首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alzheimer disease (AD) is a complex disorder characterized by a wide range, within and between families, of ages at onset of symptoms. Consideration of age at onset as a covariate in genetic-linkage studies may reduce genetic heterogeneity and increase statistical power. Ordered-subsets analysis includes continuous covariates in linkage analysis by rank ordering families by a covariate and summing LOD scores to find a subset giving a significantly increased LOD score relative to the overall sample. We have analyzed data from 336 markers in 437 multiplex (>/=2 sampled individuals with AD) families included in a recent genomic screen for AD loci. To identify genetic heterogeneity by age at onset, families were ordered by increasing and decreasing mean and minimum ages at onset. Chromosomewide significance of increases in the LOD score in subsets relative to the overall sample was assessed by permutation. A statistically significant increase in the nonparametric multipoint LOD score was observed on chromosome 2q34, with a peak LOD score of 3.2 at D2S2944 (P=.008) in 31 families with a minimum age at onset between 50 and 60 years. The LOD score in the chromosome 9p region previously linked to AD increased to 4.6 at D9S741 (P=.01) in 334 families with minimum age at onset between 60 and 75 years. LOD scores were also significantly increased on chromosome 15q22: a peak LOD score of 2.8 (P=.0004) was detected at D15S1507 (60 cM) in 38 families with minimum age at onset >/=79 years, and a peak LOD score of 3.1 (P=.0006) was obtained at D15S153 (62 cM) in 43 families with mean age at onset >80 years. Thirty-one families were contained in both 15q22 subsets, indicating that these results are likely detecting the same locus. There is little overlap in these subsets, underscoring the utility of age at onset as a marker of genetic heterogeneity. These results indicate that linkage to chromosome 9p is strongest in late-onset AD and that regions on chromosome 2q34 and 15q22 are linked to early-onset AD and very-late-onset AD, respectively.  相似文献   

2.
BACKGROUND: Chromosome 11q has not only been found to contain mutations responsible for the several Mendelian disorders of the skeleton, but it has also been linked to bone mineral density (BMD) variation in several genome-wide linkage studies. Furthermore, quantitative trait loci (QTL) affecting BMD in inbred mice and baboons have been mapped to a region syntenic to human chromosome 11q. The aim of the present study is to determine whether there is a QTL for BMD variation on chromosome 11q in the Chinese population. METHODS: Nineteen microsatellite markers were genotyped for a 75 cM region on 11q13-25 in 306 Chinese families with 1,459 subjects. BMD (g/cm(2)) was measured by DXA. Linkage analyses were performed using the variance component linkage analysis method implemented in Merlin software. RESULTS: For women, a maximum LOD score of 1.62 was achieved at 90.8 cM on 11q21 near the marker D11S4175 for femoral neck BMD; LOD scores greater than 1.0 were observed on 11q13 for trochanter BMD. For men, a maximum LOD score of 1.57 was achieved at 135.8 cM on 11q24 near the marker D11S4126 for total hip BMD. CONCLUSION: We have not only replicated the previous linkage finding on chromosome 11q but also identified two sex-specific QTL that contribute to BMD variation in Chinese women and men.  相似文献   

3.
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by a loss of immunologic tolerance to a multitude of self-antigens. Epidemiological data suggest an important role for genes in the etiology of lupus, and previous genetic studies have implicated the HLA locus, complement genes, and low-affinity IgG (Fcgamma) receptors in SLE pathogenesis. In an effort to identify new susceptibility loci for SLE, we recently reported the results of a genomewide microsatellite marker screen in 105 SLE sib-pair families. By using nonparametric methods, evidence for linkage was found in four intervals: 6p11-21 (near the HLA), 16q13, 14q21-23, and 20p12.3 (LOD scores >/=2.0), and weaker evidence in another nine regions. We now report the results of a second complete genome screen in a new cohort of 82 SLE sib-pair families. In the cohort 2 screen, the four best intervals were 7p22 (LOD score 2.87), 7q21 (LOD score 2.40), 10p13 (LOD score 2.24), and 7q36 (LOD score 2.15). Eight additional intervals were identified with LOD scores in the range 1.00-1.67. A combined analysis of MN cohorts 1 and 2 (187 sib-pair families) showed that markers in 6p11-p21 (D6S426, LOD score 4.19) and 16q13 (D16S415, LOD score 3.85) met the criteria for significant linkage. Three intervals (2p15, 7q36, and 1q42) had LOD scores in the range 1.92-2.06, and another 13 intervals had LOD scores in the range of 1.00-1.78 in the combined sample. These data, together with other available gene mapping results in SLE, are beginning to allow a prioritization of genomic intervals for gene discovery efforts in human SLE.  相似文献   

