首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
As gastrulation proceeds during sea urchin embryogenesis, primary mesenchyme cells (PMCs) fuse to form syncytial cables, within which calcium is deposited as CaCO3, and a pair of spicules is formed. Earlier studies suggested that calcium, previously sequestered by primary mesenchyme cells, is secreted and incorporated into growing spicules. We examined the effects of gadolinium ion (Gd3+), a Ca2+ channel blocker, on spicule formation. Gd3+ did not lead to a retardation of embryogenesis prior to the initiation of gastrulation and did not inhibit the ingression of PMCs from the blastula wall or their migration along the inner blastocoel surface. However, when embryos were raised in seawater containing submicromolar to a few micromolar Gd3+, of which levels are considered to be insufficient to block Ca2+ channels, a pair of triradiate spicules was formed asymmetrically. At 1–3 μmol/L Gd3+, many embryos formed only one spicule on either the left or right side, or embryos formed a very small second spicule. Induction of the spicule abnormality required the presence of Gd3+ specifically during late blastula stage prior to spicule formation. An accumulation or adsorption of Gd3+ was not detected anywhere in the embryos by X‐ray microanalysis, which suggests that Ca2+ channels were not inhibited. These results suggest that Gd3+ exerts an inhibitory effect on spicule formation through a mechanism that does not involve inhibition of Ca2+ channels.  相似文献   

2.
Cuticle tissue homogenates (CTHs) fromCallinectes sapidus premolt cuticle bound approximately 367% more Ca2+ ions than did those from the postmolt cuticle. ThepH-stat assay which was used to comparein vitro CaCO3 nucleation times confirmed that the premolt CTHs had greater inhibitory activity than did the postmolt CTHs. This inhibitory activity was indicated by CaCO3 nucleation times in excess of control values. Premolt nucleation times exceeded those of postmolt samples by approximately 340%. A positive correlation was observed between Ca2+ binding and calcification inhibitory activity for both premolt and postmolt CTHs. Heat pretreatment of CTHs at 70°C for a 24-hr period had no significant effect on their Ca2+ binding. However, this heat pretreatment decreased their calcification inhibitory activity. Pretreatment of CTHs with Ca2+ diminished their calcification inhibitory activity. These results are consistent with a mechanism for inhibition of biocalcification by these proteins which involves their initial reversible binding to nascent calcite nuclei growth steps and kinks, rather than theirin vivo interaction with free Ca2+ ions in solution.  相似文献   

3.
Summary Methods are described for isolation and culture of primary mesenchyme cells from echinoid embryos. Ninety-five percentpure primary mesenchyme cells were isolated from early gastrulae ofStrongylocentrotus purpuratus, exploiting the biological segregation of these cells within the blastocoel. When cultured, more than 90% of the isolated cells reached the differentiated state, spicule formation, in synchrony with in vivo controls. Isolated primary mesenchyme cells were cultured with and without various cellular and acellular components of normal embryos in order to study the potential involvement of these components in the morphogenesis of the primary mesenchyme. Our data indicate that: 1. primary mesenchyme cells lack the ability to form the annular pattern of the primary mesenchymal ring autonomously; 2. they autonomously produce spicules of a characteristic morphology that differs from that of embryonic spicules; 3. morphogenesis of the primary mesenchyme is not affected by association with embryonic basal lamina, blastocoel matrix, or loosely aggregated epithelial cells, or by close confinement of each set of primary mesenchyme cells within the blastocoelar space; and 4. reaggregated, tightly associated epithelial cells can promote normal primary mesenchyme ring formation, and modify the primary mesenchyme-intrinsic spicule pattern to produce more normal spicule forms.  相似文献   

