首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The mouse is well-established as the major animal model for the study of mammalian development. Rapid progress in large-scale cDNA and also genomic sequencing projects is identifying new mouse genes at an unprecedented rate. As a first step toward understanding the function of these novel genes, it is important to determine their developmental expression pattern. Here we provide a reliable, sensitive method for whole-mount in situ hybridization using the mouse embryo.  相似文献   

2.
3.
4.
Supernumerary chromosomes, termed "conditionally dispensable" (CD) chromosomes, are known in Nectria haematococca. Because these CD chromosomes had been revealed solely by pulsed-field gel electrophoresis, their morphological properties were unknown. In this study, we visualized a 1.6-Mb CD chromosome of this fungus by three different types of fluorescence in situ hybridization. The CD chromosome at mitotic metaphase was similar in its appearance to the other chromosomes in the genome. Heterochromatic condensation was not distinct in the CD chromosome, suggesting that it is primarily euchromatic. It was also evident that the CD chromosome is unique and not a duplicate of other chromosomes in the genome. At interphase and prophase, the CD chromosome was not dispersed throughout the nucleus, but occupied a limited domain. Occasionally, occurrence of two distinct unattached copies of the CD chromosome were observed during interphase and metaphase.  相似文献   

5.
The localization and phosphorylation state of tau in LA-N-5 neuroblastoma cells was examined. Our results demonstrate that there are two populations of tau in LA-N-5 cells: cytosolic tau and nuclear tau. Indirect immunofluorescent microscopy revealed that nuclear tau is specifically localized to the nucleolus while cytosolic tau is diffusely distributed. To localize and quantitate tau in LA-N-5 cells by subcellular fractionation, a method was developed to extract tau from the nucleus while preserving the endogenous state of the protein. These studies revealed that 16% of the total tau, protein in LA-N-5 cells is located in the nucleus and more specifically was found predominantly in the chromatin fraction containing DNA, chromatin, and associated proteins. The phosphorylation state of nuclear and cytosolic tau was examined by labeling LA-N-5 cells with 32Pi and immunoprecipitating tau from the different fractions. These data demonstrated that nuclear tau and cytosolic tau are phosphorylated approximately to the same extent. To determine if the phosphorylation of nuclear tau occurs in the nucleus, LA-N-5 nuclei were isolated, incubated with [γ-32P]ATP, extracted, and tau was immunoprecipitated. Although numerous nuclear proteins were 32 P-labeled, tau was not phosphorylated. These results suggest that nuclear tau is not phosphorylated in the nucleus but rather in the cytosol prior to transport into the nucleus. The specific localization of nuclear tau strongly suggests that it has a functional role in the nucleus. However, further studies are necessary to determine the function of nuclear tau and how it may be regulated by phosphorylation.  相似文献   

6.
斑马鱼(zebrafish,Danio rerio)是生物学领域中公认的研究脊椎类生物的模式生物.胸苷酸合成酶(thymidylate synthase,TS)是DNA从头合成的限速酶,多年来一直作为肿瘤化疗的重要靶酶.前期的研究表明,人和大肠杆菌中TS能与自身的mRNA结合,在翻译水平上具有反馈抑制自调控现象.斑马鱼作为药物模型的研究已成为热点研究领域,为了探讨斑马鱼的胸苷酸合成酶的调控规律,以及与人TS的相关性,利用原核表达,纯化获得高均一性斑马鱼TS蛋白,采用凝胶迁移研究了TS和其mRNA的体外结合,采用免疫共沉淀:RT-PCR技术研究了它们在体内的相互作用,实验结果表明,斑马鱼的TS在体内外均与自身的mRNA存在特异性的相互作用.研究说明,斑马鱼和人的TS具有高度生物学过程相关性,为构建斑马鱼抗肿瘤药理模型提供了理论基础.  相似文献   

7.
The replication timing of telomeres seems to differ between species. Yeast telomeres are late replicating, whereas limited data from very few human cell lines have indicated telomere replication throughout S phase. In the present study a series of permanent cell lines and patient samples was investigated using a flow cytometric approach for telomere length determination based on in situ hybridization using peptide nucleic acid probes and DNA staining. This method permits selective analysis of cells in specific phases of the cell cycle without perturbation of the cell cycle machinery. The timing of replication of telomeric C(3)TA(2) and T(2)AG(3) repeats was found to differ between individual samples and could precede or be concomitant with the replication of bulk DNA. Replication of the T(2)AG(3) strand seemed to occur somewhat later than that of the C(3)TA(2) strand in some samples. (GTG)(n) and other repetitive sequences generally showed a replication pattern similar to that of the bulk of DNA with slightly individual differences, whereas centromeric DNA repeats consistently replicated within a short time frame in late S phase. The apparent variability in replication timing seen for telomeric DNA might suggest individual differences in firing of replication origins.  相似文献   