4.
Attention-deficit/hyperactivity disorder (ADHD [MIM 143465]) is the most common behavioral disorder of childhood. Twin, adoption, segregation, association, and linkage studies have confirmed that genetics plays a major role in conferring susceptibility to ADHD. We applied model-based and model-free linkage analyses, as well as the pedigree disequilibrium test, to the results of a genomewide scan of extended and multigenerational families with ADHD from a genetic isolate. In these families, ADHD is highly comorbid with conduct and oppositional defiant disorders, as well as with alcohol and tobacco dependence. We found evidence of linkage to markers at chromosomes 4q13.2, 5q33.3, 8q11.23, 11q22, and 17p11 in individual families. Fine mapping applied to these regions resulted in significant linkage in the combined families at chromosomes 4q13.2 (two-point allele-sharing LOD score from LODPAL = 4.44 at D4S3248), 5q33.3 (two-point allele-sharing LOD score from LODPAL = 8.22 at D5S490), 11q22 (two-point allele-sharing LOD score from LODPAL = 5.77 at D11S1998; multipoint nonparametric linkage [NPL]-log[P value] = 5.49 at approximately 128 cM), and 17p11 (multipoint NPL-log [P value] >12 at approximately 12 cM; multipoint maximum location score 2.48 [alpha = 0.10] at approximately 12 cM; two-point allele-sharing LOD score from LODPAL = 3.73 at D17S1159). Additionally, suggestive linkage was found at chromosome 8q11.23 (combined two-point NPL-log [P value] >3.0 at D8S2332). Several of these regions are novel (4q13.2, 5q33.3, and 8q11.23), whereas others replicate already-published loci (11q22 and 17p11). The concordance between results from different analytical methods of linkage and the replication of data between two independent studies suggest that these loci truly harbor ADHD susceptibility genes.  相似文献   

5.
Amyotrophic lateral sclerosis (ALS) is a fatal adult-onset disease in which motor neurons in the brain and spinal cord degenerate by largely unknown mechanisms. ALS is familial (FALS) in 10% of cases, and the inheritance is usually dominant, with variable penetrance. Mutations in copper/zinc super oxide dismutase (SOD1) are found in 20% of familial and 3% of sporadic ALS cases. Five families with ALS and frontotemporal dementia (ALS-FTD) are linked to 9q21, whereas one family with pure ALS is linked to 18q21. We identified two large European families with ALS without SOD1 mutations or linkage to known FALS loci and conducted a genomewide linkage screen using 400 microsatellite markers. In both families, two-point LOD scores >1 and a haplotype segregating with disease were demonstrated only across regions of chromosome 16. Subsequent fine mapping in family 1 gave a maximum two-point LOD score of 3.62 at D16S3137 and a three-point LOD score of 3.85 for markers D16S415 and D16S3137. Haplotype analysis revealed no recombination > approximately 30 cM, (flanking markers at D16S3075 and D16S3112). The maximum two-point LOD score for family 2 was 1.84 at D16S415, and the three-point LOD score was 2.10 for markers D16S419 and D16S415. Definite recombination occurred in several individuals, which narrowed the shared haplotype in affected individuals to a 10.1-cM region (flanking markers: D16S3396 and D16S3112). The region shared by both families on chromosome 16q12 corresponds to approximately 4.5 Mb on the Marshfield map. Bioinformatic analysis of the region has identified 18 known genes and 70 predicted genes in this region, and sequencing of candidate genes has now begun.  相似文献   

