首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Crystal structures of bacterial CLC (voltage-gated chloride channel family) proteins suggest the arrangement of permeation pores and possible gates in the transmembrane region of eukaryotic CLC channels. For the extensive cytoplasmic tails of eukaryotic CLC family members, however, there are no equivalent structural predictions. Truncations of cytoplasmic tails in different places or point mutations result in loss of function or altered gating of several members of the CLC family, suggesting functional importance. In the present study, we show that deletion of the terminal 100 amino acids (N889X) in human ClC-1 (skeletal-muscle chloride channel) has minor consequences, whereas truncation by 110 or more amino acids (from Q879X) destroys channel function. Use of the split channel strategy, co-injecting mRNAs and expressing various complementary constructs in Xenopus oocytes, confirms the importance of the Gln879-Arg888 sequence. A split between the two CBS (cystathionine b-synthase) domains (CBS1 and CBS2) gives normal function (e.g. G721X plus its complement), whereas a partial complementation, eliminating the CBS1 domain, eliminates function. Surprisingly, function is retained even when the region Gly721-Ala862 (between CBS1 and CBS2, and including most of the CBS2 domain) is omitted from the complementation. Furthermore, even shorter peptides from the CBS2-immediate post-CBS2 region are sufficient for functional complementation. We have found that just 26 amino acids from Leu863 to Arg888 are necessary since channel function is restored by co-expressing this peptide with the otherwise inactive truncation, G721X.  相似文献   

2.
The role of the carboxyl terminus in ClC chloride channel function   总被引:4,自引:0,他引:4  
The human muscle chloride channel ClC-1 has a 398-amino acid carboxyl-terminal domain that resides in the cytoplasm and contains two CBS (cystathionine-beta-synthase) domains. To examine the role of this region, we studied various carboxyl-terminal truncations by heterologous expression in mammalian cells, whole-cell patch clamp recording, and confocal imaging. Channel constructs lacking parts of the distal CBS domain, CBS2, did not produce functional channels, whereas deletion of CBS1 was tolerated. ClC channels are dimeric proteins with two ion conduction pathways (protopores). In heterodimeric channels consisting of one wild type subunit and one subunit in which the carboxyl terminus was completely deleted, only the wild type protopore was functional, indicating that the carboxyl terminus supports the function of the protopore. All carboxyl-terminal-truncated mutant channels fused to yellow fluorescent protein were translated and the majority inserted into the plasma membrane as revealed by confocal microscopy. Fusion proteins of cyan fluorescent protein linked to various fragments of the carboxyl terminus formed soluble proteins that could be redistributed to the surface membrane through binding to certain truncated channel subunits. Stable binding only occurs between carboxyl-terminal fragments of a single subunit, not between carboxyl termini of different subunits and not between carboxyl-terminal and transmembrane domains. However, an interaction with transmembrane domains can modify the binding properties of particular carboxyl-terminal proteins. Our results demonstrate that the carboxyl terminus of ClC-1 is not necessary for intracellular trafficking but is critical for channel function. Carboxyl termini fold independently and modify individual protopores of the double-barreled channel.  相似文献   

3.
Molecular determinants in TRPV5 channel assembly   总被引:8,自引:0,他引:8  
The epithelial Ca(2+) channels TRPV5 and TRPV6 mediate the Ca(2+) influx in 1,25-dihydroxyvitamin D(3)-responsive epithelia and are therefore essential in the maintenance of the body Ca(2+) balance. These Ca(2+) channels assemble in (hetero)tetrameric channel complexes with different functional characteristics regarding Ca(2+)-dependent inactivation, ion selectivity, and pharmacological block. Glutathione S-transferase pull-downs and co-immunoprecipitations demonstrated an essential role of the intracellular N- and C-tails in TRPV5 channel assembly by physical interactions between N-N tails, C-C tails, and N-C-tails. Patch clamp analysis in human embryonic kidney (HEK293) cells and (45)Ca(2+) uptake experiments in Xenopus laevis oocytes co-expressing TRPV5 wild-type and truncated proteins indicated that TRPV5 Delta N (deleted N-tail) and TRPV5 Delta C (deleted C-tail) decreased channel activity of wild-type TRPV5 in a dominant-negative manner, whereas TRPV5 Delta N Delta C (deleted N-tail/C-tail) did not affect TRPV5 activity. Oocytes co-expressing wild-type TRPV5 and TRPV5 Delta N or TRPV5 Delta C showed virtually no wild-type TRPV5 expression on the plasma membrane, whereas co-expression of wild-type TRPV5 and TRPV5 Delta N Delta C displayed normal channel surface expression. This indicates that TRPV5 trafficking toward the plasma membrane was disturbed by assembly with TRPV5 Delta N or TRPV5 Delta C but not with TRPV5 Delta N Delta C. TRPV5 channel assembly signals were refined between amino acid positions 64-77 and 596-601 in the N-tail and C-tail, respectively. Pull-down assays and co-immunoprecipitations demonstrated that N- or C-tail mutants lacking these critical assembly domains were unable to interact with tails of TRPV5. In conclusion, two domains in the N-tail (residues 64-77) and C-tail (residues 596-601) of TRPV5 are important for channel subunit assembly, subsequent trafficking of the TRPV5 channel complex to the plasma membrane, and channel activity.  相似文献   

