首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Chandra  Amaresh  Bhatt  R.K. 《Photosynthetica》1998,35(2):255-258
In five genotypes of cowpea (Vigna unguiculata), the influence of salicylic acid (SA) on photosynthetic activity and biochemical constituents including peroxidase activity at the genotypic level was determined. After SA treatment the total free sugar content increased in IFC 8401 and IGFRI 450 genotypes, whereas the content of total leaf soluble proteins decreased significantly in IFC 902. The high chlorophyll (Chl) (a + b) content in IFC 902 showed a good correlation with the net photosynthetic rate (PN), as in this genotype a significant increase in PN was found after the SA treatment.  相似文献   

2.
植物响应镉胁迫的生理生化机制研究进展   总被引:2,自引:0,他引:2  
安婷婷  黄帝  王浩  张一  陈应龙 《植物学报》2021,56(3):347-362
镉(Cd)是一种分布广泛且污染严重的重金属;其毒性大,不仅影响植物的生长发育,而且危害人类健康。该文对植物Cd胁迫的生理生化响应方面的最新研究进展进行了总结概括。从植物光合系统、活性氧、活性氮、抗氧化防御系统、激素、钙信号、蛋白和基因等方面,概述了植物对Cd胁迫的响应及应答机制,探讨了植物对Cd胁迫响应机制的研究方向,...  相似文献   

3.
Rehm MM  Cline MG 《Plant physiology》1973,51(5):946-948
An angular position-sensing transducer was used to make continuous measurements of acid-induced elongation of Avena sativa coleoptile segments. Elongation rates at pH 4.5 (5 mm succinate buffer) were about 5-fold greater than those at pH 6.0. Buffered 0.1 mm abscisic acid produced a partial decrease of the growth rate. Pretreatments with abscisic acid buffered at pH 6.0 usually caused a further reduction of the elongation response when the coleoptile segments were subsequently placed in buffer at pH 4.5 containing abscisic acid. Abscisic acid did not completely prevent the pH effect in any of these experiments, and the brief latent period of the pH response was not affected by abscisic acid treatments. At pH 4.5, where the inhibitory effect of ABA was maximum, low pH-induced elongation was also inhibited by KCN and HgCl2. These results suggest that pH-(4.5) induced elongation in this system may be dependent on some metabolic processes and that abscisic acid-induced inhibition of this elongation may involve an interaction with these processes.  相似文献   

4.
5.
用(+)ABA及其两种RCA系列类似物(RCA.7a,RCA.7b)处理从玉米黄化芽提取的离体线粒体,三者均能促进线粒体上异柠檬酸脱氢酶(ICDH)的活性,另外,(+)ABA、RCA.7A及RCA.7b分子都有一个环己烯酮环(cyclohexenonering),差别仅在侧链的不同,这提示,此环己烯酮环是ABA表现此种促进作用所必需的。(+)ABA处理离体线粒体之前,先经抗ABA结合蛋白的抗体(anti-ABBPPAbs)处理,则(+)ABA促进ICDH活性的效应被显著抑制。暗示,线粒体上可能存在具有受体功能的ABA结合位点。  相似文献   

6.
7.
Age-related Changes in Stomatal Response to Cytokinins and Abscisic Acid   总被引:2,自引:0,他引:2  
Kinetin and zeatin(100 mmol m–3)reversald the ABA-mediated(100mmol m-2)closure of stomata of young maize leaves but did notaffect stomatal apertures of these leaves when applied alone.As leaves aged, kinetin or zeatin alone promoted increased stomatalapertures, while abscisic acid (ABA) applied alone had a reducedeffect on stomata. Even with older leaves, cytokinins reversadthe effect of ABA on stomata. Maize, stomata, abscisic acid, kineusc, zeatin, Zea mays  相似文献   

8.
To better understand abscisic acid (ABA) regulation of the synthesis of chloroplast proteins in maize (Zea mays L.) in response to drought and light, we compared leaf proteome differences between maize ABA-deficient mutant vp5 and corresponding wild-type Vp5 green and etiolated seedlings exposed to drought stress. Proteins extracted from the leaves of Vp5 and vp5 seedlings were used for two-dimensional electrophoresis (2-DE) and subsequent matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). After Coomassie brilliant blue staining, approximately 450 protein spots were reproducibly detected on 2-DE gels. A total of 36 differentially expressed protein spots in response to drought and light were identified using MALDI-TOF MS and their subcellular localization was determined based on the annotation of reviewed accession in UniProt Knowledgebase and the software prediction. As a result, corresponding 13 proteins of the 24 differentially expressed protein spots were definitely localized in chloroplasts and their expression was in an ABA-dependent way, including 6 up-regulated by both drought and light, 5 up-regulated by drought but down-regulated by light, 5 up-regulated by light but down-regulated by drought; 5 proteins down-regulated by drought were mainly those involved in photosynthesis and ATP synthesis. Thus, the results in the present study supported the vital role of ABA in regulating the synthesis of drought- and/or light-induced proteins in maize chloroplasts and would facilitate the functional characterization of ABA-induced chloroplast proteins in C4 plants.  相似文献   

