首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
HtrA (high temperature requirement A), a periplasmic heat-shock protein, functions as a molecular chaperone at low temperatures, and its proteolytic activity is turned on at elevated temperatures. To investigate the mechanism of functional switch to protease, we determined the crystal structure of the NH(2)-terminal protease domain (PD) of HtrA from Thermotoga maritima, which was shown to retain both proteolytic and chaperone-like activities. Three subunits of HtrA PD compose a trimer, and multimerization architecture is similar to that found in the crystal structures of intact HtrA hexamer from Escherichia coli and human HtrA2 trimer. HtrA PD shares the same fold with chymotrypsin-like serine proteases, but it contains an additional lid that blocks access the of substrates to the active site. A corresponding lid found in E. coli HtrA is a long loop that also blocks the active site of another subunit. These results suggest that the activation of the proteolytic function of HtrA at elevated temperatures might occur by a conformational change, which includes the opening of the helical lid to expose the active site and subsequent rearrangement of a catalytic triad and an oxyanion hole.  相似文献   

2.
The Gram negative bacterium Helicobacter pylori is a human pathogen which infects the gastric mucosa and causes an inflammatory process leading to gastritis, ulceration and cancer. A systematic, proteome based approach was chosen to detect candidate antigens of H. pylori for diagnosis, therapy and vaccine development and to investigate potential associations between specific immune responses and manifestations of disease. Sera from patients with active H. pylori infection (n = 24), a control group with unrelated gastric disorders (n = 12) and from patients with gastric cancer (n = 6) were collected and analyzed for the reactivity against proteins of the strain HP 26695 separated by two-dimensional electrophoresis. Overall, 310 antigenic protein species were recognized by H. pylori positive sera representing about 17% of all spots separated. Out of the 32 antigens most frequently recognized by H. pylori positive sera, nine were newly identified and 23 were confirmed from other studies. Three newly identified antigens which belong to the 150 most abundant protein species of H. pylori, were specifically recognized by H. pylori positive sera: the predicted coding region HP0231, serine protease HtrA (HP1019) and Cag3 (HP0522). Other antigens were recognized differently by sera from gastritis and ulcer patients, which may identify them as candidate indicators for clinical manifestations. The data from these immunoproteomic analyses are added to our public database (http://www.mpiib-berlin.mpg.de/2D-PAGE). This platform enables one to compile many protein profiles and to integrate data from other studies, an approach which will greatly assist the search for more immunogenic proteins for diagnostic assays and vaccine design.  相似文献   

3.
ABSTRACT: BACKGROUND: The Deg/HtrA family of ATP-independent serine endopeptidases is present in nearly all organisms from bacteria to human and vascular plants. In recent years, multiple deg/htrA protease genes were identified in various plant genomes. During genome annotations most proteases were named according to the order of discovery, hence the same names were sometimes given to different types of Deg/HtrA enzymes in different plant species. This can easily lead to false inference of individual protease functions based solely on a shared name. Therefore, the existing names and classification of these proteolytic enzymes does not meet our current needs and a phylogeny-based standardized nomenclature is required. RESULTS: Using phylogenetic and domain arrangement analysis, we improved the nomenclature of the Deg/HtrA protease family, standardized protease names based on their well-established nomenclature in Arabidopsis thaliana, and clarified the evolutionary relationship between orthologous enzymes from various photosynthetic organisms across several divergent systematic groups, including dicots, a monocot, a moss and a green alga. Furthermore, we identified a "core set" of eight proteases shared by all organisms examined here that might provide all the proteolytic potential of Deg/HtrA proteases necessary for a hypothetical plant cell. CONCLUSIONS: In our proposed nomenclature, the evolutionarily closest orthologs have the same protease name, simplifying scientific communication when comparing different plant species and allowing for more reliable inference of protease functions. Further, we proposed that the high number of Deg/HtrA proteases in plants is mainly due to gene duplications unique to the respective organism.  相似文献   

4.
5.
HtrA2/Omi, a mitochondrial trypsin-like serine protease, is pivotal in regulating apoptotic cell death; however, the underlying mechanism of HtrA2/Omi-mediated apoptosis remains to be elucidated. Using the pGEX bacterial expression system, we investigated the expression patterns of various forms of HtrA2/Omi. Full-length mouse HtrA2/Omi (mHtrA2/Omi) was successfully expressed in E. coli and purified as a proteolytically active protein. In contrast, the expression of full-length human HtrA2/Omi (hHtrA2/Omi) in E. coli was barely detected. On the basis of this result, we characterized further the expression patterns of N- or C-terminally truncated hHtrA2/Omi proteins. We found that three copies of the PRAXXTXXTP motif, which exist only in hHtrA2/Omi, might serve as a primary site that is highly susceptible to proteolytic degradation by host proteases. Removal of the N-terminal region containing the PRAXXTXXTP motifs produced a form resistant to proteolytic degradation during expression in E. coli and purification, consequently improving the production of a catalytically active, mature hHtrA2/Omi. Our study provides a method for generating useful reagents to investigate molecular mechanism by which HtrA2/Omi contributes to regulating apoptotic cell death and to identify natural substrates of HtrA2/Omi.  相似文献   