4.
瞬时受体电位(TRP)通道是一类钙离子透过性的阳离子通道蛋白家族,参与了视觉、味觉、温度感受等重要的生物学过程。之前的研究表明,钙离子既能够正反馈也能够负反馈地调节瞬时受体电位通道的活性,而这种调节可能是通过钙调蛋白(calmodulin,CaM)与TRP通道的相互作用来进行的。为了阐明这一调控机制,我们首先需要对钙调蛋白与瞬时受体电位通道之间的相互作用进行详细的生化研究。在此项研究中,通过大肠杆菌表达系统,表达和纯化了果蝇瞬时受体电位通道羧基末端不同长短的蛋白片段,并发现了一个新的钙调蛋白结合位点。通过快速蛋白液相色谱、静态光散射以及等温量热滴定技术,鉴定了这一钙调蛋白结合位点与果蝇瞬时受体电位通道之间的相互作用,发现它们在钙离子依赖的条件下,可以形成亲和力非常强的稳定的蛋白复合物(解离常数在01~1微摩尔范围)。此外,通过合成多肽的方法,鉴定了果蝇瞬时受体电位通道913~939片段为该钙调蛋白结合位点的核心区域。最后,通过突变实验,进一步明确了果蝇瞬时受体电位通道922位的酪氨酸以及923位的缬氨酸为其钙调蛋白结合位点的关键氨基酸。总而言之,本研究发现和鉴定了果蝇瞬时受体电位通道上一个新的钙依赖的钙调蛋白结合位点,这一发现将为研究瞬时受体电位通道的体内功能提供生化基础,为阐明钙离子通过钙调蛋白调节瞬时受体电位通道的分子机制做出贡献。  相似文献   

5.
Voltage-gated Ca(v)1.2 channels are composed of the pore-forming alpha1C and auxiliary beta and alpha2delta subunits. Voltage-dependent conformational rearrangements of the alpha1C subunit C-tail have been implicated in Ca2+ signal transduction. In contrast, the alpha1C N-tail demonstrates limited voltage-gated mobility. We have asked whether these properties are critical for the channel function. Here we report that transient anchoring of the alpha1C subunit C-tail in the plasma membrane inhibits Ca2+-dependent and slow voltage-dependent inactivation. Both alpha2delta and beta subunits remain essential for the functional channel. In contrast, if alpha1C subunits with are expressed alpha2delta but in the absence of a beta subunit, plasma membrane anchoring of the alpha1C N terminus or its deletion inhibit both voltage- and Ca2+-dependent inactivation of the current. The following findings all corroborate the importance of the alpha1C N-tail/beta interaction: (i) co-expression of beta restores inactivation properties, (ii) release of the alpha1C N terminus inhibits the beta-deficient channel, and (iii) voltage-gated mobility of the alpha1C N-tail vis a vis the plasma membrane is increased in the beta-deficient (silent) channel. Together, these data argue that both the alpha1C N- and C-tails have important but different roles in the voltage- and Ca2+-dependent inactivation, as well as beta subunit modulation of the channel. The alpha1C N-tail may have a role in the channel trafficking and is a target of the beta subunit modulation. The beta subunit facilitates voltage gating by competing with the N-tail and constraining its voltage-dependent rearrangements. Thus, cross-talk between the alpha1C C and N termini, beta subunit, and the cytoplasmic pore region confers the multifactorial regulation of Ca(v)1.2 channels.  相似文献   