8.
9.
10.
Previous biochemical studies utilizing isolated nuclei and nuclear matrices have shown actin to be a constituent of the interphase nucleus. In addition, recent ultrastructural work has shown the presence of actin and myosin within nuclei of interphase cells in situ. It was unclear, however, whether this intranuclear actin is present in the unpolymerized globular actin or the filamentous (F)-actin form. The present work, using confocal microscopy and ultrastructural cytochemical techniques, demonstrates the presence of F-actin within interphase nuclei of intact, uncompromised, dorsal root ganglion neurons in vitro and in vivo. Labeling by FITC-phalloidin detected the presence of intranuclear F-actin adjacent to the nucleolar periphery in a small fraction of cells in vitro, an observation confirmed by three-dimensional reconstruction. Ultrastructural analyses of cells exposed to heavy meromyosin (HMM), showed the presence of typical "arrowhead" complexes. The observation that these complexes were associated with nucleoli confirms that the intranuclear ligand detected by FITC-phalloidin indeed represents F-actin. Postembedding labeling with HMM conjugated to 20-nm colloidal gold (HMM-Au20) resulted in labeling similar to that obtained with HMM. However, HMM-Au20 was found to label a much larger fraction of cells, both in vitro and in vivo, than did FITC-phalloidin or HMM. This finding indicates that labeling with HMM-Au20 more accurately reflects the extent of actin polymerization in nuclei. Results from double labeling with HMM-Au20 and an antibody to α-sarcomeric actin confirmed that only a small amount of nuclear actin is in the F-form. Together, these results represent a first ultrastructural demonstration of the presence of F-actin in nuclei of neurons. While the role of nuclear F-actin has yet to be defined, the results suggest that F-actin may represent a component of the molecular motor responsible for the dynamic positioning of specific chromatin domains into the tissue-specific, nonrandom patterns observed in many cell types.  相似文献   

11.
The q23-q33 region of human chromosome 5 encodes a large number of growth factors, growth factor receptors, and hormone/neurotransmitter receptors. This is also the general region into which several disease genes have been mapped, including diastrophic dysplasia, Treacher Collins syndrome, hereditary startle disease, the myeloid disorders that are associated with the 5q-syndrome, autosomal-dominant forms of hereditary deafness, and limb girdle muscular dystrophy. We have developed a framework physical map of this region using cosmid clones isolated from the Los Alamos arrayed chromosome 5-specific library. Entry points into this library included 14 probes to genes within this interval and one anonymous polymorphic marker locus. A physical map has been constructed using fluorescence in situ hybridization of these cosmids on metaphase and interphase chromosomes, and this is in good agreement with the radiation hybrid map of the region. The derived order of loci across the region is cen-IL4-IL5-IRF1-IL3-IL9-EGR1-CD14-FGFA-GRL-D5S207-ADRB2-SPARC-RPS14-CSF1R-ADRA1, and the total distance spanned by these loci is approximately 15 Mb. The framework map, genomic clones, and contig expansion within 5q23-q33 should provide valuable resources for the eventual isolation of the clinically relevant loci that reside in this region.  相似文献   

12.
Biochemical and ultrastructural studies on isolated nuclear compartments have previously shown actin and myosin to be constituents of interphase nuclei. In the present work, immunocytochemistry, in conjunction with confocal microscopy and ultrastructural immunogold techniques, shows that interphase nuclei of intact dorsal root ganglion neurons and of PC12 cells contain actin and myosin. Nuclear actin was observed to be distributed throughout the nucleoplasm occurring as distinct aggregates. Frequently, prominent actin aggregates were associated with the nucleolar periphery, often near nucleolar satellites. Ultrastructurally, actin was observed to be associated with linear, electrondense structures, putatively identified as chromatin fibers, extending from nucleoli. Use of three antibodies against subclasses of α-actin isoforms revealed that nuclear actin is more closely related to α-sarcomeric actin than to α-smooth muscle actin. Those aggregates associated with the nucleolus were found to be in the polymerized F-actin form, in a small fraction of neurons, as assessed by FITC-phalloidin. A myosin-like antigen was also observed to occur as intranuclear aggregates. Quantitative assays of the distribution of actin and myosin aggregates by nearest neighbour analysis indicated a distribution characterized as uniform and failed to reveal statistically significant associations between any set of aggregates, The evidence presented herein indicates that actin and myosin are constituent proteins of interphase nuclei in situ of both normal mammalian and transformed mammalian cells.  相似文献   

