共查询到20条相似文献,搜索用时 8 毫秒
1.
Campisano A Schroeder C Schemionek M Overhage J Rehm BH 《Applied and environmental microbiology》2006,72(4):3066-3068
The function of pslD, which is part of the psl operon from Pseudomonas aeruginosa, was investigated in this study. The psl operon is involved in exopolysaccharide biosynthesis and biofilm formation. An isogenic marker-free pslD deletion mutant of P. aeruginosa PAO1 which was deficient in the formation of differentiated biofilms was generated. Expression of only the pslD gene coding region restored the wild-type phenotype. A C-terminal, hexahistidine tag fusion enabled the identification of PslD. LacZ and PhoA translational fusions with PslD indicated that PslD is a secreted protein required for biofilm formation, presumably via its role in exopolysaccharide export. 相似文献
2.
Wu H Lee B Yang L Wang H Givskov M Molin S Høiby N Song Z 《FEMS immunology and medical microbiology》2011,62(1):49-56
Biofilm-associated chronic Pseudomonas aeruginosa lung infections in patients with cystic fibrosis are virtually impossible to eradicate with antibiotics because biofilm-growing bacteria are highly tolerant to antibiotics and host defense mechanisms. Previously, we found that ginseng treatments protected animal models from developing chronic lung infection by P. aeruginosa. In the present study, the effects of ginseng on the formation of P. aeruginosa biofilms were further investigated in vitro and in vivo. Ginseng aqueous extract at concentrations of 0.5-2.0% did not inhibit the growth of P. aeruginosa, but significantly prevented P. aeruginosa from forming biofilm. Exposure to 0.5% ginseng aqueous extract for 24 h destroyed most 7-day-old mature biofilms formed by both mucoid and nonmucoid P. aeruginosa strains. Ginseng treatment enhanced swimming and twitching motility, but reduced swarming of P. aeruginosa at concentrations as low as 0.25%. Oral administration of ginseng extracts in mice promoted phagocytosis of P. aeruginosa PAO1 by airway phagocytes, but did not affect phagocytosis of a PAO1-filM mutant. Our study suggests that ginseng treatment may help to eradicate the biofilm-associated chronic infections caused by P. aeruginosa. 相似文献
3.
Sobern-Chvez Gloria Aguirre-Ramrez Marisela Snchez Rosalba 《Journal of industrial microbiology & biotechnology》2005,32(11):675-677
Pseudomonas aeruginosa produces the biosurfactant rhamnolipid, which has several potential biotechnological applications. The synthesis of this surfactant is catalyzed by rhamnosyltransferase 1, composed of the proteins RhlA and RhlB. Here we report that RhlA plays a role not only in surfactant synthesis, but also in the production of polyhydroxyalkanoates, polymers that can be used for the synthesis of biodegradable plastics.
相似文献4.
The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional 总被引:1,自引:0,他引:1
Shrout JD Chopp DL Just CL Hentzer M Givskov M Parsek MR 《Molecular microbiology》2006,62(5):1264-1277
The role of quorum sensing in Pseudomonas aeruginosa biofilm formation is unclear. Some researchers have shown that quorum sensing is important for biofilm development, while others have indicated it has little or no role. In this study, the contribution of quorum sensing to biofilm development was found to depend upon the nutritional environment. Depending upon the carbon source, quorum-sensing mutant strains (lasIrhlI and lasRrhlR) either exhibited a pronounced defect early in biofilm formation or formed biofilms identical to the wild-type strain. Quorum sensing was then shown to exert its nutritionally conditional control of biofilm development through regulation of swarming motility. Examination of pilA and fliM mutant strains further supported the role of swarming motility in biofilm formation. These data led to a model proposing that the prevailing nutritional conditions dictate the contributions of quorum sensing and swarming motility at a key juncture early in biofilm development. 相似文献
5.