9.
外源ABA可使谷子胚性愈伤组织生长减缓,使正常胚性愈伤组织在NaCl胁迫下与耐盐胚性愈伤组织的生长差异消失,脯氨酸含量在无NaCl或1%NaCl胁迫下分别提高140%和9.3%,而可溶蛋白含量均下降,并有新的SDS电泳蛋白质带(90KD)出现,过氧化物酶活性及SOD活性也均增高。  相似文献   

10.
Physiological Response of Maize to Arsenic Contamination   总被引:4,自引:0,他引:4  
The objective of the study was to investigate the effect of As on some physiological parameters of maize in the early growth phases. Seedlings grown in a climatic box in a Hoagland-Arnon nutrient solution were treated with 0, 2 and 5 mg(As) dm−3 (pH 5.5). After 5 d of As treatment the changes in growth, leaf gas-exchange, chlorophyll (Chl) content, Chl fluorescence, peroxidase activity and lipid peroxidation in roots were recorded. The applied As decreased the growth, leaf area, and biomass accumulation, induced lipid peroxidation and increased peroxidase activity, especially at concentration 5 mg(As) dm−3. It also decreased the Chl, carotenoid (Car) and protein contents. A decrease in the variable to maximum fluorescence ratio (Fv/Fm) indicated lower photosynthetic efficiency. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
NO参与玉米幼苗对盐胁迫的应答   总被引:1,自引:0,他引:1  
以玉米幼苗为材料,研究盐胁迫下其內源NO含量、NR和NOS活性的变化;NOS专一性抑制剂L-NAME和NR非专一性抑制剂NaN3对玉米幼苗內源NO含量的影响;利用激光共聚焦显微技术观测盐胁迫下玉米幼苗根部NO含量的变化及其分布特点。结果表明,盐胁迫下玉米幼苗根尖和叶片中NO含量有猝发现象,NOS活性也随之显著提高,NR活性则显著降低;L-NAME或NaN3均可降低盐胁迫所引起的玉米幼苗NO水平的增加,L-NAME对NO含量的影响比NaN3更显著。推测,NO参与玉米幼苗对盐胁迫的应答,NOS途径是盐胁迫下玉米幼苗內源NO合成的主要途径。  相似文献   

12.
Plant Molecular Biology Reporter - Plant stress hormone ABA (abscisic acid) is induced by unfavorable environmental conditions such as drought, salt, oxidative, and cold stresses and leads to a...  相似文献   

13.
玉米黄化幼苗生理生化特性的研究   总被引:1,自引:0,他引:1  
以玉米品种'户单26'为材料,研究了黑暗条件下生长的玉米黄化幼苗内光合色素、可溶性蛋白含量和抗氧化酶活性的动态变化.结果表明,与正常条件下生长的对照组相比,黄化幼苗的叶绿素a、叶绿素b和类胡萝卜素含量均明显降低,特别是叶绿素a含量大幅度降低;黄化幼苗的抗氧化酶SOD、POD和CAT活性显著提高,可溶性蛋白含量也显著增加.研究发现,黑暗条件下的玉米幼苗叶绿素a的合成受到了显著影响而表现出黄化现象,黄化幼苗能主动提高其自身抗氧化酶活性和可溶性蛋白含量,减轻黑暗逆境对植物细胞的伤害.  相似文献   

14.
Effects of salicylic acid and Fusarium moniliformeon trypsin inhibitor activity, lectin activity, lectin carbohydrate specificity, and salicylic acid content in maize seedlings were studied. Changes in trypsin inhibitor activity, lectin activity, and the content of endogenous salicylic acid after administration of exogenous salicylic acid or a pathogen were shown to depend on the resistance of maize strains to Fusarium. The data suggest that salicylic acid is involved in the induction of trypsin and lectin inhibitors that are important in the formation of defenses against abiotic and biotic factors in maize sprouts.  相似文献   

