolateral membrane vesicles was verified by marker enzyme studies and by studies of d-glucose and calcium uptake. Cl- uptake was studied by a rapid filtration technique. Neither an outwardly directed pH gradient, nor a HCO3- gradient, or their combination could elicit any stimulation of Cl- transport when compared with no gradient. 4,4-Diisothiocyanostilbene-2,2-disulfonic acid at 5 mM concentration did not inhibit Cl- uptake under gradient condition. Similarly, the presence of the combination of outwardly directed Na+ and HCO3- gradients did not stimulate Cl- uptake compared with the combination of K+ and HCO3- gradients or no HCO3- gradient. This is in contrast to our results in the brush border membranes, where an outwardly directed pH gradient caused an increase in Cl- uptake. Cl- uptake was stimulated in the presence of combined Na+ and K+ gradient. Bumetanide at 0.1 mM concentration inhibited the initial rate of Cl- uptake in the presence of combined Na+ and K+ gradients. Kinetic studies of bumetanide-sensitive Cl- uptake showed a Vmax of 5.6 +/- 0.7 nmol/mg protein/5 sec and a Km of 30 +/- 8.7 mM. Cl- uptake was stimulated by an inside positive membrane potential induced by the ionophore valinomycin in the setting of inwardly directed K+ gradient compared with voltage clamp condition. These studies demonstrate two processes for Cl- transport across the rat ileal basolateral membrane: one is driven by an electrogenic diffusive process and the second is a bumetanide-sensitive Na+/K+/2 Cl- process. Cl- uptake is not enhanced by pH gradient, HCO3- gradient, their combination, or outwardly directed HCO3- and Na+ gradients.  相似文献   

20.
A subpopulation of membrane tubulin consisting mainly of the acetylated isotype is associated with Na+,K+-ATPase and inhibits the enzyme activity. We found recently that treatment of cultured astrocytes with L-glutamate induces dissociation of the acetylated tubulin/Na+,K+-ATPase complex, resulting in increased enzyme activity. We now report occurrence of this phenomenon in non-neural cells. As in the case of astrocytes, the effect of L-glutamate is mediated by its transporters and not by specific receptors. In COS cells, the effect of L-glutamate was reversed by its elimination from culture medium, provided that d-glucose was present. The effect of L-glutamate was not observed when Na+ was replaced by K+ in the incubation medium. The ionophore monensin, in the presence of Na+, had the same effect as L-glutamate. Treatment of cells with taxol prevented the dissociating effect of L-glutamate or monensin. Nocodazole treatment of intact cells or isolated membranes dissociated the acetylated tubulin/Na+,K+-ATPase complex. The dissociating effect of nocodazol does not require Na+. These results indicate a close functional relationship among Na+,K+-ATPase, microtubules, and L-glutamate transporters, and a possible role in cell signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号