Soberón-Chávez G Aguirre-Ramírez M Sánchez R 《Journal of industrial microbiology & biotechnology》2005,32(11-12):675-677
Pseudomonas aeruginosa produces the biosurfactant rhamnolipid, which has several potential biotechnological applications. The synthesis of this surfactant is catalyzed by rhamnosyltransferase 1, composed of the proteins RhlA and RhlB. Here we report that RhlA plays a role not only in surfactant synthesis, but also in the production of polyhydroxyalkanoates, polymers that can be used for the synthesis of biodegradable plastics. 相似文献
6.
Quorum sensing is not required for twitching motility in Pseudomonas aeruginosa 总被引:10,自引:0,他引:10 下载免费PDF全文
It has been reported that mutations in the quorum-sensing genes lasI and rhlI in Pseudomonas aeruginosa result in, among many other things, loss of twitching motility (A. Glessner, R. S. Smith, B. H. Iglewski, and J. B. Robinson, J. Bacteriol. 181:1623-1629, 1999). We constructed knockouts of lasI and rhlI and the corresponding regulatory genes lasR and rhlR and found no effect on twitching motility. However, twitching-defective variants accumulated during culturing of lasI and rhlI mutants. Further analysis showed that the stable twitching-defective variants of lasI and rhlI mutants had arisen as a consequence of secondary mutations in vfr and algR, respectively, both of which encode key regulators affecting a variety of phenotypes, including twitching motility. In addition, when grown in shaking broth culture, lasI and rhlI mutants, but not the wild-type parent, also accumulated unstable variants that lacked both twitching motility and swimming motility and appeared to be identical in phenotype to the S1 and S2 variants that were recently reported to occur at high frequencies in P. aeruginosa strains grown as a biofilm or in static broth culture (E. Deziel, Y. Comeau, and R. Villemur, J. Bacteriol. 183:1195-1204, 2001). These results indicate that mutations in one regulatory system may create distortions that select during subsequent culturing for compensatory mutations in other regulatory genes within the cellular network. This problem may have compromised some past studies of regulatory hierarchies controlled by quorum sensing and of bacterial regulatory systems in general. 相似文献
7.
Marta Modzelan Martyna Kujawa Krzysztof Głąbski Grażyna Jagura‐Burdzy Elzbieta Kraszewska 《Molecular microbiology》2014,93(5):867-882
Nudix pyrophosphatases, ubiquitous in all organisms, have not been well studied. Recent implications that some of them may be involved in response to stress and in pathogenesis indicate that they play important biological functions. We have investigated NudC Nudix proteins from the plant pathogen Pseudomonas syringae pv. tomato str. DC3000 and from the human pathogen Pseudomonas aeruginosa PAO1161. We found that these homologous enzymes are homodimeric and in vitro preferentially hydrolyse NADH. The P. syringae mutant strain deficient in NudC accumulated NADH and displayed significant defects in growth, motility and biofilm formation. The wild type copy of the nudC gene with its cognate promoter delivered in trans into the nudC mutant restored its fitness. However, introduction of the P. syringae nudC gene under the control of the strong tacp promoter into either P. syringae or P. aeruginosa cells had a toxic effect on both strains. Opposite to P. syringae NudC, the P. aeruginosa NudC deficiency as well as its overproduction had no visible impact on cells. Moreover, P. aeruginosa NudC does not compensate the lack of its counterpart in the P. syringae mutant. These results indicate that NudC from P. syringae, but not from P. aeruginosa is vital for bacteria. 相似文献
8.