6.
Epidemiological studies have demonstrated that genetic factors account for at least 50% of the liability for nicotine dependence (ND). Although several linkage studies have been conducted, all samples to date were primarily of European origin. In this study, we conducted a genomewide scan of 1,261 individuals, representing 402 nuclear families, of African American (AA) origin. We examined 385 autosomal microsatellite markers for ND, which was assessed by smoking quantity (SQ), the Heaviness of Smoking Index (HSI), and the Fagerstrom Test for ND (FTND). After performing linkage analyses using various methods implemented in the GENEHUNTER and S.A.G.E. programs, we found a region near marker D10S1432 on chromosome 10q22 that showed a significant linkage to indexed SQ, with a maximum LOD score of 4.17 at 92 cM and suggestive linkage to HSI, SQ, and log-transformed SQ. Additionally, we identified three regions that met the criteria for suggestive linkage to at least one ND measure: on chromosomes 9q31 at marker D9S1825, 11p11 between markers D11S1993 and D11S1344, and 13q13 between markers D13S325 and D13S788. Other locations on chromosomes 15p11, 17q25, and 18q12 exhibited some evidence of linkage for ND (LOD >1.44). The four regions with significant or suggestive linkage were positive for multiple ND measures by multiple statistical methods. Some of these regions have been linked to smoking behavior at nominally significant levels in other studies, which provides independent replication of the regions for ND in different cohorts. In summary, we found significant linkage on chromosome 10q22 and suggestive linkage on chromosomes 9, 11, and 13 for major genetic determinants of ND in an AA sample. Further analysis of these positive regions by fine mapping and/or association analysis is thus warranted. To our knowledge, this study represents the first genomewide linkage scan of ND in an AA sample.  相似文献   

7.
In this paper, we applied the nonparametric linkage regression approach to the Caucasian genome scan data from the Collaborative Study on the Genetics of Alcoholism to search for regions of the genome that exhibit evidence for linkage to putative alcoholism-predisposing genes. The multipoint single-locus model identified four regions of the genome with LOD scores greater than one. These regions were on 7p near D7S1790 (LOD = 1.31), two regions on 7q near D7S1870 (LOD = 1.15) and D7S1799 (LOD = 1.13) and 21q near D21S1440 and D21S1446 (LOD = 1.78). Jointly modeling these loci provided stronger evidence for linkage in each of these regions (LOD = 1.58 on 7q11, LOD = 1.61 on 11q23, and LOD = 1.95 on 21q22). The evidence for linkage tended to increase among pedigrees with earlier mean age of onset at 8q23 (p = 0.0016), 14q21 (p = 0.0079), and 18p12 (p = 0.0021) and with later mean age of onset at 4q35 (p = 0.0067) and 9p22 (p = 0.0008).  相似文献   

8.
We have completed a genome scan of a 12-generation, 3,400-member pedigree with schizophrenia. Samples from 210 individuals were collected from the pedigree. We performed an "affecteds-only" genome-scan analysis using 43 members of the pedigree. The affected individuals included 29 patients with schizophrenia, 10 with schizoaffective disorders, and 4 with psychosis not otherwise specified. Two sets of white-European allele frequencies were used-one from a Swedish control population (46 unrelated individuals) and one from the pedigree (210 individuals). All analyses pointed to the same region: D6S264, located at 6q25.2, showed a maximum LOD score of 3.45 when allele frequencies in the Swedish control population were used, compared with a maximum LOD score of 2.59 when the pedigree's allele frequencies were used. We analyzed additional markers in the 6q25 region and found a maximum LOD score of 6.6 with marker D6S253, as well as a 6-cM haplotype (markers D6S253-D6S264) that segregated, after 12 generations, with the majority of the affected individuals. Multipoint analysis was performed with the markers in the 6q25 region, and a maximum LOD score of 7.7 was obtained. To evaluate the significance of the genome scan, we simulated the complete analysis under the assumption of no linkage. The results showed that a LOD score >2.2 should be considered as suggestive of linkage, whereas a LOD score >3.7 should be considered as significant. These results suggest that a common ancestral region was inherited by the affected individuals in this large pedigree.  相似文献   