15.
Parker KE  Briggs WR 《Plant physiology》1990,94(4):1763-1769
We have investigated the transport of tritiated indole-3-acetic acid (IAA) in intact, red light-grown maize (Zea mays) coleoptiles during gravitropic induction and the subsequent development of curvature. This auxin is transported down the length of gravistimulated coleoptiles at a rate comparable to that in normal, upright plants. Transport is initially symmetrical across the coleoptile, but between 30 and 40 minutes after plants are turned horizontal a lateral redistribution of the IAA already present in the transport stream occurs. By 60 minutes after the beginning of the gravitropic stimulus, the ratio of tritiated tracer auxin in the lower half with respect to the upper half is approximately 2:1. The redistribution of growth that causes gravitropic curvature follows the IAA redistribution by 5 or 10 minutes at the minimum in most regions of the coleoptile. Immobilization of tracer auxin from the transport stream during gravitropism was not detectable in the most apical 10 millimeters. Previous reports have shown that in intact, red light-grown maize coleoptiles, endogenous auxin is limiting for growth, the tissue is linearly responsive to linearly increasing concentrations of small amounts of added auxin, and the lag time for the stimulation of straight growth by added IAA is approximately 8 or 9 minutes (TI Baskin, M Iino, PB Green, WR Briggs [1985] Plant Cell Environ 8: 595-603; TI Baskin, WR Briggs, M Iino [1986] Plant Physiol 81: 306-309). We conclude that redistribution of IAA in the transport stream occurs in maize coleoptiles during gravitropism, and is sufficient in degree and timing to be the immediate cause of gravitropic curvature.  相似文献   

16.
The pyrabactin resistance 1 (PYR1)/PYR1-like (PYL)/regulatory component of abscisic acid (ABA) response (RCAR) proteins comprise a well characterized family of ABA receptors. Recent investigations have revealed two subsets of these receptors that, in the absence of ABA, either form inactive homodimers (PYR1 and PYLs 1–3) or mediate basal inhibition of downstream target type 2C protein phosphatases (PP2Cs; PYLs 4–10) respectively in vitro. Addition of ABA has been shown to release the apo-homodimers yielding ABA-bound monomeric holo-receptors that can interact with PP2Cs; highlighting a competitive-interaction process. Interaction selectivity has been shown to be mediated by subtle structural variations of primary sequence and ligand binding effects. Now, the dynamical contributions of ligand binding on interaction selectivity are investigated through extensive molecular dynamics (MD) simulations of apo and holo-PYR1 in monomeric and dimeric form as well as in complex with a PP2C, homology to ABA insensitive 1 (HAB1). Robust comparative interpretations were enabled by a novel essential collective dynamics approach. In agreement with recent experimental findings, our analysis indicates that ABA-bound PYR1 should efficiently bind to HAB1. However, both ABA-bound and ABA-extracted PYR1-HAB1 constructs have demonstrated notable similarities in their dynamics, suggesting that apo-PYR1 should also be able to make a substantial interaction with PP2Cs, albeit likely with slower complex formation kinetics. Further analysis indicates that both ABA-bound and ABA-free PYR1 in complex with HAB1 exhibit a higher intra-molecular structural stability and stronger inter-molecular dynamic correlations, in comparison with either holo- or apo-PYR1 dimers, supporting a model that includes apo-PYR1 in complex with HAB1. This possibility of a conditional functional apo-PYR1-PP2C complex was validated in vitro. These findings are generally consistent with the competitive-interaction model for PYR1 but highlight dynamical contributions of the PYR1 structure in mediating interaction selectivity suggesting added degrees of complexity in the regulation of the competitive-inhibition.  相似文献   

17.
Application of abscisic acid (ABA) to dark-grown wheat (Triticumaestivum L.) roots interfered the cell wall hardening of coleoptilesduring several days of the treatment. Although the amounts ofwall-bound diferulic (DFA) and ferulic (FA) acids in coleoptilesincreased as the coleoptiles grew, ABA substantially reducedtheir increases. When ABA was removed, however, these contentsincreased and reached levels near those of control coleoptiles.A close correlation was observed between the levels of DFA andFA and the mechanical properties of cell walls. The ratio ofthe amount of DFA to FA was almost constant irrespective ofgrowth conditions. The activities of phenylalanine- (PAL) andtyrosine-ammonia-Iyase (TAL) increased rapidly in the controlcoleoptiles. ABA greatly reduced the increases in these enzymeactivities. In response to ABA removal, the enzyme activitiesincreased rapidly. There was a close correlation between theincrease in FA level and the changes in enzyme activities. Theseresults suggest that ABA suppresses the increases in PAL andTAL activities in wheat coleoptiles, resulting in the reducedlevel of wall-bound FA, which, in turn, may cause the reducedDFA level and thereby maintain cell wall extensibility. (Received January 10, 1997; Accepted April 22, 1997)  相似文献   