6.
We previously used electron cryo-crystallography to determine the three-dimensional structure of recombinant gap junction channels formed by a C-terminal truncation mutant of Cx43 (11). The dodecameric channel is formed by the end-to-end docking of two hexameric connexons, each comprised of 24 transmembrane alpha-helices. We have now generated two-dimensional crystals of the recombinant, full-length channel, as well as crystals in which the C-tail has been completely removed by trypsin digestion. Projection density maps at 7.5 A resolution closely resemble our previous analysis of the C-terminal truncation mutant (9). A difference map between the full length and trypsin-treated channels suggests that there are small but significant shifts in protein density upon removal of the C-tail.  相似文献   

7.
We previously used electron cryo-crystallography to determine the three-dimensional structure of recombinant gap junction channels formed by a C-terminal truncation mutant of Cx43 (11). The dodecameric channel is formed by the end-to-end docking of two hexameric connexons, each comprised of 24 transmembrane α-helices. We have now generated two-dimensional crystals of the recombinant, full-length channel, as well as crystals in which the C-tail has been completely removed by trypsin digestion. Projection density maps at 7.5 Å resolution closely resemble our previous analysis of the C-terminal truncation mutant (9). A difference map between the full length and trypsin-treated channels suggests that there are small but significant shifts in protein density upon removal of the C-tail.  相似文献   

8.
The signaling mechanisms that regulate CLC anion channels are poorly understood. Caenorhabditis elegans CLH-3b is a member of the CLC-1/2/Ka/Kb channel subfamily. CLH-3b is activated by meiotic cell-cycle progression and cell swelling. Inhibition is brought about by GCK-3 kinase-mediated phosphorylation of S742 and S747 located on a ∼176 amino acid disordered domain linking CBS1 and CBS2. Much of the inter-CBS linker is dispensable for channel regulation. However, deletion of a 14 amino acid activation domain encompassing S742 and S747 inhibits channel activity to the same extent as GCK-3. The crystal structure of CmCLC demonstrated that CBS2 interfaces extensively with an intracellular loop connecting membrane helices H and I, the C-terminus of helix D, and a short linker connecting helix R to CBS1. Point mutagenesis of this interface identified two highly conserved aromatic amino acid residues located in the H-I loop and the first α-helix (α1) of CBS2. Mutation of either residue to alanine rendered CLH-3b insensitive to GCK-3 inhibition. We suggest that the dephosphorylated activation domain normally interacts with CBS1 and/or CBS2, and that conformational information associated with this interaction is transduced through a conserved signal transduction module comprising the H-I loop and CBS2 α1.  相似文献   

9.
Four mutants of human insulin-like growth factor I (hIGF I) have been purified from the conditioned media of yeast transformed with an expression vector containing a synthetic gene for hIGF I altered by site-directed mutagenesis. hIGF I has the sequence Phe-23-Tyr-24-Phe-25 which is homologous to a region in the B-chain of insulin. [Phe23,Phe24,Tyr25]IGF I, in which the sequence is altered to exactly correspond to the homologous sequence in insulin, is equipotent to hIGF I at the types 1 and 2 IGF and insulin receptors. [Leu24]IGF I and [Ser24]IGF I have 32- and 16-fold less affinity than hIGF I at the human placental type 1 IGF receptor, respectively. These peptides are 10- and 2-fold less potent at the placental insulin receptor, respectively. [Leu24]IGF I and [Ser24]IGF I have similarly reduced affinities for the type 1 IGF receptor of rat A10 and mouse L cells. Thus, the importance of the interaction of residue 24 with the receptor is conserved in several species. In three cell-based assays, [Leu24]IGF I and [Ser24]IGF I are full agonists with reduced efficacy compared to hIGF I. Desoctapeptide [Leu24]IGF I, in which the loss of aromaticity at position 24 is combined with the deletion of the carboxyl-terminal D region of hIGF I, has 3-fold lower affinity than [Leu24]IGF I for the type 1 receptor and 2-fold higher affinity for the insulin receptor.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The cytoplasmic domains of ClC chloride channels and transporters are ubiquitously found in eukaryotic family members and have been suggested to be involved in the regulation of ion transport. All cytoplasmic ClC domains share a conserved scaffold that contains a pair of CBS motifs. Here we describe the structure of the cytoplasmic component of the human chloride channel ClC-Ka at 1.6 A resolution. The structure reveals a dimeric organization of the domain that is unusual for CBS motif containing proteins. Using a biochemical approach combining mutagenesis, crosslinking, and analytical ultracentrifugation, we demonstrate that the interaction interface is preserved in solution and that the distantly related channel ClC-0 likely exhibits a similar structural organization. Our results reveal a conserved interaction interface that relates the cytoplasmic domains of ClC proteins and establish a structural relationship that is likely general for this important family of transport proteins.  相似文献   