4.
一般认为, 酸性蛋白在控制矿物的形成和发展中发挥重要作用。因此, 在不溶性有机基质中鉴定酸性蛋白对于理解珊瑚中个体蛋白的功能是非常重要的一步。在短指多型软珊瑚(Sinularia polydactyla)的可溶性和不溶性基质层中分析蛋白组分表明, 在不溶性基质和可溶性基质层中天冬氨酸的含量分别是61%和29%。利用体外分析法发现, 基质蛋白诱导碳酸钙形成非晶态析出相先于其形成钙质的结晶态。利用X-射线衍射来鉴定骨片上结晶态的碳酸钙, 结果表明钙质的多晶态呈现强反射。傅利叶变换红外光谱分析表明珊瑚基质中富含天冬氨酸的蛋白和多醣的结构。在不溶性基质组分中用钙离子结合分析显示一个分子量为109 kD的蛋白质可以与形成骨片的钙离子结合, 这一过程对骨片形成非常重要。在对生物钙化过程中起重要作用的碳酸酐酶的分析中显示了此酶的新颖的活性。以上结果显示珊瑚中不溶性基质内的富含天冬氨酸的蛋白在生物矿化调控过程中起重要作用。  相似文献   

5.
To determine if microbial species play an active role in the development of calcium carbonate (CaCO 3 ) deposits (speleothems) in cave environments, we isolated 51 culturable bacteria from a coralloid speleothem and tested their ability to dissolve and precipitate CaCO 3 . The majority of these isolates could precipitate CaCO 3 minerals; scanning electron microscopy and X-ray diffractrometry demonstrated that aragonite, calcite and vaterite were produced in this process. Due to the inability of dead cells to precipitate these minerals, this suggested that calcification requires metabolic activity. Given growth of these species on calcium acetate, but the toxicity of Ca 2+ ions to bacteria, we created a loss-of-function gene knock-out in the Ca 2+ ion efflux protein ChaA. The loss of this protein inhibited growth on media containing calcium, suggesting that the need to remove Ca 2+ ions from the cell may drive calcification. With no carbonate in the media used in the calcification studies, we used stable isotope probing with C 13 O 2 to determine whether atmospheric CO 2 could be the source of these ions. The resultant crystals were significantly enriched in this heavy isotope, suggesting that extracellular CO 2 does indeed contribute to the mineral structure. The physiological adaptation of removing toxic Ca 2+ ions by calcification, while useful in numerous environments, would be particularly beneficial to bacteria in Ca 2+ -rich cave environments. Such activity may also create the initial crystal nucleation sites that contribute to the formation of secondary CaCO 3 deposits within caves.  相似文献   

6.
When proteins isolated from spicules of Strongylocentrotus purpuratus embryos were examined by western blot analysis, a major protein of approximately 43 kDa was observed to react with the monoclonal antibody, mAb 1223. Previous studies have established that this antibody recognizes an asparagine-linked, anionic carbohydrate epitope on the cell surface glycoprotein, msp130. This protein has been shown to be specifically associated with the primary mesenchyme cells involved in assembly of the spicule. Moreover, several lines of evidence have implicated the carbohydrate epitope in Ca2+ deposition into the growing spicule. The 43 kDa, spicule matrix protein detected with mAb 1223 also reacted with a polyclonal antibody to a known spicule matrix protein, SM30. Further characterization experiments, including deglycosylation using PNGaseF, two-dimensional electrophoresis, and immunoprecipitation, verified that the 43 kDa spicule matrix protein had a pl of approximately 4.0, contained the carbohydrate epitope recognized by monoclonal antibody mAb 1223 and reacted with anti-SM30. Electron microscopy confirmed the presence of proteins within the demineralized spicule that reacted with mAb 1223 and anti-SM30. We conclude that the spicule matrix protein, SM30, is a glycoprotein containing carbohydrate chains similar or identical to those on the primary mesenchyme cell membrane glycoprotein, msp130.  相似文献   

