首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
The known genomic islands of Pseudomonas aeruginosa clone C strains are integrated into tRNA(Lys) (pKLC102) or tRNA(Gly) (PAGI-2 and PAGI-3) genes and differ from their core genomes by distinctive tetranucleotide usage patterns. pKLC102 and the related island PAPI-1 from P. aeruginosa PA14 were spontaneously mobilized from their host chromosomes at frequencies of 10% and 0.3%, making pKLC102 the most mobile genomic island known with a copy number of 30 episomal circular pKLC102 molecules per cell. The incidence of islands of the pKLC102/PAGI-2 type was investigated in 71 unrelated P. aeruginosa strains from diverse habitats and geographic origins. pKLC102- and PAGI-2-like islands were identified in 50 and 31 strains, respectively, and 15 and 10 subtypes were differentiated by hybridization on pKLC102 and PAGI-2 macroarrays. The diversity of PAGI-2-type islands was mainly caused by one large block of strain-specific genes, whereas the diversity of pKLC102-type islands was primarily generated by subtype-specific combination of gene cassettes. Chromosomal loss of PAGI-2 could be documented in sequential P. aeruginosa isolates from individuals with cystic fibrosis. PAGI-2 was present in most tested Cupriavidus metallidurans and Cupriavidus campinensis isolates from polluted environments, demonstrating the spread of PAGI-2 across habitats and species barriers. The pKLC102/PAGI-2 family is prevalent in numerous beta- and gammaproteobacteria and is characterized by high asymmetry of the cDNA strands. This evolutionarily ancient family of genomic islands retained its oligonucleotide signature during horizontal spread within and among taxa.  相似文献   

2.
ExoU is a potent Pseudomonas aeruginosa cytotoxin translocated into host cells by the type III secretion system. A comparison of genomes of various P. aeruginosa strains showed that that the ExoU determinant is found in the same polymorphic region of the chromosome near a tRNA(Lys) gene, suggesting that exoU is a horizontally acquired virulence determinant. We used yeast recombinational cloning to characterize four distinct ExoU-encoding DNA segments. We then sequenced and annotated three of these four genomic regions. The sequence of the largest DNA segment, named ExoU island A, revealed many plasmid- and genomic island-associated genes, most of which have been conserved across a broad set of beta- and gamma-Proteobacteria. Comparison of the sequenced ExoU-encoding genomic islands to the corresponding PAO1 tRNA(Lys)-linked genomic island, the pathogenicity islands of strain PA14, and pKLC102 of clone C strains allowed us to propose a mechanism for the origin and transmission of the ExoU determinant. The evolutionary history very likely involved transposition of the ExoU determinant onto a transmissible plasmid, followed by transfer of the plasmid into different P. aeruginosa strains. The plasmid subsequently integrated into a tRNA(Lys) gene in the chromosome of each recipient, where it acquired insertion sequences and underwent deletions and rearrangements. We have also applied yeast recombinational cloning to facilitate a targeted mutagenesis of ExoU island A, further demonstrating the utility of the specific features of the yeast capture vector for functional analyses of genes on large horizontally acquired genetic elements.  相似文献   

3.
The genomic island pKLC102 first detected in Pseudomonas aeruginosa clone C strains can cross species barriers and exhibits the highest mobilization rate of a genomic island known to date. Homologous genomic islands of 81-108 kb in size were identified in the completely sequenced P. aeruginosa strains PA7, PA14, 2192, C3719 and PACS2, but not in strains PAO1 and LES. All pKLC102-like genomic islands are integrated in chromosomal tRNA(Lys) genes and share a syntenic set of more than 70 homologous ORFs, part of which are related to DNA replication or mobility genes. The conserved backbone has predilection sites for the uptake of island-specific gene cassettes. A major difference between the islands is the organization of the origin of replication oriV.  相似文献   