6.
The periplasmic chaperone and serine protease HtrA is important for bacterial stress responses and protein quality control. Recently, we discovered that HtrA from Helicobacter pylori is secreted and cleaves E-cadherin to disrupt the epithelial barrier, but it remained unknown whether this maybe a general virulence mechanism. Here, we show that important other pathogens including enteropathogenic Escherichia coli, Shigella flexneri, and Campylobacter jejuni, but not Neisseria gonorrhoeae, cleaved E-cadherin on host cells. HtrA deletion in C. jejuni led to severe defects in E-cadherin cleavage, loss of cell adherence, paracellular transmigration, and basolateral invasion. Computational modeling of HtrAs revealed a conserved pocket in the active center exhibiting pronounced proteolytic activity. Differential E-cadherin cleavage was determined by an alanine-to-glutamine exchange in the active center of neisserial HtrA. These data suggest that HtrA-mediated E-cadherin cleavage is a prevalent pathogenic mechanism of multiple gram-negative bacteria representing an attractive novel target for therapeutic intervention to combat bacterial infections.  相似文献   

7.
8.
Omi/HtrA2 is a mammalian serine protease with high homology to bacterial HtrA chaperones. Omi/HtrA2 is localized in mitochondria and is released to the cytoplasm in response to apoptotic stimuli. Omi/HtrA2 induces cell death in a caspase-dependent manner by interacting with the inhibitor of apoptosis protein as well as in a caspase-independent manner that relies on its protease activity. We describe the identification and characterization of a novel compound as a specific inhibitor of the proteolytic activity of Omi/HtrA2. This compound (ucf-101) was isolated in a high throughput screening of a combinatorial library using bacterially made Omi-(134-458) protease and fluorescein-casein as a generic substrate. ucf-101 showed specific activity against Omi/HtrA2 and very little activity against various other serine proteases. This compound has a natural fluorescence that was used to monitor its ability to enter mammalian cells. ucf-101, when tested in caspase-9 (-/-) null fibroblasts, was found to inhibit Omi/HtrA2-induced cell death.  相似文献   

9.
Deg/HtrA proteases are a large group of ATP-independent serine endoproteases found in almost every organism. Their usual domain arrangement comprises a trypsin-type protease domain and one or more PDZ domains. All Deg/HtrA proteases form homo-oligomers with trimers as the basic unit, where the active protease domain mediates the interaction between individual monomers. Among the members of the Deg/HtrA protease family, the plant protease DEG7 is unique since it contains two protease domains (one active and one degenerated) and four PDZ domains. In the present study, we investigated the oligomerization behaviour of this unusual protease using yeast two-hybrid analysis in vivo and with recombinant protein in vitro. We show that DEG7 forms trimeric complexes, but in contrast with other known Deg/HtrA proteases, it shows a new principle of oligomerization, where trimerization is based on the interactions between degenerated protease domains. We propose that, during evolution, a duplicated active protease domain degenerated and specialized in protein-protein interaction and complex formation.  相似文献   

10.
HtrA family proteins play a central role in protein quality control in the bacterial periplasmic space. DegQ-like proteases, a group of bacterial HtrA proteins, are characterized by a short LA loop as compared with DegP-like proteases, and are found in many bacterial species. As a representative of the DegQ-like proteases, we report that Escherichia coli DegQ exists in?vivo primarily as a trimer (substrate-free) or dodecamer (substrate-containing). Biochemical analysis of DegQ dodecamers revealed that the major copurified protein substrate is OmpA. Importantly, wild-type DegQ exhibited a much lower proteolytic activity, and thus higher chaperone-like activity, than DegP. Furthermore, using cryo-electron microscopy we determined high-resolution structures of DegQ 12- and 24-mers in the presence of substrate, thus revealing the structural mechanism by which DegQ moderates its proteolytic activity.  相似文献   