7.
Summary Calcified demosponges (coralline sponges, sclero-sponges), the first metazoa producing a carbonate skeleton, used to be important reef building organisms in the past. The relatives of this group investigated here,Spirastrella (Acanthochaetetes) wellsi, Astrosclera willeyana andVaceletia cf.crypta, are restricted to cryptic niches of modern Pacific coral reefs and may be considered as “living fossils’. They are characterized by a basic biologically controlled metazoan biomineralization process. Each of the investigated taxa forms its calcareous basal skeleton in a highly specialized way. Moreover, each taxon secretes distinct Ca2+-binding macromolecules which were entrapped within the calcium carbonate crystals during skeleton formation. Therefore these Ca2+-binding macromolecules were also described as intracrystalline macromolecules. When isolated and separated by SDS polyacrylamide gel electrophoresis, the organic skeleton matrix of the three species revealed to be composed of a respective distinct array of EDTA-soluble proteins. A single protein of 41 kDa was detected inS. wellsi, two proteins of 38 and 120 kDa inA. willeyana, and four proteins of 18 kDa, 30 kDa, 33 kDa, and 37 kDa inVaceletia sp. When run on IEF gel, the Ca2+-binding proteins gave staining bands at pH values between 5.25 and 5.65. As proved by anin vitro mineralization assay, the extracted proteins effectively inhibit CaCO3 and SrCO3 precipitation, respectively, in a saturated solution. Biochemical properties and behavior of the extracted proteins strongly suggest that they are involved in crystal nucleation and skeleton carbonate formation within the calcified sponges studied here.  相似文献   

8.
Organophosphorus pollution and heavy metal pollution are prominent in China and have caused increasingly severe environmental pollution. This research used Pseudomonas putida to degrade dimethoate so as to induce the formation of calcium carbonate (CaCO3) and calcium phosphate (Ca3(PO4)2) in beef extract peptone medium. In addition, the mineral immobilizing function of the generated Ca3(PO4)2 and CaCO3 for Cd2+ was studied by adding different concentrations of Cd2+ to the culture solution. Meanwhile, transmission electron microscopy (TEM), scanning electronic microscopy (SEM), X-ray diffraction, gas chromatography and atomic absorption spectrophotometry were used to investigate the biodegradation of dimethoate, the concentration variation of Ca2+ and Cd2+, the mineral and chemical compositions of the precipitates. The results showed that the growth of P. Putida could increase the pH value of the culture solution and effectively degrade the organophosphorus pesticide dimethoate. Besides, the concentration of Ca2+ in the culture solution decreased significantly in the first four days and then tended to be stable. Moreover, the TEM and SEM results presented that there were large amounts of biogenic sedimentary CaCO3 and a little Ca3(PO4)2 in the precipitates. Furthermore, in the employed culture system, the removal rates of Cd2+, when added at two different concentrations (6 ppm and 15 ppm), reached 100%. Therefore, this study provided a new idea for treating wastewater polluted with organophosphorus pesticide and heavy metals by using microorganisms.  相似文献   

9.
Cardiomyocytes have a complex Ca2+ behavior and changes in this behavior may underlie certain disease states. Intracellular Ca2+ activity can be regulated by the phospholipase Cβ–Gαq pathway localized on the plasma membrane. The plasma membranes of cardiomycoytes are rich in caveolae domains organized by caveolin proteins. Caveolae may indirectly affect cell signals by entrapping and localizing specific proteins. Recently, we found that caveolin may specifically interact with activated Gαq, which could affect Ca2+ signals. Here, using fluorescence imaging and correlation techniques we show that Gαq-Gβγ subunits localize to caveolae in adult ventricular canine cardiomyoctyes. Carbachol stimulation releases Gβγ subunits from caveolae with a concurrent stabilization of activated Gαq by caveolin-3 (Cav3). These cells show oscillating Ca2+ waves that are not seen in neonatal cells that do not contain Cav3. Microinjection of a peptide that disrupts Cav3-Gαq association, but not a control peptide, extinguishes the waves. Furthermore, these waves are unchanged with rynaodine treatment, but not seen with treatment of a phospholipase C inhibitor, implying that Cav3-Gαq is responsible for this Ca2+ activity. Taken together, these studies show that caveolae play a direct and active role in regulating basal Ca2+ activity in cardiomyocytes.  相似文献   