9.
Improved molecular understanding of the pathogenesis of type 2 diabetes is essential if current therapeutic and preventative options are to be extended. To identify diabetes-susceptibility genes, we have completed a primary (418-marker, 9-cM) autosomal-genome scan of 743 sib pairs (573 pedigrees) with type 2 diabetes who are from the Diabetes UK Warren 2 repository. Nonparametric linkage analysis of the entire data set identified seven regions showing evidence for linkage, with allele-sharing LOD scores > or =1.18 (P< or =.01). The strongest evidence was seen on chromosomes 8p21-22 (near D8S258 [LOD score 2.55]) and 10q23.3 (near D10S1765 [LOD score 1.99]), both coinciding with regions identified in previous scans in European subjects. This was also true of two lesser regions identified, on chromosomes 5q13 (D5S647 [LOD score 1.22] and 5q32 (D5S436 [LOD score 1.22]). Loci on 7p15.3 (LOD score 1.31) and 8q24.2 (LOD score 1.41) are novel. The final region showing evidence for linkage, on chromosome 1q24-25 (near D1S218 [LOD score 1.50]), colocalizes with evidence for linkage to diabetes found in Utah, French, and Pima families and in the GK rat. After dense-map genotyping (mean marker spacing 4.4 cM), evidence for linkage to this region increased to a LOD score of 1.98. Conditional analyses revealed nominally significant interactions between this locus and the regions on chromosomes 10q23.3 (P=.01) and 5q32 (P=.02). These data, derived from one of the largest genome scans undertaken in this condition, confirm that individual susceptibility-gene effects for type 2 diabetes are likely to be modest in size. Taken with genome scans in other populations, they provide both replication of previous evidence indicating the presence of a diabetes-susceptibility locus on chromosome 1q24-25 and support for the existence of additional loci on chromosomes 5, 8, and 10. These data should accelerate positional cloning efforts in these regions of interest.  相似文献   

10.
To identify genetic loci for autism-spectrum disorders, we have performed a two-stage genomewide scan in 38 Finnish families. The detailed clinical examination of all family members revealed infantile autism, but also Asperger syndrome (AS) and developmental dysphasia, in the same set of families. The most significant evidence for linkage was found on chromosome 3q25-27, with a maximum two-point LOD score of 4.31 (Z(max )(dom)) for D3S3037, using infantile autism and AS as an affection status. Six markers flanking over a 5-cM region on 3q gave Z(max dom) >3, and a maximum parametric multipoint LOD score (MLS) of 4.81 was obtained in the vicinity of D3S3715 and D3S3037. Association, linkage disequilibrium, and haplotype analyses provided some evidence for shared ancestor alleles on this chromosomal region among affected individuals, especially in the regional subisolate. Additional potential susceptibility loci with two-point LOD scores >2 were observed on chromosomes 1q21-22 and 7q. The region on 1q21-22 overlaps with the previously reported candidate region for infantile autism and schizophrenia, whereas the region on chromosome 7q provided evidence for linkage 58 cM distally from the previously described autism susceptibility locus (AUTS1).  相似文献   