11.
The HtrA family of chaperones and serine proteases is important for regulating stress responses and controlling protein quality in the periplasm of bacteria. HtrA is also associated with infectious diseases since inactivation of htrA genes results in significantly reduced virulence properties by various bacterial pathogens. These virulence features of HtrA can be attributed to reduced fitness of the bacteria, higher susceptibility to environmental stress and/or diminished secretion of virulence factors. In some Gram‐negative and Gram‐positive pathogens, HtrA itself can be exposed to the extracellular environment promoting bacterial colonisation and invasion of host tissues. Most of our knowledge on the function of exported HtrAs stems from research on Helicobacter pylori, Campylobacter jejuni, Borrelia burgdorferi, Bacillus anthracis, and Chlamydia species. Here, we discuss recent progress showing that extracellular HtrAs are able to cleave cell‐to‐cell junction factors including E‐cadherin, occludin, and claudin‐8, as well as extracellular matrix proteins such as fibronectin, aggrecan, and proteoglycans, disrupting the epithelial barrier and producing substantial host cell damage. We propose that the export of HtrAs is a newly discovered strategy, also applied by additional bacterial pathogens. Consequently, exported HtrA proteases represent highly attractive targets for antibacterial treatment by inhibiting their proteolytic activity or application in vaccine development.  相似文献   

12.
In Podospora anserina five proteolytic enzymes were characterized by chromatographic procedures. Three of these (proteases A, B and C) were found in the cell extracts of growing cultures and the other two (proteases III and IV) were revealed by studies on protoplasmic incompatibility. During growth, only protease C, an acidic enzyme, was active in crude extracts. From the stationary and the poststationary stages this activity decreased and finally disappeared, whereas a neutral serine protease (activity B) became active in crude extracts. A close relationship was observed between the proteolytic activity of the culture filtrates and the intracellular protease(s) concomitantly active in the crude extracts. None of the proteases associated with protoplasmic incompatibility was detected, both in the extra- and intracellular spaces. Qualitative variations in the proteolytic activities during stationary and post-stationary stages depended on the presence of specific genes and mutations: the mod C mutation suppressing protoplasmic incompatibility, inhibits the progressive decrease of protease C and, furthermore, the presence of non allelic incompatibility genes have for consequence the substitution of serine protease B by serine protease A during the poststationary stage.  相似文献   

13.
14.
Human HtrA3 protease, which induces mitochondria-mediated apoptosis, can be a tumor suppressor and a potential therapeutic target in the treatment of cancer. However, there is little information about its structure and biochemical properties. HtrA3 is composed of an N-terminal domain not required for proteolytic activity, a central serine protease domain and a C-terminal PDZ domain. HtrA3S, its short natural isoform, lacks the PDZ domain which is substituted by a stretch of 7 C-terminal amino acid residues, unique for this isoform. This paper presents the crystal structure of the HtrA3 protease domain together with the PDZ domain (ΔN-HtrA3), showing that the protein forms a trimer whose protease domains are similar to those of human HtrA1 and HtrA2. The ΔN-HtrA3 PDZ domains are placed in a position intermediate between that in the flat saucer-like HtrA1 SAXS structure and the compact pyramidal HtrA2 X-ray structure. The PDZ domain interacts closely with the LB loop of the protease domain in a way not found in other human HtrAs. ΔN-HtrA3 with the PDZ removed (ΔN-HtrA3-ΔPDZ) and an N-terminally truncated HtrA3S (ΔN-HtrA3S) were fully active at a wide range of temperatures and their substrate affinity was not impaired. This indicates that the PDZ domain is dispensable for HtrA3 activity. As determined by size exclusion chromatography, ΔN-HtrA3 formed stable trimers while both ΔN-HtrA3-ΔPDZ and ΔN-HtrA3S were monomeric. This suggests that the presence of the PDZ domain, unlike in HtrA1 and HtrA2, influences HtrA3 trimer formation. The unique C-terminal sequence of ΔN-HtrA3S appeared to have little effect on activity and oligomerization. Additionally, we examined the cleavage specificity of ΔN-HtrA3. Results reported in this paper provide new insights into the structure and function of ΔN-HtrA3, which seems to have a unique combination of features among human HtrA proteases.  相似文献   

15.
The Escherichia coli protease HtrA has two PDZ domains, and sequence alignments predict that the E. coli protease Tsp has a single PDZ domain. PDZ domains are composed of short sequences (80-100 amino acids) that have been implicated in a range of protein:protein interactions. The PDZ-like domain of Tsp may be involved in binding to the extreme COOH-terminal sequence of its substrate, whereas the HtrA PDZ domains are involved in subunit assembly and are predicted to be responsible for substrate binding and subsequent translocation into the active site. E. coli has a system of protein quality control surveillance mediated by the ssrA-encoded peptide tagging system. This system tags misfolded proteins or protein fragments with an 11-amino acid peptide that is recognized by a battery of cytoplasmic and periplasmic proteases as a degradation signal. Here we show that both HtrA and Tsp are able to recognize the ssrA-encoded peptide tag with apparent K(D) values of approximately 5 and 390 nm, respectively, and that their PDZ-like domains mediate this recognition. Fusion of the ssrA-encoded peptide tag to the COOH terminus of a heterologous protein (glutathione S-transferase) renders it sensitive to digestion by Tsp but not HtrA. These observations support the prediction that the HtrA PDZ domains facilitate substrate binding and the differential proteolytic responses of HtrA and Tsp to SsrA-tagged glutathione S-transferase are interpreted in terms of the structure of HtrA.  相似文献   