10.
Cuticle tissue homogenates (CTHs) fromCallinectes sapidus premolt cuticle bound approximately 367% more Ca2+ ions than did those from the postmolt cuticle. ThepH-stat assay which was used to comparein vitro CaCO3 nucleation times confirmed that the premolt CTHs had greater inhibitory activity than did the postmolt CTHs. This inhibitory activity was indicated by CaCO3 nucleation times in excess of control values. Premolt nucleation times exceeded those of postmolt samples by approximately 340%. A positive correlation was observed between Ca2+ binding and calcification inhibitory activity for both premolt and postmolt CTHs. Heat pretreatment of CTHs at 70°C for a 24-hr period had no significant effect on their Ca2+ binding. However, this heat pretreatment decreased their calcification inhibitory activity. Pretreatment of CTHs with Ca2+ diminished their calcification inhibitory activity. These results are consistent with a mechanism for inhibition of biocalcification by these proteins which involves their initial reversible binding to nascent calcite nuclei growth steps and kinks, rather than theirin vivo interaction with free Ca2+ ions in solution.  相似文献   

11.
Of various metal ions (Ca2+, Cr3+, Cu2+, Fe2+, Mg2+, Mn2+, Ni2+ and Zn2+) added to the culture medium of Agrobacterium tumefaciens at 1 mM, only Ca2+ increased Coenzyme Q10 (CoQ10) content in cells without the inhibition of cell growth. In a pH-stat fed-batch culture, supplementation with 40 mM of CaCO3 increased the specific CoQ10 content and oxidative stress by 22.4 and 48%, respectively. Also, the effect of Ca2+ on the increase of CoQ10 content was successfully verified in a pilot-scale (300 L) fermentor. In this study, the increased oxidative stress in A. tumefaciens culture by the supplementation of Ca2+ is hypothesized to stimulate the increase of specific CoQ10 content in order to protect the membrane against lipid peroxidation. Our results improve the understanding of Ca2+ effect on CoQ10 biosynthesis in A. tumefaciens and should contribute to better industrial production of CoQ10 by biological processes.  相似文献   

12.
The impact of microbial activity on biofilm calcification in aquatic environments is still a matter of debate, especially in settings where ambient water has high CaCO3 mineral supersaturation. In this study, biofilms of two CO2-degassing karst-water creeks in Germany, which attain high calcite supersaturation during their course downstream, were investigated with regard to water chemistry of the biofilm microenvironment. The biofilms mainly consisted of filamentous cyanobacteria (Phormidium morphotype) and heterotrophic bacteria (including sulfate-reducing bacteria), which affect the microenvironment and produce acidic exopolymers. In situ and ex situ microelectrode measurements showed that a strong pH increase, coupled with Ca2 + consumption, occurred in light conditions at the biofilm surface, while the opposite occurred in the dark. Calcite supersaturation at the biofilm surface, calculated from ex situ Ca2 + and CO3 2? microelectrode measurements, showed that photosynthesis resulted in high omega values during illumination, while respiration slightly lowered supersaturation values in the dark, compared to values in the water column. Dissociation calculation demonstrated that the potential amount of Ca2 + binding by exopolymers would be insufficient to explain the Ca2 + loss observed, although Ca2 + complexation to exopolymers might be crucial for calcite nucleation. No spontaneous precipitation occurred on biofilm-free limestone substrates under the same condition, regardless of high supersaturation. These facts indicate that photosynthesis is a crucial mechanism to overcome the kinetic barrier for CaCO3 precipitation, even in highly supersaturated settings.  相似文献   