11.
Current linkage analysis methods for quantitative traits do not usually incorporate imprinting effects. Here, we carried out genome-wide linkage analysis for loci influencing adult height in the Framingham Heart Study subjects using variance components while allowing for imprinting effects. We used a sex-averaged map for the 22 autosomes, while chromosomes 6, 14, 18, and 19 were also analyzed using sex-specific maps. We compared results from these four analyses: 1) non-imprinted with sex-averaged maps, 2) imprinted with sex-averaged maps, 3) non-imprinted with sex-specific maps, and 4) imprinted with sex-specific maps. We found four regions on three chromosomes (14q32, 18p11-q21, 18q21-22, and 19q13) with LOD scores above 2.0, with a maximum LOD score of 3.12, allowing for imprinting and sex-specific maps, at D18S1364 on 18q21. While we obtained significant evidence of imprinting effects in both the 18p11-q21 and 19q13 regions when using sex-averaged maps, there were no significant differences between the imprinted and non-imprinted LOD scores when we used sex-specific maps. Our results illustrate the importance of allowing for gender-specific effects in linkage analyses, whether these are in the form of gender-specific recombination frequencies, or in the form of imprinting effects.  相似文献   

12.
Insulin resistance and hyperinsulinemia are strong correlates of obesity and type 2 diabetes, but little is known about their genetic determinants. Using data on nondiabetics from Mexican American families and a multipoint linkage approach, we scanned the genome and identified a major locus near marker D6S403 for fasting "true" insulin levels (LOD score 4.1, empirical P<.0001), which do not crossreact with insulin precursors. Insulin resistance, as assessed by the homeostasis model using fasting glucose and specific insulin (FSI) values, was also strongly linked (LOD score 3.5, empirical P<.0001) with this region. Two other regions across the genome were found to be suggestively linked to FSI: a location on chromosome 2q, near marker D2S141, and another location on chromosome 6q, near marker D6S264. Since several insulin-resistance syndrome (IRS)-related phenotypes were mapped independently to the regions on chromosome 6q, we conducted bivariate multipoint linkage analyses to map the correlated IRS phenotypes. These analyses implicated the same chromosomal region near marker D6S403 (6q22-q23) as harboring a major gene with strong pleiotropic effects on obesity and on lipid measures, including leptin concentrations (e.g., LOD(eq) for traits-specific insulin and leptin was 4.7). A positional candidate gene for insulin resistance in this chromosomal region is the plasma cell-membrane glycoprotein PC-1 (6q22-q23). The genetic location on chromosome 6q, near marker D6S264 (6q25.2-q26), was also identified by the bivariate analysis as exerting significant pleiotropic influences on IRS-related phenotypes (e.g., LOD(eq) for traits-specific insulin and leptin was 4.1). This chromosomal region harbors positional candidate genes, such as the insulin-like growth factor 2 receptor (IGF2R, 6q26) and acetyl-CoA acetyltransferase 2 (ACAT2, 6q25.3-q26). In sum, we found substantial evidence for susceptibility loci on chromosome 6q that influence insulin concentrations and other IRS-related phenotypes in Mexican Americans.  相似文献   

13.
Chordoma is a rare tumor originating from notochordal remnants that is usually diagnosed during midlife. We performed a genomewide analysis for linkage in a family with 10 individuals affected by chordoma. The maximum two-point LOD score based on only the affected individuals was 2.21, at recombination fraction 0, at marker D7S2195 on chromosome 7q. Combined analysis of additional members of this family (11 affected individuals) and of two unrelated families (one with 2 affected individuals and the other with 3 affected individuals), with 20 markers on 7q, showed a maximum two-point LOD score of 4.05 at marker D7S500. Multipoint analysis based on only the affected individuals gave a maximum LOD score of 4.78, with an approximate 2-LOD support interval from marker D7S512 to marker D7S684. Haplotype analysis of the three families showed a minimal disease-gene region from D7S512 to D7S684, a distance of 11.1 cM and approximately 7.1 Mb. No loss of heterozygosity was found at markers D7S1804, D7S1824, and D7S2195 in four tumor samples from affected family members. These results map a locus for familial chordoma to 7q33. Further analysis of this region, to identify this gene, is ongoing.  相似文献   