13.
14.
15.
The following protocol is for radioactive in situ hybridization detection of RNA using paraffin-embedded tissue sections on glass microscope slides. Steps taken to inhibit RNase activity such as diethyl pyrocarbonate (DEPC) treatment of solutions and baked glassware are unnecessary. The tissue is fixed using 4% paraformaldehyde, hybridized with 35S-labeled RNA probes, and exposed to nuclear-track emulsion. The entire procedure takes 2–3 days prior to autoradiography. The time required for autoradiography is variable with an average time of 10 days. Parameters that affect the length of the autoradiography include: (1) number of copies of mRNA in the tissue, (2) incorporation of label into the probe, and (3) amount of background signal. Additional steps involved in the autoradiography process, including development of the emulsion, cleaning of the microscope slides, counterstaining of the tissue, and mounting coverslips on the microscope slides, are discussed. In addition, a general guide to the interpretation of the in situ results is provided.  相似文献   

16.
Nascent DNA (newly replicated DNA) was visualized in situ with regard to the position of the previously replicated DNA and to chromatin structure. Localization of nascent DNA at the replication sites can be achieved through pulse labeling of cells with labeled DNA precursors during very short periods of time. We were able to label V79 Chinese Hamster cells for as shortly as 2 min with BrdU; Br-DNA, detected by immunoelectron microscopy, occurs at the periphery of dense chromatin, at individual dispersed chromatin fibers, and within dispersed chromatin areas. In these regions DNA polymerase α was also visualized. After a 5-min BrdU pulse, condensed chromatin also became labeled. When the pulse was followed by a chase, a larger number of gold particles occurred on condensed chromatin. Double-labeling experiments, consisting in first incubating cells with IdU for 20 min, chased for 10 min and then labeled for 5 min with CldU, reveal CldU-labeled nascent DNA on the periphery of condensed chromatin, while previously replicated IdU-labeled DNA has been internalized into condensed chromatin. Altogether, these results show that the sites of DNA replication correspond essentially to perichromatin regions and that the newly replicated DNA moves rapidly from replication sites toward the interior of condensed chromatin areas.  相似文献   

17.
18.
A buffer containing 7 M urea was used to successfully prevent DNA degradation of in situ damaged fish skin and resulted in reproducible high molecular weight DNA. This treatment in combination with a quantitative gel electrophoresis technique permitted estimation of small changes induced in unlabeled DNA per unit molecular weight after treatment with a DNA damaging agent (e.g., ultraviolet irradiation).  相似文献   

19.
The TCP1 ring complex (TRiC) is a molecular chaperone involved in actin and tubulin folding. Little is known about the components of this complex. The first component identified was TCP1, a protein coded by a gene in the t -complex locus on mouse chromosome 17. This locus is involved in several embryonic defects, male sterility, and the transmission ratio distortion. In humans, the t-complex genes map to chromosome 6. Other components of TRiC are thought to be TCP1-related proteins. Recently, a mouse cDNA coding for one of these proteins has been cloned and named mTRiC-P5. Here we report the cloning of a partial human cDNA clone, homologous to mTRiC-P5, and its chromosome localization by fluorescence in situ hybridization. The human TRiC-P5 gene (TRIC5) maps to human chromosome 1q23, a region known to be a preferential chromosomal breakpoint involved in leukemia. Therefore, even if TCP1 and TRiC-P5 are related proteins and are found in the same protein complex, they are not coded by syntenic genes in humans.  相似文献   

20.
Using fluorescence in situ hybridization (FISH), we have identified seven NF1-related loci, two separate loci on chromosome 2, at bands 2q21 and 2q33-q34, and one locus each on five other chromosomes at bands 14q11.2, 15q11.2, 18p11.2, 21q11.2-q21, and 22q11.2. Application of PCR using NF1 primer pairs and genomic DNA from somatic cell hybrids confirmed the above loci, identified additional loci on chromosomes 12 and 15, and showed that the various loci do not share homology beyond NF1 exon 27b. Sequenced PCR products representing segments corresponding to NF1 exons from these loci demonstrated greater than 95% sequence identity with the NF1 locus. We used sequence differences between bona fide NF1 and NF1 -homologous loci to strategically design primer sets to specifically amplify 30 of 36 exons within the 5′ end of the NF1 gene. These developments have facilitated mutation analysis at the NF1 locus using genomic DNA as template.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号