4.
Z. Eichenbaum  Z. Livneh 《Genetics》1995,140(3):861-874
Interplasmid and chromosome to plasmid transposition of IS10 were studied by assaying inactivation of the phage 434 cI gene, carried on a low copy number plasmid. This was detected by the activity of the tet gene expressed from the phage 434 P(R) promoter. Each interplasmid transposition resulted in the fusion of the donor and acceptor plasmids into cointegrate structure, with a 9-bp duplication of the target DNA at the insertion site. Cointegrate formation was abolished in δrecA strains, although simple insertions of IS10 were observed. This suggests a two-stage mechanism involving IS10 conservative transposition, followed by homologous recombination between the donor and the acceptor. Two plasmids carrying inactive IS10 sequences were fused to cointegrates at a 100-fold lower frequency, suggesting that homologous recombination is coupled to and stimulated by the transposition event. Each IS10 transposition from the chromosome to the acceptor plasmid involved replicon fusion, providing a mechanism for IS10-mediated integration of extrachromosomal elements into the chromosome. This was accompanied by the formation of an additional copy of IS10 in the chromosome. Thus, like replicative transposition, conservative transposition of IS10 is accompanied by cointegrate formation and results in duplication of the IS10.  相似文献   

5.
Various genomic islands, PAPI-1, PAPI-2, PAGI-1, PAGI-2, PAGI-3, and PAGI-4, and the element pKLC102 have been characterized in different P. aeruginosa strains from diverse habitats and geographical locations. Chromosomal DNA macroarray of 100 P. aeruginosa strains isolated from 85 unrelated patients hospitalized in an intensive care unit was created to assess the occurrence of these genomic islands (GEIs). The macroarray was then hybridized with labeled probes derived from each genomic island. In addition, PFGE patterns with SpeI, frequency of virulence genes, and antimicrobial resistance patterns of the strains were studied. Our results showed that almost all P. aeruginosa strains presented up to eight virulence genes. By SpeI macrorestriction fragment analysis we were able to identify 49 restriction patterns; 35 patterns correspond to single strains and the remaining 14 to strains subgroup (a-n). Most of the strains showed variation in number or composition of GEIs and a specific antimicrobial pattern indicating that each strain was an unrelated isolate. In terms of the number of genomic islands per strain, 7 GEIs were found in 34% of the strains, 6 in 18%, 5 in 12%, 4 in 14%, 3 in 10%, 2 in 7%, and 1 in 4%; only one isolate did not present any GEI. The genomic islands PAPI-1 and PAPI-2 and the element pKLC102 were the most frequently detected. The analysis of the location of each GEI in the chromosome of two strains show that the islands PAGI-3, PAPI-1, PAPI-2 and pKLC102 are present in the insertion site previously reported, but that PAGI-2 and PAGI-4 are inserted in another chromosome place in a site not characterized yet. In conclusion our data show that P. aeruginosa strains exhibited an epidemic population structure with horizontal transfer of DNA resulting in a high frequency of GEIs.  相似文献   

6.
A new insertion sequence (IS), designated IS1086, was isolated from Alcaligenes eutrophus CH34 by being trapped in plasmid pJV240, which contains the Bacillus subtilis sacB and sacR genes. The 1,106-bp IS1086 element contains partially matched (22 of 28 bp) terminal-inverted repeats and a long open reading frame. Hybridization data suggest the presence of one copy of IS1086 in the strain CH34 heavy-metal resistance plasmid pMOL28 and at least two copies in its chromosome. Analysis of the IS1086 nucleotide sequence revealed striking homology with two other IS elements, IS30 and IS4351, suggesting that they are three close members in a family of phylogenetically related insertion sequences. One open reading frame of the Spiroplasma citri phage SpV1-R8A2 B was also found to be related to this IS family but to a lesser extent. Comparison of the G+C contents of IS30 and IS1086 revealed that they conform to their respective hosts (46 versus 50% for IS30 and Escherichia coli and 64.5% for IS1086 and A. eutrophus). The pressure on the AT/GC ratio led to a very different codon usage in these two closely related IS elements. Results suggesting that IS1086 transposition might be activated by some forms of stress are discussed.  相似文献   