16.
To react to distinct stress situations and to prevent the accumulation of misfolded proteins, all cells employ a number of proteases and chaperones, which together set up an efficient protein quality control system. The functionality of proteins in the cell envelope of Escherichia coli is monitored by the HtrA proteases DegS, DegP, and DegQ. In contrast with DegP and DegS, the structure and function of DegQ has not been addressed in detail. Here, we show that substrate binding triggers the conversion of the resting DegQ hexamer into catalytically active 12- and 24-mers. Interestingly, substrate-induced oligomer reassembly and protease activation depends on the first PDZ domain but not on the second. Therefore, the regulatory mechanism originally identified in DegP should be a common feature of HtrA proteases, most of which encompass only a single PDZ domain. Using a DegQ mutant lacking the second PDZ domain, we determined the high resolution crystal structure of a dodecameric HtrA complex. The nearly identical domain orientation of protease and PDZ domains within 12- and 24-meric HtrA complexes reveals a conserved PDZ1 → L3 → LD/L1/L2 signaling cascade, in which loop L3 senses the repositioned PDZ1 domain of higher order, substrate-engaged particles and activates protease function. Furthermore, our in vitro and in vivo data imply a pH-related function of DegQ in the bacterial cell envelope.  相似文献   

17.
Inhibitor of apoptosis proteins (IAPs) prevent apoptosis through direct inhibition of caspases. The serine protease HtrA2/Omi has an amino-terminal IAP interaction motif like that found in Reaper, which displaces IAPs from caspases, leading to enhanced caspase activity. The cell death-promoting properties of HtrA2/Omi are not only exerted through its capacity to oppose IAP inhibition of caspases but also through its integral serine protease activity. We have used peptide libraries to determine the optimal substrate sequence for cleavage by HtrA2 and also the preferred binding sequence for its PDZ domain. Using these peptides, we show that the PDZ domain of HtrA2/Omi suppresses the proteolytic activity unless it is engaged by a binding partner. Subjecting HtrA2/Omi to heat shock treatment also increases its protease activity. Unexpectedly, binding of X-linked inhibitor of apoptosis protein (XIAP) to the Reaper motif of HtrA2/Omi results in a marked increase in proteolytic activity, suggesting a new role for IAPs. When HtrA2/Omi is released from mitochondria following an apoptotic stimulus, binding to IAPs may switch their function from caspase inhibition to serine protease activation. Thus although IAP overexpression can suppress caspase activation, it could have the opposite effect on HtrA2/Omi-dependent cell death. This, together with the ability of HtrA2/Omi to degrade IAPs, may limit the overall cellular protection that can be provided by these proteins.  相似文献   

18.
Eukaryotic organelles have developed elaborate protein quality control systems to ensure their normal activity, among which Deg/HtrA proteases play an essential role. Plant Deg2 protease is a homologue of prokaryotic DegQ/DegP proteases and is located in the chloroplast stroma, where its proteolytic activity is required to maintain the efficiency of photosynthetic machinery during stress. Here, we demonstrate that Deg2 exhibits dual protease-chaperone activities, and we present the hexameric structure of Deg2 complexed with co-purified peptides. The structure shows that Deg2 contains a unique second PDZ domain (PDZ2) following a conventional PDZ domain (PDZ1), with PDZ2 orchestrating the cage assembly of Deg2. We discovered a conserved internal ligand for PDZ2 that mediates hexamer formation and thus locks the protease in the resting state. These findings provide insight into the diverse modes of PDZ domain-mediated regulation of Deg proteases.  相似文献   

19.
E chrysanthemi, a phytopathogenic enterobacterium, secretes several enzymes into the medium such as pectinases cellulases and proteases. It also produces 3 distinct and antigenically related extracellular proteases. The proteases secretion pathway seems to be distinct from that of the other extracellular enzymes since pleiotropic mutants impaired in cellulase and pectinase secretion are unimpaired in protease secretion. E chrysanthemi proteases B and C secretion occurs without an N-terminal signal peptide and is dependent upon specific secretion functions which are encoded by genes adjacent to the protease structural genes. This secretion pathway might be analogous to the alpha-hemolysin secretion pathway in E coli. Protection against intracellular proteolytic activity is achieved by 2 distinct mechanisms: the proteases are synthesized as inactive precursors with an N-terminal extension of 15 aminoacids (protease B) and 17 aminoacids (protease C) absent in the mature active extracellular enzymes; an intracellular specific protease inhibitor is produced by some E chrysanthemi strains.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号