Inverse regulation of biofilm formation and swarming motility by Pseudomonas aeruginosa PA14 下载免费PDF全文
We previously reported that SadB, a protein of unknown function, is required for an early step in biofilm formation by the opportunistic pathogen Pseudomonas aeruginosa. Here we report that a mutation in sadB also results in increased swarming compared to the wild-type strain. Our data are consistent with a model in which SadB inversely regulates biofilm formation and swarming motility via its ability both to modulate flagellar reversals in a viscosity-dependent fashion and to influence the production of the Pel exopolysaccharide. We also show that SadB is required to properly modulate flagellar reversal rates via chemotaxis cluster IV (CheIV cluster). Mutational analyses of two components of the CheIV cluster, the methyl-accepting chemotaxis protein PilJ and the PilJ demethylase ChpB, support a model wherein this chemotaxis cluster participates in the inverse regulation of biofilm formation and swarming motility. Epistasis analysis indicates that SadB functions upstream of the CheIV cluster. We propose that P. aeruginosa utilizes a SadB-dependent, chemotaxis-like regulatory pathway to inversely regulate two key surface behaviors, biofilm formation and swarming motility. 相似文献
9.
10.
H E Reiling U Thanei-Wyss L H Guerra-Santos R Hirt O K?ppeli A Fiechter 《Applied and environmental microbiology》1986,51(5):985-989
Rhamnolipid biosurfactants were continuously produced with Pseudomonas aeruginosa on the pilot plant scale. Production and downstream processing elaborated on the laboratory scale were adapted to the larger scale. Differences in performance resulting from the scale-up are discussed. A biosurfactant concentration of approximately 2.25 g liter-1 was achieved. The biosurfactant yield on glucose was 77 mg g-1 h-1, and the productivity was 147 mg liter-1 h-1, corresponding to a daily production of 80 g of biosurfactant. The first enrichment step consisted of an adsorption chromatography which was followed by an anion-exchange chromatography. The resulting product was 90% pure, and the overall recovery of active material was above 60% with the downstream processing used. 相似文献
11.
Morris JD Hewitt JL Wolfe LG Kamatkar NG Chapman SM Diener JM Courtney AJ Leevy WM Shrout JD 《Applied and environmental microbiology》2011,77(23):8310-8317
Many bacteria spread over surfaces by "swarming" in groups. A problem for scientists who study swarming is the acquisition of statistically significant data that distinguish two observations or detail the temporal patterns and two-dimensional heterogeneities that occur. It is currently difficult to quantify differences between observed swarm phenotypes. Here, we present a method for acquisition of temporal surface motility data using time-lapse fluorescence and bioluminescence imaging. We specifically demonstrate three applications of our technique with the bacterium Pseudomonas aeruginosa. First, we quantify the temporal distribution of P. aeruginosa cells tagged with green fluorescent protein (GFP) and the surfactant rhamnolipid stained with the lipid dye Nile red. Second, we distinguish swarming of P. aeruginosa and Salmonella enterica serovar Typhimurium in a coswarming experiment. Lastly, we quantify differences in swarming and rhamnolipid production of several P. aeruginosa strains. While the best swarming strains produced the most rhamnolipid on surfaces, planktonic culture rhamnolipid production did not correlate with surface growth rhamnolipid production. 相似文献
12.
Surface-associated swarming motility is implicated in enhanced bacterial spreading and virulence, hence it follows that anti-swarming effectors could have clinical benefits. When investigating potential applications of anti-swarming materials it is important to consider whether the lack of swarming corresponds with an enhanced sessile biofilm lifestyle and resistance to antibiotics. In this study, well-defined tannins present in multiple plant materials (tannic acid (TA) and epigallocathecin gallate (EGCG)) and undefined cranberry powder (CP) were found to block swarming motility and enhance biofilm formation and resistance to tobramycin in Pseudomonas aeruginosa. In contrast, gallic acid (GA) did not completely block swarming motility and did not affect biofilm formation or tobramycin resistance. These data support the theory that nutritional conditions can elicit an inverse relationship between swarming motility and biofilm formation capacities. Although anti-swarmers exhibit the potential to yield clinical benefits, it is important to be aware of possible implications regarding biofilm formation and antibiotic resistance. 相似文献
13.
Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development 总被引:17,自引:6,他引:11
The formation of complex bacterial communities known as biofilms begins with the interaction of planktonic cells with a surface in response to appropriate environmental signals. We report the isolation and characterization of mutants of Pseudomonas aeruginosa PA14 defective in the initiation of biofilm formation on an abiotic surface, polyvinylchloride (PVC) plastic. These mutants are designated surface attachment defective ( sad ). Two classes of sad mutants were analysed: (i) mutants defective in flagellar-mediated motility and (ii) mutants defective in biogenesis of the polar-localized type IV pili. We followed the development of the biofilm formed by the wild type over 8 h using phase-contrast microscopy. The wild-type strain first formed a monolayer of cells on the abiotic surface, followed by the appearance of microcolonies that were dispersed throughout the monolayer of cells. Using time-lapse microscopy, we present evidence that microcolonies form by aggregation of cells present in the monolayer. As observed with the wild type, strains with mutations in genes required for the synthesis of type IV pili formed a monolayer of cells on the PVC plastic. However, in contrast to the wild-type strain, the type IV pili mutants did not develop microcolonies over the course of the experiments, suggesting that these structures play an important role in microcolony formation. Very few cells of a non-motile strain (carrying a mutation in flgK ) attached to PVC even after 8 h of incubation, suggesting a role for flagella and/or motility in the initial cell-to-surface interactions. The phenotype of these mutants thus allows us to initiate the dissection of the developmental pathway leading to biofilm formation. 相似文献
14.
Influence of quorum sensing and iron on twitching motility and biofilm formation in Pseudomonas aeruginosa 总被引:1,自引:0,他引:1
Patriquin GM Banin E Gilmour C Tuchman R Greenberg EP Poole K 《Journal of bacteriology》2008,190(2):662-671
Reducing iron (Fe) levels in a defined minimal medium reduced the growth yields of planktonic and biofilm Pseudomonas aeruginosa, though biofilm biomass was affected to the greatest extent and at FeCl3 concentrations where planktonic cell growth was not compromised. Highlighting this apparently greater need for Fe, biofilm growth yields were markedly reduced in a mutant unable to produce pyoverdine (and, so, deficient in pyoverdine-mediated Fe acquisition) at concentrations of FeCl3 that did not adversely affect biofilm yields of a pyoverdine-producing wild-type strain. Concomitant with the reduced biofilm yields at low Fe concentrations, P. aeruginosa showed enhanced twitching motility in Fe-deficient versus Fe-replete minimal media. A mutant deficient in low-Fe-stimulated twitching motility but normal as regards twitching motility on Fe-rich medium was isolated and shown to be disrupted in rhlI, whose product is responsible for synthesis of the N-butanoyl homoserine lactone (C4-HSL) quorum-sensing signal. In contrast to wild-type cells, which formed thin, flat, undeveloped biofilms in Fe-limited medium, the rhlI mutant formed substantially developed though not fully mature biofilms under Fe limitation. C4-HSL production increased markedly in Fe-limited versus Fe-rich P. aeruginosa cultures, and cell-free low-Fe culture supernatants restored the twitching motility of the rhlI mutant on Fe-limited minimal medium and stimulated the twitching motility of rhlI and wild-type P. aeruginosa on Fe-rich minimal medium. Still, addition of exogenous C4-HSL did not stimulate the twitching motility of either strain on Fe-replete medium, indicating that some Fe-regulated and RhlI/C4-HSL-dependent extracellular product(s) was responsible for the enhanced twitching motility (and reduced biofilm formation) seen in response to Fe limitation. 相似文献
15.
Pilot plant production of rhamnolipid biosurfactant by Pseudomonas aeruginosa. 总被引:4,自引:1,他引:3 下载免费PDF全文
H E Reiling U Thanei-Wyss L H Guerra-Santos R Hirt O Kppeli A Fiechter 《Applied microbiology》1986,51(5):985-989
Rhamnolipid biosurfactants were continuously produced with Pseudomonas aeruginosa on the pilot plant scale. Production and downstream processing elaborated on the laboratory scale were adapted to the larger scale. Differences in performance resulting from the scale-up are discussed. A biosurfactant concentration of approximately 2.25 g liter-1 was achieved. The biosurfactant yield on glucose was 77 mg g-1 h-1, and the productivity was 147 mg liter-1 h-1, corresponding to a daily production of 80 g of biosurfactant. The first enrichment step consisted of an adsorption chromatography which was followed by an anion-exchange chromatography. The resulting product was 90% pure, and the overall recovery of active material was above 60% with the downstream processing used. 相似文献
16.