7.
We determined the complete nucleotide sequence of the 27.8-kb R-plasmid pTET3 from Corynebacterium glutamicum LP-6 which encodes streptomycin, spectinomycin, and tetracycline resistance. The antibiotic resistance determinant of pTET3 comprises an intI1-like gene, which was truncated by the insertion sequence IS6100, and the novel aminoglycoside adenyltransferase gene cassette aadA9. The deduced AADA9 protein showed 61% identity and 71% similarity to AADA6 of integron In51 from Pseudomonas aeruginosa. In addition, pTET3 carries the novel repressor-regulated tetracycline resistance determinant Tet 33 which revealed amino acid sequence homology to group 1 tetracycline efflux systems. The highest level of similarity was observed to the tetracycline efflux protein TetA(Z) from the C. glutamicum plasmid pAG1 with 65% identical and 77% similar amino acids. Each antibiotic resistance region of pTET3 is flanked by identical copies of the widespread insertion sequence IS6100 initially identified in Mycobacterium fortuitum. Transposition assays with a cloned copy of IS6100 revealed that this element is transpositionally active in C. glutamicum. These data suggest a central role of IS6100 in the evolutionary history of pTET3 by mediating the cointegrative assembly of resistance gene-carrying DNA segments.  相似文献   

8.
Highly successful bacterial clones have the ability to effectively colonize environmental niches and patients. However, the factors which determine the complex interplay between the colonization of environmental niches and patients are mainly unknown. In this study we show that Pseudomonas aeruginosa clone C strains are distributed worldwide and highly prone to infect cystic fibrosis (CF) patients in Canada, England, France and Germany. In Hanover, Germany and Vancouver, Canada, clone C strains are highly prevalent in the CF patient community, although the mechanisms of acquisition may have been different. All clone C strains showed highly related macrorestriction fragment pattern of the whole genome as visualized by pulsed-field gel electrophoresis and harboured the 102 kbp plasmid pKLC102. Comparison of three prevalent P. aeruginosa clones with different distribution between the environment and patients revealed that neither enhanced biofilm formation nor antibiotic resistance was responsible for the spread of clone C. Clone M, which was highly prevalent in the clinical environment such as sanitary facilities, lacked motility, which could explain its relatively low prevalence in CF patients. Elucidation of the mechanisms which lead to the prevalence of clone C strain in patients and the environment requires the investigation of additional phenotypes.  相似文献   

9.
The organization of lin genes and IS6100 was studied in three strains of Sphingomonas paucimobilis (B90A, Sp+, and UT26) which degraded hexachlorocyclohexane (HCH) isomers but which had been isolated at different geographical locations. DNA-DNA hybridization data revealed that most of the lin genes in these strains were associated with IS6100, an insertion sequence classified in the IS6 family and initially found in Mycobacterium fortuitum. Eleven, six, and five copies of IS6100 were detected in B90A, Sp+, and UT26, respectively. IS6100 elements in B90A were sequenced from five, one, and one regions of the genomes of B90A, Sp+, and UT26, respectively, and were found to be identical. DNA-DNA hybridization and DNA sequencing of cosmid clones also revealed that S. paucimobilis B90A contains three and two copies of linX and linA, respectively, compared to only one copy of these genes in strains Sp+ and UT26. Although the copy number and the sequence of the remaining genes of the HCH degradative pathway (linB, linC, linD, and linE) were nearly the same in all strains, there were striking differences in the organization of the linA genes as a result of replacement of portions of DNA sequences by IS6100, which gave them a strange mosaic configuration. Spontaneous deletion of linD and linE from B90A and of linA from Sp+ occurred and was associated either with deletion of a copy of IS6100 or changes in IS6100 profiles. The evidence gathered in this study, coupled with the observation that the G+C contents of the linA genes are lower than that of the remaining DNA sequence of S. paucimobilis, strongly suggests that all these strains acquired the linA gene through horizontal gene transfer mediated by IS6100. The association of IS6100 with the rest of the lin genes further suggests that IS6100 played a role in shaping the current lin gene organization.  相似文献   

10.
Intraclonal genome diversity of Pseudomonas aeruginosa was studied in one of the most diverse mosaic regions of the P. aeruginosa chromosome. The ca. 110-kb large hypervariable region located near the lipH gene in two members of the predominant P. aeruginosa clone C, strain C and strain SG17M, was sequenced. In both strains the region consists of an individual strain-specific gene island of 111 (strain C) or 106 (SG17M) open reading frames (ORFs) and of a 7-kb stretch of clone C-specific sequence of 9 ORFs. The gene islands are integrated into conserved tRNA(Gly) genes and have a bipartite structure. The first part adjacent to the tRNA gene consists of strain-specific ORFs encoding metabolic functions and transporters, the majority of which have homologs of known function in other eubacteria, such as hemophores, cytochrome c biosynthesis, or mercury resistance. The second part is made up mostly of ORFs of yet-unknown function. Forty-seven of these ORFs are mutual homologs with a pairwise amino acid sequence identity of 35 to 88% and are arranged in the same order in the two gene islands. We hypothesize that this novel type of gene island derives from mobile elements which, upon integration, endow the recipient with strain-specific metabolic properties, thus possibly conferring on it a selective advantage in its specific habitat.  相似文献   