13.
The urease‐positive fungi Pestalotiopsis sp. and Myrothecium gramineum, isolated from calcareous soil, were examined for their properties of CaCO3 and SrCO3 biomineralization. After incubation in media amended with urea and CaCl2 and/or SrCl2, calcite (CaCO3), strontianite (SrCO3), vaterite in different forms [CaCO3, (CaxSr1?x)CO3] and olekminskite [Sr(Sr,Ca)(CO3)2] were precipitated, and fungal ‘footprints’ were observed on mineral surfaces. The amorphous precipitate mediated by Pestalotiopsis sp. grown with urea and equivalent concentrations of CaCl2 and SrCl2 was identified as hydrated Ca and Sr carbonates by Fourier transform infrared spectroscopy. Liquid media experiments showed M. gramineum possessed the highest Sr2+ removal ability, and ~ 49% of supplied Sr2+ was removed from solution when grown in media amended with urea and 50 mM SrCl2. Furthermore, this organism could also precipitate 56% of the available Ca2+ and 28% of the Sr2+ in the form of CaCO3, SrCO3 and (CaxSr1?x)CO3 when incubated in urea‐amended media and equivalent CaCl2 and SrCl2 concentrations. This is the first report of biomineralization of olekminskite and coprecipitation of Sr into vaterite mediated by fungi. These findings suggest that urease‐positive fungi could play an important role in the environmental fate, bioremediation or biorecovery of Sr or other metals and radionuclides that form insoluble carbonates.  相似文献   

14.
Microbial carbonic anhydrase promotes carbonate deposition, which is important in the formation and evolution of global carbon cycle and geological processes. A kind of bacteria producing extracellular carbonic anhydrase was selected to study the effects of temperature, pH value and Ca2+ concentration on bacterial growth, carbonic anhydrase activity and calcification rate in this paper. The results showed that the activity of carbonic anhydrase at 30 °C was the highest, which was beneficial to the calcification reaction, calcification rate of CaCO3 was the fastest in alkaline environment with the initial pH value of 9.0. When the Ca2+ concentration was 60 mM, compared with other Ca2+ concentration, CA bacteria could grow and reproduce best, and the activity of bacteria was the highest, too low Ca2+ concentration would affect the generation of CaCO3, while too high Ca2+ concentration would seriously affect the growth of bacteria and reduce the calcification rate. Finally, the mechanism of CaCO3 precipitation induced by microbial carbonic anhydrase was studied. Carbonic anhydrase can accelerate the hydration of CO2 into HCO3, and react with OH and Ca2+ to form CaCO3 precipitation in alkaline environment and in the presence of calcium source.  相似文献   

15.
Abstract: The ability of antidepressant drugs (ADs) to increase the concentration of intracellular Ca2+ ([Ca2+]i) was examined in primary cultured neurons from rat frontal cortices using the Ca2+-sensitive fluorescent indicator fura-2. Amitriptyline, imipramine, desipramine, and mianserin elicited transient increases in [Ca2+]i in a concentration-dependent manner (100 μM to 1 mM). These four AD-induced [Ca2+]i increases were not altered by the absence of external Ca2+ or by the presence of La3+ (30 μM), suggesting that these ADs provoked intracellular Ca2+ mobilization rather than Ca2+ influx. All four ADs increased inositol 1,4,5-trisphosphate (IP3) contents by 20–60% in the cultured cells. The potency of the IP3 production by these ADs closely correlated with the AD-induced [Ca2+]i responses. Pretreatment with neomycin, an inhibitor of IP3 generation, significantly inhibited amitriptyline- and imipramine-induced [Ca2+]i increases. In addition, by initially perfusing with bradykinin (10 μM) or acetylcholine (10 μM), which can stimulate the IP3 generation and mobilize the intracellular Ca2+, the amitriptyline responses were decreased by 76% and 69%, respectively. The amitriptyline-induced [Ca2+]i increases were unaffected by treatment with pertussis toxin. We conclude that high concentrations of amitriptyline and three other ADs mobilize Ca2+ from IP3-sensitive Ca2+ stores and that the responses are pertussis toxin-insensitive. However, it seems unlikely that the effects requiring high concentrations of ADs are related to the therapeutic action.  相似文献   