18.
Ethylene and abscisic acid (ABA) act synergistically or antagonistically to regulate plant growth and development. ABA is derived from the carotenoid biosynthesis pathway. Here, we analyzed the interplay among ethylene, carotenoid biogenesis, and ABA in rice (Oryza sativa) using the rice ethylene response mutant mhz5, which displays a reduced ethylene response in roots but an enhanced ethylene response in coleoptiles. We found that MHZ5 encodes a carotenoid isomerase and that the mutation in mhz5 blocks carotenoid biosynthesis, reduces ABA accumulation, and promotes ethylene production in etiolated seedlings. ABA can largely rescue the ethylene response of the mhz5 mutant. Ethylene induces MHZ5 expression, the production of neoxanthin, an ABA biosynthesis precursor, and ABA accumulation in roots. MHZ5 overexpression results in enhanced ethylene sensitivity in roots and reduced ethylene sensitivity in coleoptiles. Mutation or overexpression of MHZ5 also alters the expression of ethylene-responsive genes. Genetic studies revealed that the MHZ5-mediated ABA pathway acts downstream of ethylene signaling to inhibit root growth. The MHZ5-mediated ABA pathway likely acts upstream but negatively regulates ethylene signaling to control coleoptile growth. Our study reveals novel interactions among ethylene, carotenogenesis, and ABA and provides insight into improvements in agronomic traits and adaptive growth through the manipulation of these pathways in rice.  相似文献   

19.
The exogenous application of hormones has led to their implication in a number of processes within the plant. However, proof of their function in vivo depends on quantitative data demonstrating that the exogenous concentration used to elicit a response leads to tissue hormone levels within the physiological range. Such proof is often lacking in many investigations. We are using abscisic acid (ABA)-induced turion formation in Spirodela polyrrhiza L. to investigate the mechanism by which a hormone can trigger a morphogenic switch. In this paper, we demonstrate that the exogenous concentration of ABA used to induce turions leads to tissue concentrations of ABA within the physiological range, as quantified by both enzyme-linked immunosorbent assay and high-performance liquid chromatography/gas chromatography-electron capture detection analysis. These results are consistent with ABA having a physiological role in turion formation, and they provide an estimate of the changes in endogenous ABA concentration required if environmental effectors of turion formation (e.g. nitrate deficiency, cold) act via an increased level of ABA. In addition, we show that the (+)- and (-)-enantiomers of ABA are equally effective in inducing turions. Moreover, comparison of the ABA; levels attained after treatment with (+)-, (-)-, and ([plus or minus])-ABA and their effect on turion induction and comparison of the effectiveness of ABA on turion induction under different pH regimes suggest that ABA most likely interacts with a plasmalemma-located receptor system to induce turion formation.  相似文献   

20.
The Role of Endogenous Abscisic Acid in the Response of Plants to Stress   总被引:10,自引:1,他引:10  
When a continuous stream of warm air (38°C) was directedon to the leaves of dwarf bean seedlings they wilted and thengradually regained turgor. This process of adaptation was accompaniedby an increasing abscisic acid (ABA) level in the leaves andan increase in leaf resistance (RL). It is suggested that theleaf-water deficit induced by the warm-air treatment causedthe increase in ABA level and that the latter was responsiblefor stimulating stomatal closure, enabling the plants to regainfull turgor. A similar type of adaptation, brought about byan increased level of ABA in the leaves, is believed to occurin tomato, dwarf bean, and wheat plants when they are flooded.Predictably, in rice, a species adapted to a flooded environment,seedlings showed no increase in ABA level as a result of flooding. It is proposed that adaptation may involve the formation ofan equilibrium between ABA and its conjugate form (i. e. theglucose ester). The ABA-conjugate was observed to disperse slowlyfrom leaves recovering from a water deficit and therefore itmay act as a metabolic ‘back-stop’, enabling the‘free’ ABA level to remain high for a period evenwhen the leaves have regained turgor. Abscisic acid appears to be responsible for alleviating theeffects of water stress in plants, making it possible for plantsto pass through periods of stress with little harm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号