11.
Pseudomonas aeruginosa chronically colonizing the lungs of cystic fibrosis (CF) patients undergoes fast evolution leading to clonal divergence. More than half of the genotypes of P. aeruginosa clone C isolates exclusively from CF lung infection exhibit large chromosomal inversions (LCIs). To analyse the impact of LCIs, as a novel mechanism of bacterial adaptation, the underlying molecular mechanism was examined. Analysis of inversion breakpoints suggested an IS6100-induced coupled insertion-inversion mechanism. A selective advantage was created by insertion of IS6100 into wbpM, pilB and mutS which leads to common CF phenotypes such as O-antigen and type IV pili deficiency and hypermutability. Speciation in bacteria is accompanied by LCIs. Therefore adaptation by LCIs that allows persistence of P. aeruginosa in the CF lung and species diversification in that new ecological niche can serve as a model for bacterial genome evolution.  相似文献   

12.
A survey was made of the presence, copy number and location of the Salmonella-specific DNA insertion element IS200, within the genomes of the 27 phage type strains of Salmonella enteritidis. All the phage type strains contained copies of IS200 revealed by genomic Southern blot hybridizations with a 300-bp DNA probe internal to the element. Restriction site variation around IS200 insertion sites was examined. Three fundamental patterns of hybridization corresponding to chromosomal IS200 loci were found. In terms of population genetics, these 'IS200 profiles' correspond to clonal lineages of recent evolutionary origin, and underline the phage-typing scheme for epidemiological subdivision of S. enteritidis. The molecular analysis is consistent with genetic selection pressures which are apparent in the observed epidemiological distribution of S. enteritidis, since each clonal lineage contained one of the phage types of major clinical importance in the U.K.  相似文献   

13.
We studied the behavior of pBD12 plasmid integrated into Bacillus subtilis chromosome via homologous recombination. One copy of the plasmid was integrated into the chromosome, it conferred resistance to low concentrations of antibiotics. Clones with enhanced resistance bearing autonomous plasmid DNAs appeared with a frequency 10(-6) in rec+ but not in recE strain with the integrated plasmid. By restriction and hybridization analysis of some excised plasmids, the sites of excision were determined, chromosomal location of pBD12 plasmid was found to be at the terminal fragment of prophage DNA, so that the att site of phi 105 phage is supposed to be situated on the EcoRI fragment of phage DNA.  相似文献   

14.
In Shigella boydii 0-1392, genes encoding the synthesis and transport of the hydroxamate siderophore aerobactin are located within a 21-kb iron transport island between lysU and the pheU tRNA gene. DNA sequence analysis of the S. boydii 0-1392 island, designated SHI-3 for Shigella island 3, revealed a conserved aerobactin operon associated with a P4 prophage-like integrase gene and numerous insertion sequences (IS). SHI-3 is present at the pheU tRNA locus in some S. boydii isolates but not in others. The map locations of the aerobactin genes vary among closely related species. The association of the aerobactin operon with phage genes and mobile elements and its presence at different locations within the genomes of enteric pathogens suggest that these virulence-enhancing genes may have been acquired by bacteriophage integration or IS element-mediated transposition. An S. boydii aerobactin synthesis mutant, 0-1392 iucB, was constructed and was similar to the wild type in tissue culture assays of invasion and intercellular spread.  相似文献   