16.
Crustaceans present a very interesting model system to study the process of calcification and calcium (Ca2+) transport because of molting-related events and the deposition of CaCO3 in the new exoskeleton. Dilocarcinus pagei, a freshwater crab endemic to Brazil, was studied to understand Ca2+ transport in whole gill cells using a fluorescent probe. Cells were dissociated, all of the gill cell types were loaded with fluo-3 and intracellular Ca2+ change was monitored by adding Ca as CaCl2 (0, 0.1, 0.25, 0.50, 1.0 and 5 mM), with a series of different inhibitors. For control gill cells, Ca2+ transport followed Michaelis–Menten kinetics with K m = 0.42 ± 0.04 mM and V max = 0.50 ± 0.02 μM (Ca2+ change × initial intracellular Ca−1 × 180 s−1; N = 14, r 2 = 0.99). Verapamil (a Ca2+ channel inhibitor) and amiloride (a Na+/Ca2+ exchanger [NCX] inhibitor) completely reduced intracellular Ca2+ transport, while nifedipine, another Ca2+ channel inhibitor, did not. Vanadate, a plasma membrane Ca2+-ATPase inhibitor (PMCA), increased intracellular Ca2+ in gill cells through a decrease in the efflux of Ca2+. Ouabain increased intracellular Ca2+, similar to the effect of KB-R, a specific NCX inhibitor for Ca2+ in the influx mode. Alterations in extracellular [Na] in the saline did not affect intracellular Ca2+ transport. Caffeine, responsible for inducing Ca release from sarcoplasmic reticulum in vertebrate muscle, increased intracellular Ca2+ compared to control, suggesting an effect of this inhibitor in gill epithelial cells of Dilocarcinus pagei, probably through release of intracellular stores. We also demonstrate here that intracellular Ca2+ in gill cells of Dilocarcinus pagei was kept relatively constant in face of an extracellular Ca concentration of 50-fold, suggesting that crustaceans are able to display Ca2+ homeostasis through various Ca2+ intracellular sequestration mechanisms and/or plasma membrane Ca2+ influx and outflux that are highly regulatory. In summary, studies using whole gill cells are an interesting approach for working with real regulatory Ca2+ mechanisms in intact cells under physiological Ca levels (mM range), compared to earlier work using isolated vesicles of various epithelial cells.  相似文献   

17.
Synaptically activated postsynaptic [Ca2+]i increases occur through three main pathways: Ca2+ entry through voltage-gated Ca2+ channels, Ca2+ entry through ligand-gated channels, and Ca2+ release from internal stores. The first two pathways have been studied intensively; release from stores has been the subject of more recent investigations.Ca2+ release from stores in CNS neurons primarily occurs as a result of IP3 mobilized by activation of metabotropic glutamatergic and/or cholingergic receptors coupled to PLC. Ca2+ release is localized near spines in Purkinje cells and occurs as a wave in the primary apical dendrites of pyramidal cells in the hippocampus and cortex. The amplitude of the [Ca2+]i increase can reach several micromolar, significantly larger than the increase due to backpropagating spikes.The large amplitude, long duration, and unique location of the [Ca2+]i increases due to Ca2+ release from stores suggests that these increases can affect specific downstream signaling mechanisms in neurons.  相似文献   

18.
Abstract: The effect(s) of a prototypic intracellular Ca2+ antagonist, 8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate (TMB-8), on glutamate-induced neurotoxicity was investigated in primary cultures of mouse cerebellar granule cells. Glutamate evoked an increase in cytosolic free-Ca2+ levels ([Ca2+]i) that was dependent on the extracellular concentration of Ca2+ ([Ca2+]o). In addition, this increase in [Ca2+]i correlated with a decrease in cell viability that was also dependent on [Ca2+]o. Glutamate-induced toxicity, quantified by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) staining, was shown to comprise two distinct components, an “early” Na+/Cl?-dependent component observed within minutes of glutamate exposure, and a “delayed” Ca2+-dependent component (ED50~50 µM) that coincided with progressive degeneration of granule cells 4–24 h after a brief (5–15 min) exposure to 100 µM glutamate. Quantitative analysis of cell viability and morphological observations identify a “window” in which TMB-8 (at >100 µM) protects granule cells from the Ca2+-dependent, but not the Na+/Cl?-dependent, component of glutamate-induced neurotoxic damage, and furthermore, where TMB-8 inhibits glutamate-evoked increases in [Ca2+]i. These findings suggest that Ca2+ release from a TMB-8-sensitive intracellular store may be a necessary step in the onset of glutamate-induced excitotoxicity in granule cells. However, these conclusions are compromised by additional observations that show that TMB-8 (1) exhibits intrinsic toxicity and (2) is able to reverse its initial inhibitory action on glutamate-evoked increases in [Ca2+]i and subsequently effect a pronounced time-dependent potentiation of glutamate responses. Dantrolene, another putative intracellular Ca2+ antagonist, was completely without effect in this system with regard to both glutamate-evoked increases in [Ca2+]i and glutamate-induced neurotoxicity.  相似文献   