14.
Linkage of Familial Schizophrenia to Chromosome 13q32   总被引:7,自引:0,他引:7       下载免费PDF全文
Over the past 4 years, a number of investigators have reported findings suggestive of linkage to schizophrenia, with markers on chromosomes 13q32 and 8p21, with one recent study by Blouin et al. reporting significant linkage to these regions. As part of an ongoing genome scan, we evaluated microsatellite markers spanning chromosomes 8 and 13, for linkage to schizophrenia, in 21 extended Canadian families. Families were analyzed under autosomal dominant and recessive models, with broad and narrow definitions of schizophrenia. All models produced positive LOD scores with markers on 13q, with higher scores under the recessive models. The maximum three-point LOD scores were obtained under the recessive-broad model: 3.92 at recombination fraction (theta).1 with D13S793, under homogeneity, and 4.42 with alpha=.65 and straight theta=0 with D13S793, under heterogeneity. Positive LOD scores were also obtained, under all models, for markers on 8p. Although a maximum two-point LOD score of 3.49 was obtained under the dominant-narrow model with D8S136 at straight theta=0.1, multipoint analysis with closely flanking markers reduced the maximum LOD score in this region to 2. 13. These results provide independent significant evidence of linkage of a schizophrenia-susceptibility locus to markers on 13q32 and support the presence of a second susceptibility locus on 8p21.  相似文献   

15.
We have performed genetic linkage analysis in 13 large multiply affected families, to test the hypothesis that there is extensive heterogeneity of linkage for genetic subtypes of schizophrenia. Our strategy consisted of selecting 13 kindreds containing multiple affected cases in three or more generations, an absence of bipolar affective disorder, and a single progenitor source of schizophrenia with unilineal transmission into the branch of the kindred sampled. DNA samples from these families were genotyped with 365 microsatellite markers spaced at approximately 10-cM intervals across the whole genome. We observed LOD scores >3.0 at five distinct loci, either in the sample as a whole or within single families, strongly suggesting etiological heterogeneity. Heterogeneity LOD scores >3.0 in the sample as a whole were found at 1q33.2 (LOD score 3.2; P=.0003), 5q33.2 (LOD score 3.6; P=.0001), 8p22.1-22 (LOD score 3.6; P=.0001), and 11q21 (LOD score 3.1; P=.0004). LOD scores >3.0 within single pedigrees were found at 4q13-31 (LOD score 3.2; P=.0003) and at 11q23.3-24 (LOD score 3.2; P=.0003). A LOD score of 2.9 was also found at 20q12.1-11.23 within in a single family. The fact that other studies have also detected LOD scores >3.0 at 1q33.2, 5q33.2, 8p21-22 and 11q21 suggests that these regions do indeed harbor schizophrenia-susceptibility loci. We believe that the weight of evidence for linkage to the chromosome 1q22, 5q33.2, and 8p21-22 loci is now sufficient to justify intensive investigation of these regions by methods based on linkage disequilibrium. Such studies will soon allow the identification of mutations having a direct effect on susceptibility to schizophrenia.  相似文献   

16.
17.
Objective: Interest in mapping genetic variants that are associated with obesity remains high because of the increasing prevalence of obesity and its complications worldwide. Data on genetic determinants of obesity in African populations are rare. Research Methods and Procedures: We have undertaken a genome‐wide scan for body mass index (BMI) in 182 Nigerian families that included 769 individuals. Results: The prevalence of obesity was only 5%, yet polygenic heritability for BMI was in the expected range (0.46 ± 0.07). Tandem repeat markers (402) were typed across the genome with an average map density of 9 cM. Pedigree‐based analysis using a variance components linkage model demonstrated evidence for linkage on chromosome 7 (near marker D7S817 at 7p14) with a logarithm of odds (LOD) score of 3.8 and on chromosome 11 (marker D11S2000 at 11q22) with an LOD score of 3.3. Weaker evidence for linkage was found on chromosomes 1 (1q21, LOD = 2.2) and 8 (8p22, LOD = 2.3). Several candidate genes, including neuropeptide Y, DRD2, APOA4, lamin A/C, and lipoprotein lipase, lie in or close to the chromosomal regions where strong linkage signals were found. Discussion: The findings of this study suggest that, as in other populations with higher prevalences of obesity, positive linkage signals can be found on genome scans for obesity‐related traits. Follow‐up studies may be warranted to investigate these linkages, especially the one on chromosome 11, which has been reported in a population at the opposite end of the BMI distribution.  相似文献   