11.
Radiation injury to cells enhances C-terminal phosphorylation of p53 at both Ser315 and Ser392 in vivo, suggesting the existence of two cooperating DNA damage-responsive pathways that play a role in stimulating p53-dependent gene expression. Our previous data has shown that cyclin A-cdk2 is the major enzyme responsible for modifying p53 at Ser315 in vivo after irradiation damage and in this report we dissect the mechanism of cyclinA-cdk2 binding to and phosphorylation of p53. Although cyclin B(1)-dependent protein kinases can phosphorylate small peptides containing the Ser315 site, cyclin A-cdk2 does not phosphorylate such small peptides suggesting that additional determinants are required for cyclin A-cdk2 interaction with p53. Peptide competition studies have localized a cyclin A interaction site to a Lys381Lys382Leu383Met384Phe385 sequence within C-terminal negative regulatory domain of human p53. An alanine mutation at any one of four key positions abrogates the efficacy of a synthetic peptide containing this motif as an inhibitor of cyclin A-cdk2 phosphorylation of p53 protein. Single amino acid mutations of full-length p53 protein at Lys382, Leu383, or Phe385 decreases cyclin A-cdk2 dependent phosphorylation at Ser315. Cyclin B(1)-cdk2 complexes are not inhibited by KKLMF motif-containing peptides nor is p53 phosphorylation by cyclin B-cdk2 reduced by mutation of the cyclin A interaction site. These data identifying a KKLMF cyclin A docking site on p53 protein highlight a common cyclin A interaction motif that is shared between the tumour suppressor proteins pRb and p53.  相似文献   

12.
TRPM2 channels, activated by adenosine diphosphoribose and related molecules, are assembled as oligomers and most likely tetramers. However, the molecular determinants driving the subunit interaction and assembly of the TRPM2 channels are not well defined. Here we examined, using site-directed mutagenesis in conjunction with co-immunoprecipitation and patch clamp recording, the role of a coiled-coil domain in the intracellular C terminus of TRPM2 subunit in subunit interaction and channel assembly. Deletion of the coiled-coil domain resulted in severe disruption of the subunit interaction and substantial loss of the adenosine diphosphoribose-evoked channel currents. Individual or combined mutations to glutamine of the hydrophobic residues at positions a and d of the abcdef heptad repeat, key residues for protein-protein interaction, significantly reduced the subunit interaction and channel currents; the mutational effects on the subunit interaction and channel currents were clearly correlated. Furthermore, deletion of the coiled-coil domain in a pore mutant subunit abolished its dominant negative phenotypic functional suppression. These results provide strong evidence that the coiled-coil domain is critically engaged in the TRPM2 subunit interaction and such interaction is required for assembly of functional TRPM2 channel. The coiled-coil domain, which is highly conserved within the TRPM subfamily, may serve as a general structural element governing the assembly of TRPM channels.  相似文献   

13.
We have previously shown that the human somatostatin receptor type 1 (hSSTR1) does not undergo agonist-induced internalization, but is instead up-regulated at the membrane upon prolonged somatostatin (SST) exposure. The deletion of the carboxyterminal C-tail of the receptor completely abolishes up-regulation. To identify molecular signals that mediate hSSTR1 up-regulation, we created mutant receptors with progressive C-tail deletions. Up-regulation was found to be absent in mutants lacking residues Lys359-Ser360-Arg361. Moreover, point mutation of Ser360 to Ala completely abolished up-regulation. The coexpression of wild type hSSTR1 with V53D, a dominant negative mutant of beta-arrestin-1, completely blocked hSSTR1 up-regulation. Further analysis demonstrated that calcium-calmodulin (CaM) dependent kinases were essential for the SST-induced up-regulation response. Like wild type receptors, all mutants failed to internalize after agonist exposure and were able to inhibit forskolin-stimulated cAMP accumulation. Taking these data together, we suggest that SST-induced hSSTR1 up-regulation is critically dependent upon a specific Lys-Ser-Arg sequence in the C-tail of the receptor, with Ser360 being essential. Up-regulation also requires the participation of CaM protein kinases and interactions with beta-arrestins. In contrast, coupling to adenyl cyclase (AC) and internalization occur independently of molecular signals in the receptor's C-tail.  相似文献   