19.
The mechanism by which cells recognize starvation to allow subsequent cellular development was analyzed usingDictyostelium discoideum,with special emphasis on Ca2+as a crucial signal transducer in intra- and intercellular communications. As was expected, the cytosolic Ca2+concentration ([Ca2+]i) in aequorin-expressing cells (RHI76 derived fromD. discoideumAx-3) was temporarily increased, when 3–5 μM thapsigargin (Tg), a specific inhibitor of the Ca2+-ATPase, was added into the cells incubated in semistarvation medium (SS-medium: 1 vol of growth medium plus 7 vol either of 20 mM Na2/K-phosphate buffer (pH 6.2) or of Bonner's salt solution (BSS)). Essentially the same result was obtained by the application of 5 μM nigericin (Ng), an acid ionophore to cells under the semistarved condition. Here it is of interest to note that in the SS-medium Tg and Ng are capable of enhancing cell differentiation as exemplified well by the earlier acquisition of chemotactic response to cAMP, possibly inducing the starvation response through the [Ca2+]iincrease. From Western blot analysis of phosphotyrosine (pTyr)-containing proteins using anti-pTyr antibody, it was found that the pTyr-phosphorylation levels of 97-, 80-, and 45-kDa proteins increase specifically in response to starvation. Interestingly, Tg and Ng induced such a change of the 80-kDa protein in the cells incubated in the SS-medium. Taken together these results strongly suggest that the temporal increase of [Ca2+]imay be a matter of importance for signal transduction coupled with starvation response.  相似文献   

20.
The present studies were conducted to investigate the mechanisms underlying the 1,25-dihydroxycholecalciferol (1,25(OH)2D3)-induced increase in intracellular Ca2+ ([Ca2+] i ) in individual CaCo-2 cells. In the presence of 2mm Ca2+, 1,25(OH)2D3-induced a rapid transient rise in [Ca2+] i in Fura-2-loaded cells in a concentration-dependent manner, which decreased, but did not return to baseline levels. In Ca2+-free buffer, this hormone still induced a transient rise in [Ca2+] i , although of lower magnitude, but [Ca2+] i then subsequently fell to baseline. In addition, 1,25(OH)2D3 also rapidly induced45Ca uptake by these cells, indicating that the sustained rise in [Ca2+] i was due to Ca2+ entry. In Mn2+-containing solutions, 1,25(OH)2D3 increased the rate of Mn2+ influx which was temporally preceded by an increase in [Ca2+] i . The sustained rise in [Ca2+] i was inhibited in the presence of external La3+ (0.5mm). 1,25(OH)2D3 did not increase Ba2+ entry into the cells. Moreover, neither high external K+ (75mm), nor the addition of Bay K 8644 (1 μm), an L-type, voltage-dependent Ca2+ channel agonist, alone or in combination, were found to increase [Ca2+] i , 1,25(OH)2D3 did, however, increase intracellular Na+ in the absence, but not in the presence of 2mm Ca2+, as assessed by the sodium-sensitive dye, sodium-binding benzofuran isophthalate. These data, therefore, indicate that CaCo-2 cells do not express L-type, voltage-dependent Ca2+ channels. 1,25(OH)2D3 does appear to activate a La3+-inhibitable, cation influx pathway in CaCo-2 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号