Hamouda Elabed Makaoui Maatallah Rim Hamza Ibtissem Chakroun Amina Bakhrouf Kamel Gaddour 《World journal of microbiology & biotechnology》2013,29(4):657-665
The development of antibiotic resistance in the opportunistic pathogen Pseudomonas aeruginosa is a major cause of the pathogen’s morbidity and is strongly correlated with the biofilm formation. Motility and adherence capacity in long-term stressed cells have not been extensively analyzed even though P. aeruginosa considered a model organism for the study of biofilm formation. In this investigation, P. aeruginosa ATCC 27853 strain has been stored for 12 months in LB broth with 0.5 M NaCl. Several experiments demonstrated that the strain recovery from the salty microcosm had the ability to increase the biofilm formation and to reduce motility comparing with that of the original strain. To identify genes involved in the regulation of biofilm and/or in stress response by the recovered P. aeruginosa, differential display “DDRT-PCR” technique was used. The genes speD and ccoN2, coding, respectively, for an S-adenosylmethionine decarboxylase and Cbb3-type cytochrome oxidase, were identified in recovered strain of P. aeruginosa ATCC 27853 as two differentially expressed gene fragments. A comparison of the biofilm produced by the wild-type strain PA14 and the transposon insertion mutant for speD gene suggested that spermidine has a potential role in the adaptive response in P. aeruginosa incubated in long-term stress conditions. 相似文献
17.
SadB is required for the transition from reversible to irreversible attachment during biofilm formation by Pseudomonas aeruginosa PA14 下载免费PDF全文
Current models of biofilm formation by Pseudomonas aeruginosa propose that (i) planktonic cells become surface associated in a monolayer, (ii) surface-associated cells form microcolonies by clonal growth and/or aggregation, (iii) microcolonies transition to a mature biofilm comprised of exopolysaccharide-encased macrocolonies, and (iv) cells exit the mature biofilm and reenter the planktonic state. Here we report a new class of P. aeruginosa biofilm mutant that defines the transition from reversible to irreversible attachment and is thus required for monolayer formation. The transposon insertion carried by the sadB199 mutant was mapped to open reading frame PA5346 of P. aeruginosa PA14 and encodes a protein of unknown function. Complementation analysis and phage-mediated transduction demonstrated that the transposon insertion in PA5346 was the cause of the biofilm-defective phenotype. Examination of flow cell-grown biofilms showed that the sadB199 mutant could initiate surface attachment but failed to form microcolonies despite being proficient in both twitching and swimming motility. Closer examination of early attachment revealed an increased number of the sadB199 mutant cells arrested at reversible attachment, functionally defined as adherence via the cell pole. A positive correlation among biofilm formation, irreversible attachment, and SadB level was demonstrated, and furthermore, RpoN and FleR appear to negatively affect SadB levels. Fractionation studies showed that the SadB protein is localized to the cytoplasm, and with the use of GPS-linker scanning mutagenesis, the C-terminal portion of SadB was shown to be dispensable for function, whereas the two putative domains of unknown function and the linker region spanning these domains were required for function. We discuss the results presented here in the context of microbial development as it applies to biofilm formation. 相似文献
18.