18.
A genome scan for serum triglyceride in obese nuclear families   总被引:6,自引:0,他引:6  
Serum triglyceride (TG) levels are increased in extremely obese individuals, indicating abnormalities in lipid metabolism and insulin resistance. We carried out a genome scan for serum TG in 320 nuclear families segregating extreme obesity and normal weight. Three hundred eighty-two Marshfield microsatellite markers (Screening Set 11) were genotyped. Quantitative linkage analyses were performed using family regression and variance components methods. We found linkage on the 7q36 region [D7S3058, 174 centimorgan (cM), Logarithm of Odds (LOD) = 2.98] for log-transformed TG. We also found suggestive linkages on chromosomes 20 (D20S164, 101 cM, LOD = 2.34), 13 (111 cM, LOD = 2.00), and 9 (104 cM, LOD = 1.90) as well as some weaker trends for chromosomes 1, 3, 5, 10, 12, and 22. In 58 African American families, LOD scores of 3.66 and 2.62 were observed on two loci on chromosome 16: D16S3369 (64 cM) and MFD466 (100 cM). To verify the 7q36 linkage, we added 60 nuclear families, and the LOD score increased to 3.52 (empirical P < 0.002) on marker D7S3058.  相似文献   

19.
Fechtner syndrome is an autosomal-dominant variant of Alport syndrome, manifested by nephritis, sensorineural hearing loss, cataract formation, macrothrombocytopenia, and polymorphonuclear inclusion bodies. As opposed to autosomal-recessive and X-linked Alport syndromes, which have been genetically well studied, the genetic basis of Fechtner syndrome remains elusive. We have mapped the disease-causing gene to the long arm of chromosome 22 in an extended Israeli family with Fechtner syndrome plus impaired liver functions and hypercholesterolemia in some individuals. Six markers from chromosome 22q yielded a LOD score >3.00. A maximum two-point LOD score of 7.02 was obtained with the marker D22S283 at a recombination fraction of 0. Recombination analysis placed the disease-causing gene in a 5.5-Mb interval between the markers D22S284 and D22S1167. No collagen genes or genes comprising the basement membrane have been mapped to this region.  相似文献   

20.
We describe a new dysmorphic syndrome in an inbred Saudi Arabian family with 21 members. Five males and one female have similar craniofacial features including wide open calvarial sutures with large and late-closing anterior fontanels, frontal bossing, hyperpigmentation with capillary hemangioma of the forehead, significant hypertelorism, and a broad and prominent nose. In addition, these individuals have Y-shaped sutural cataracts diagnosed by 1-2 years of age. No chromosomal or biochemical abnormalities were identified. A genome-wide scan was performed, and two-point LOD score analysis, assuming autosomal recessive inheritance, detected linkage to chromosome 14q13-q21. The highest LOD scores were obtained for marker GATA136A04 (LOD=4.58 at theta=0.00) and for the adjacent telomeric marker D14S1048 (LOD=4.32 at theta=0.00). Multipoint linkage analysis resulted in a maximum LOD score of 5.44 between markers D14S1048 and GATA136A04. Model independent analysis by SIBPAL confirmed linkage to the same chromosomal region. Haplotype analysis indicated that all affected individuals were homozygous for the interval on chromosome 14q13-q21 with two recombinants for D14S1014 (centromeric) and one recombinant for D14S301 (telomeric). These recombinations limit the disease locus to a region of approximately 7.26 Mb. Candidate genes localized to this region were identified, and analysis of PAX9 did not identify mutations in these patients. The unique clinical phenotype and the mapping data suggest that this family represents a novel autosomal recessive syndrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号