14.
The human hereditary disorder Dent's disease is linked to loss-of-function mutations of the chloride channel ClC-5. Many of these mutations involve insertion of premature stop codons, resulting in truncation of the protein. We determined whether the functional activity of ClC-5 could be restored by coexpression of the truncated protein (containing the NH2-terminal region) with its complementary "missing" COOH-terminal region. Split channel constructs for ClC-5, consisting of complementary N and C protein regions, were created at an arbitrary site in the COOH-terminal region (V655) and at four Dent's disease mutation sites (R347, Y617, R648, and R704). Coexpression of complementary fragments for the split channel at V655 produced currents with anion and pH sensitivity similar to those of wild-type ClC-5. Channel activity was similarly restored when complementary split channel constructs made for Dent's mutation R648 were coexpressed, but no ClC-5 currents were found when split channels for mutations R347, Y617, or R704 were coexpressed. Immunoblot and immunofluorescence studies of COS-7 cells revealed that N or C protein fragments could be transiently expressed and detected in the plasma membrane, even in split channels that failed to show functional activity. The results suggest that ClC-5 channel activity can be restored for specific Dent's mutations by expression of the missing portion of the ClC-5 molecule. Dent's disease mutations; oocyte expression; subcellular localization; ClC-5 chloride channel  相似文献   

15.
Mutational analysis of determinants located in the C-terminal (C) tail of the high affinity leukotriene (LT) B(4) receptor, BLT1, was performed to assess their significance in BLT1 trafficking. When expressed in COS-7 cells, a BLT1 deletion mutant lacking the C-tail (G291stop) displayed higher numbers of binding sites and increased signal transduction compared with wild-type (WT) BLT1. Addition of the C-tail from either the platelet-activating factor receptor or the LTD(4) receptor, CysLT1, did not restore WT phenotype. Moreover, the number of LTB(4) binding sites was higher in the chimeras than in the WT BLT1, suggesting the requirement for specific structural determinants within the BLT1 C-tail. Elimination of a distal C-tail dileucine motif (Leu(304)-Leu(305)), but not the proximal (Leu(292)-Leu(293)) motif, altered BLT1 pharmacological characteristics and caused a moderate constitutive receptor activation. Surprisingly, all mutant receptors were efficiently delivered to the plasma membrane, but not to a greater extent than WT BLT1, as assessed by flow cytometry. Furthermore, substitution of Leu(304)-Leu(305) prevented LTB(4)-induced BLT1 internalization. Molecular modeling of BLT1 on the bovine rhodopsin receptor scaffold strongly suggested the involvement of the distal dileucine motif (Leu(304)-Leu(305)) in a hydrophobic core, including intrahelical interactions within alpha-helix VIII and interhelical interactions with residues of helix I. Disruption of this hydrophobic core is proposed to increase the population of receptors in the active form, to restrain their trafficking and to facilitate the activation of BLT1 as indicated by the increased maximal level of binding of the ligand and constitutive activation of the receptor.  相似文献   