Marius Henkel Anke Schmidberger Markus Vogelbacher Christian Kühnert Janina Beuker Thomas Bernard Thomas Schwartz Christoph Syldatk Rudolf Hausmann 《Applied microbiology and biotechnology》2014,98(16):7013-7025
The production of rhamnolipid biosurfactants by Pseudomonas aeruginosa is under complex control of a quorum sensing-dependent regulatory network. Due to a lack of understanding of the kinetics applicable to the process and relevant interrelations of variables, current processes for rhamnolipid production are based on heuristic approaches. To systematically establish a knowledge-based process for rhamnolipid production, a deeper understanding of the time-course and coupling of process variables is required. By combining reaction kinetics, stoichiometry, and experimental data, a process model for rhamnolipid production with P. aeruginosa PAO1 on sunflower oil was developed as a system of coupled ordinary differential equations (ODEs). In addition, cell density-based quorum sensing dynamics were included in the model. The model comprises a total of 36 parameters, 14 of which are yield coefficients and 7 of which are substrate affinity and inhibition constants. Of all 36 parameters, 30 were derived from dedicated experimental results, literature, and databases and 6 of them were used as fitting parameters. The model is able to describe data on biomass growth, substrates, and products obtained from a reference batch process and other validation scenarios. The model presented describes the time-course and interrelation of biomass, relevant substrates, and products on a process level while including a kinetic representation of cell density-dependent regulatory mechanisms. 相似文献
19.
Kuchma SL Brothers KM Merritt JH Liberati NT Ausubel FM O'Toole GA 《Journal of bacteriology》2007,189(22):8165-8178
The intracellular signaling molecule, cyclic-di-GMP (c-di-GMP), has been shown to influence bacterial behaviors, including motility and biofilm formation. We report the identification and characterization of PA4367, a gene involved in regulating surface-associated behaviors in Pseudomonas aeruginosa. The PA4367 gene encodes a protein with an EAL domain, associated with c-di-GMP phosphodiesterase activity, as well as a GGDEF domain, which is associated with a c-di-GMP-synthesizing diguanylate cyclase activity. Deletion of the PA4367 gene results in a severe defect in swarming motility and a hyperbiofilm phenotype; thus, we designate this gene bifA, for biofilm formation. We show that BifA localizes to the inner membrane and, in biochemical studies, that purified BifA protein exhibits phosphodiesterase activity in vitro but no detectable diguanylate cyclase activity. Furthermore, mutational analyses of the conserved EAL and GGDEF residues of BifA suggest that both domains are important for the observed phosphodiesterase activity. Consistent with these data, the ΔbifA mutant exhibits increased cellular pools of c-di-GMP relative to the wild type and increased synthesis of a polysaccharide produced by the pel locus. This increased polysaccharide production is required for the enhanced biofilm formed by the ΔbifA mutant but does not contribute to the observed swarming defect. The ΔbifA mutation also results in decreased flagellar reversals. Based on epistasis studies with the previously described sadB gene, we propose that BifA functions upstream of SadB in the control of biofilm formation and swarming. 相似文献
20.
We have investigated a potential role for GacA, the response regulator of the GacA/GacS two-component regulatory system, in Pseudomonas aeruginosa biofilm formation. When gacA was disrupted in strain PA14, a 10-fold reduction in biofilm formation capacity resulted relative to wild-type PA14. However, no significant difference was observed in the planktonic growth rate of PA14 gacA(-). Providing gacA in trans on the multicopy vector pUCP-gacA abrogated the biofilm formation defect. Scanning electron microscopy of biofilms formed by PA14 gacA(-) revealed diffuse clusters of cells that failed to aggregate into microcolonies, implying a deficit in biofilm development or surface translocation. Motility assays revealed no decrease in PA14 gacA(-) twitching or swimming abilities, indicating that the defect in biofilm formation is independent of flagellar-mediated attachment and solid surface translocation by pili. Autoinducer and alginate bioassays were performed similarly, and no difference in production levels was observed, indicating that this is not merely an upstream effect on either quorum sensing or alginate production. Antibiotic susceptibility profiling demonstrated that PA14 gacA(-) biofilms have moderately decreased resistance to a range of antibiotics relative to PA14 wild type. This study establishes GacA as a new and independent regulatory element in P. aeruginosa biofilm formation. 相似文献