15.
The method of suppressive subtractive hybridization was employed to map out genomic differences between the highly pathogenic Yersinia enterocolitica (Ye) biogroup 1B, serotype O:8 strain (WA-314) and the closely related apathogenic Y. enterocolitica biogroup 1A, serotype O:5 strain (NF-O). A novel IS10-like element, IS1330, uncovered by this technique was found to be uniquely present in high copy numbers among the highly pathogenic Y. enterocolitica 1B strains, while a single copy of the element was found in the low pathogenic Ye biogroup 4 serotype O:3 strain. The 1321-bp repetitive element has 19-bp imperfect inverted terminal repeats and is bracketed by a 10-bp duplication of the target sequence. The predicted transposase shares high homology with the IS10 open reading frame of the large virulence plasmid pWR501, of Shigella flexneri, with IS10 transposase of Salmonella typhi, and with IS1999 (tnpA) of Pseudomonas aeruginosa. The IS1330 tnp gene is transcribed in vitro and in vivo in HeLa cells. At least one copy of IS1330 flanks the recently described chromosomal type III secretion cluster in Y. enterocolitica WA-314, O:8, and future studies should shed light on whether this novel transposase mediates transposition events in highly pathogenic Y. enterocolitica strains, thus enhancing the genetic plasticity of this species.  相似文献   

16.
J J Rossi  A Landy 《Cell》1979,16(3):523-534
  相似文献   

17.
Tn7 transposes from the chromosome of Pseudomonas aeruginosa into the plasmid R68.45 with tandem IS21, at up to 400 times the frequency that it transposes into R68, which has only one copy of IS21. While R68::TN7 derivatives are stable, R68.45::Tn7 isolates undergo frequent deletions. Instability of R68.45 occurs whether Tn7 is inserted into the plasmid (cis configuration) or into the bacterial chromosome (trans configuration). The deletions of R68.45 start at the junction between the tandem IS21 copies and proceed clockwise, ending in the region of oriT. It appears that Tn7 and IS21 can mutually stimulate transposition of each other.  相似文献   

18.
The arrangement and the nucleotide sequence of the tRNA genes in the 2.0-kilobase-pair EcoRI restriction fragment EcoQ of Euglena gracilis Klebs, strain Z Pringsheim chloroplast DNA have been determined. This fragment, cloned in pBR325 to form the plasmid pEZC300, contains five tRNA genes. The DNA insert of this plasmid, a known tRNA gene locus (Orozco, E.M., Jr., and Hallick, R.B. (1982) J. Biol. Chem. 257, 3258-3264) has been mapped by Southern gel analysis using a 32P-labeled oligodeoxynucleotide tRNA gene probe. The DNA sequence of 870 base pairs (bp) from EcoQ containing the entire tRNA gene locus was determined. The organization of this tRNA gene cluster on the E. gracilis chloroplast chromosome is tRNAUUGGln-14-BP spacer-RNAGCUSer-175-bp spacer-tRNACAUMet-12-bp spacer-tRNAGCCGly-5-bp spacer-tRNAUGUThr. The tRNAUUGGln and tRNAGCUSer gene sequences are of the opposite polarity as the other three gene sequences, but of the same polarity as the rRNA genes. The tRNAMet gene is a putative initiator tRNA. The five tRNA genes are separated and flanked by A-T-rich spacer sequences. This gene arrangement is consistent with the model that E. gracilis chloroplast tRNA genes are transcribed into multicistronic tRNA precursors. The DNA sequences have been used to deduce the primary and secondary structures of the tRNAs.  相似文献   

19.
We describe a novel type of transposon in the tetracycline resistance plasmid pYM103, a derivative of pSC101 carrying a single copy of an insertion element IS102. The new transposons we found were identified as DNA segments, approximately 6 kb (Tn1021) and 10 kb (Tn1022) in length, able to mediate the cointegration of pYM1O3 with plasmid Col E1. The resulting cointegrate contains either of these pYM1O3 segments duplicated in a direct orientation at the junctions of the parent plasmids. A direct duplication of a 9 bp sequence at the target site in Col E1 is found at the junctions for cointegration. Both transposons have IS1O2 at one end and also contain different lengths of the pYM103 DNA adjacent to IS102, including the tetracycline resistance gene. Each transposon contains terminal inverted repeats of a short nucleotide sequence. These results and the fact that IS102 can itself mediate plasmid cointegration, giving rise to a duplication of a 9 bp target sequence, indicate that IS102 is responsible for generation of Tn1021 and Tn1022. They are quite different from the common IS-associated transposons, which are always flanked by two copies of an IS element, and may be similar to transposons such as those of the Tn3 family and phage Mu.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号