16.
ATP-sensitive K+ (KATP) channels are oligomeric complexes of pore-forming Kir6 subunits and regulatory Sulfonylurea Receptor (SUR) subunits. SUR, an ATP-Binding Cassette (ABC) transporter, confers Mg-nucleotide stimulation to the channel via nucleotide interactions with its two cytoplasmic domains (Nucleotide Binding Folds 1 and 2; NBF1 and NBF2). Regulation of KATP channel expression is a complex process involving subunit assembly in the ER, SUR glycosylation in the Golgi, and trafficking to the plasma membrane. Dysregulation can occur at different steps of the pathway, as revealed by disease-causing mutations. Here, we have addressed the role of SUR1 NBF1 in gating and expression of reconstituted channels. Deletion of NBF1 severely impairs channel expression and abolishes MgADP stimulation. Total SUR1 protein levels are decreased, suggestive of increased protein degradation, but they are not rescued by treatment with sulfonylureas or the proteasomal inhibitor MG-132. Similar effects of NBF1 deletion are observed in recombinant KATP channels obtained by "splitting" SUR1 into two separate polypeptides (a N-terminal "half" and a C-terminal "half"). Interestingly, the location of the "splitting point" in the vicinity of NBF1 has marked effects on the MgADP stimulation of resulting channels. Finally, ablation of the ER retention motif upstream of NBF1 (in either "split" or full-length SUR1) does not rescue expression of channels lacking NBF1. These results indicate that, in addition to NBF1 being required for MgADP stimulation of the channel, it plays an important role in the regulation of channel expression that is independent of the ER retention checkpoint and the proteasomal degradation pathway.  相似文献   

17.
5-HT(3) receptors are members of the Cys loop family of ligand-gated ion channels. We used the substituted cysteine accessibility method to identify amino acid residues in the channel forming domain, M2 that face the water-accessible surface and to locate their position in the ion conduction pathway. Cysteine was substituted for each residue, one at a time, in the M2 segment (Asp(274)-Asp(298)). 5-Hydroxytryptamine EC(50) values for functional mutants did not vary from wild type (1.4 +/- 0.2 microm) by more than 10-fold, and five mutants were nonfunctional. Covalent modification of the mutant receptors with sulfydryl reagents revealed 11 residues to be water-accessible, with a pattern consistent with an alpha-helix except at Leu(285) and Leu(293). The data suggest that charge selectivity begins at a more cytoplasmic level than Val(291). Modification at some positions (Val(291), Leu(293), Ile(294), Leu(287), and Ser(280)) resulted in channels that were locked open. Reaction rates with accessible cysteines were voltage-dependent at some residues, suggesting that access occurs via the ion channel. Overall the data observed are similar but not identical to that reported for other members of the family and confirms the high degree of structural and functional homology between receptors in the Cys loop receptor family.  相似文献   

18.
Brain I(A) and cardiac I(to) currents arise from complexes containing Kv4 voltage-gated potassium channels and cytoplasmic calcium-sensor proteins (KChIPs). Here, we present X-ray crystallographic and small-angle X-ray scattering data that show that the KChIP1-Kv4.3 N-terminal cytoplasmic domain complex is a cross-shaped octamer bearing two principal interaction sites. Site 1 comprises interactions between a unique Kv4 channel N-terminal hydrophobic segment and a hydrophobic pocket formed by displacement of the KChIP H10 helix. Site 2 comprises interactions between a T1 assembly domain loop and the KChIP H2 helix. Functional and biochemical studies indicate that site 1 influences channel trafficking, whereas site 2 affects channel gating, and that calcium binding is intimately linked to KChIP folding and complex formation. Together, the data resolve how Kv4 channels and KChIPs interact and provide a framework for understanding how KChIPs modulate Kv4 function.  相似文献   

19.
The human ATP-binding cassette (ABC) protein CFTR (cystic fibrosis transmembrane conductance regulator) is a chloride channel, whose dysfunction causes cystic fibrosis. To gain structural insight into the dynamic interaction between CFTR's nucleotide-binding domains (NBDs) proposed to underlie channel gating, we introduced target cysteines into the NBDs, expressed the channels in Xenopus oocytes, and used in vivo sulfhydryl-specific crosslinking to directly examine the cysteines' proximity. We tested five cysteine pairs, each comprising one introduced cysteine in the NH(2)-terminal NBD1 and another in the COOH-terminal NBD2. Identification of crosslinked product was facilitated by co-expression of NH(2)-terminal and COOH-terminal CFTR half channels each containing one NBD. The COOH-terminal half channel lacked all native cysteines. None of CFTR's 18 native cysteines was found essential for wild type-like, phosphorylation- and ATP-dependent, channel gating. The observed crosslinks demonstrate that NBD1 and NBD2 interact in a head-to-tail configuration analogous to that in homodimeric crystal structures of nucleotide-bound prokaryotic NBDs. CFTR phosphorylation by PKA strongly promoted both crosslinking and opening of the split channels, firmly linking head-to-tail NBD1-NBD2 association to channel opening.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号