首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Uteroferrin, an acid phosphatase with a spin-coupled and redox-active binuclear iron center, is paramagnetic in its pink, enzymatically active, mixed-valence (S = 1/2) state. Phosphate, a product and inhibitor of the enzymatic activity of uteroferrin, converts the pink, EPR-active form of the protein to a purple, EPR-silent species. In contrast, molybdate, a tetrahedral oxyanion analog of phosphate, transforms the EPR spectrum of uteroferrin from a rhombic to an axial form. With both electron spin echo envelope modulation (ESEEM) and electron nuclear double resonance (ENDOR) spectroscopies, we observe a hyperfine interaction of [95Mo]molybdate with the S = 1/2, Fe(II)-Fe(III) center of the protein. A pair of 95Mo resonances centered at the 95Mo Larmor frequency at the applied magnetic field and separated by a hyperfine coupling constant of 1.2 MHz is evident. Therefore, a single monomeric species of molybdate is close to, and likely a ligand of, the binuclear cluster. 1H ENDOR studies on uteroferrin reveal at least six sets of lines mirrored about the 1H Larmor frequency. Two pairs of these lines become reduced in intensity when the protein is exchanged against D2O. Moreover, ESEEM and 2H ENDOR spectra display resonances at the 2H Larmor frequency. Therefore, the metal-binding region of the protein is accessible to solvent. Additional deuterium lines observable by ESEEM spectroscopy provide evidence for a population of strongly coupled, readily exchangeable protons associated with the binuclear center. The measured hyperfine coupling constants for these deuterons are orientation-dependent with splittings of nearly 4 MHz at g3 = 1.59 and less than 1 MHz at g1 = 1.94. In the presence of molybdate, ESEEM spectra of D2O-exchanged samples reveal a resonance at the 2H Larmor frequency, with no evidence of spectral components due to strongly coupled deuterons. 1H ENDOR studies of the uteroferrin-molybdate complex show at least seven pairs of lines, mirrored about the 1H Larmor frequency, of which one pair becomes attenuated in amplitude upon deuteration. The active site thus remains accessible to solvent in the presence of molybdate.  相似文献   

2.
The Mo(V) center of plant sulfite oxidase from Arabidopsis thaliana (At-SO) has been studied by continuous wave and pulsed EPR methods. Three different Mo(V) EPR signals have been observed, depending on pH and the technique used to generate the Mo(V) oxidation state. At pH 6, reduction by sulfite followed by partial reoxidation with ferricyanide generates an EPR spectrum with g-values similar to the low-pH (lpH) form of vertebrate SOs, but no nearby exchangeable protons can be detected. On the other hand, reduction of At-SO with Ti(III) citrate at pH 6 generates a Mo(V) signal with large hyperfine splittings from a single exchangeable proton, as is typically observed for lpH SO from vertebrates. Reduction of At-SO with sulfite at high pH generates the well-known high-pH (hpH) signal common to all sulfite oxidizing enzymes. It is proposed that, depending on the conformation of Arg374, the active site of At-SO may be in "closed" or "open" forms that differ in the degree of accessibility of the Mo center to substrate and water molecules. It is suggested that at low pH the sulfite-reduced At-SO has coordinated sulfate and is in the "closed form". Reoxidation to Mo(V) by ferricyanide leaves bound sulfate trapped at the active site, and consequently, there are no ligands with exchangeable protons. Reduction with Ti(III) citrate injects an electron directly into the active site to generate the [Mo(V)[triple bond]O(OH)]2+ unit that is well-known from model chemistry and which has a single exchangeable proton with a large isotropic hyperfine interaction. At high pH, the active site is in the "open form", and water can readily exchange into the site to generate the hpH SO.  相似文献   

3.
Pyrococcus furiosus ferredoxin contains a single [4Fe-4S] that exists in both S = 1/2 (20%) and S = 3/2 (80%) ground states in the reduced protein. We report here on the temperature-dependent potentiometric properties of the two spin forms, their stability, and on the structural features that differentiate them. The midpoint potential (Em) of the cluster in either spin state was determined at -365 mV (30 degrees C, pH 8.0). By rapidly freezing samples for EPR analyses, it was shown that the Em values of both spin states appear to change by -1.7 mV/degrees C over the range 20 degrees-80 degrees C, and by -6 mV/degrees C between 80 and 89 degrees C. The Em values and the relative amounts of the S = 1/2 and S = 3/2 forms of the cluster were unaffected by pH (6.8-10.5), even at 85 degrees C, and were unchanged by the presence of NaCl (1.0 M), sodium dodecyl sulfate (10%, w/v) or ethylene glycol (50%, v/v), even at 80 degrees C. The S = 1/2 form of the [4Fe-4S]+ cluster was found to exhibit a strongly coupled 1H ENDOR resonance (A = 22 MHz) that was exchangeable with the solvent. Such a large coupling has not been observed in any other iron-sulfur protein. Since a unique feature of this 4Fe-ferredoxin is that only 3 cysteinyl residues appear to be coordinated to the [4Fe-4S] cluster, the ENDOR data are consistent with an H2O molecule being a ligand to the unique Fe site. The S = 3/2 form of the [4Fe-4S]+ cluster exhibited a similar, strongly coupled 1H ENDOR resonance, but in this spin state it was not exchangeable with the solvent. This suggests that the [4Fe-4S]+ cluster exhibiting the S = 3/2, but not the S = 1/2 ground state, is "shielded" from the solvent, presumably by neighboring amino acid residues. In view of the pH dependence of the midpoint potential of the two spin states, the fourth ligand to the cluster and the source of the strongly coupled 1H ENDOR resonance is probably an OH- rather than H2O molecule.  相似文献   

4.
R C Holz  M L Alvarez  W G Zumft  D M Dooley 《Biochemistry》1999,38(34):11164-11171
1H NMR spectra of the CuA center of N2OR from Pseudomonas stutzeri, and a mutant enzyme that contains only CuA, were recorded in both H2O- and D2O-buffered solution at pH 7.5. Several sharp, well-resolved hyperfine-shifted 1H NMR signals were observed in the 60 to -10 ppm chemical shift range. Comparison of the native and mutant N2OR spectra recorded in H2O-buffered solutions indicated that several additional signals are present in the native protein spectrum. These signals are attributed to a dinuclear copperII center. At least two of the observed hyperfine-shifted signals associated with the dinuclear center, those at 23.0 and 13.2 ppm, are lost upon replacement of H2O buffer with D2O buffer. These data indicate that at least two histidine residues are ligands of a dinuclear CuII center. Comparison of the mutant N2OR 1H NMR spectra recorded in H2O and D2O indicates that three signals, c (27.5 ppm), e (23.6 ppm), and i (12.4 ppm), are solvent exchangeable. The two most strongly downfield-shifted signals (c and e) are assigned to the two N epsilon 2H (N-H) protons of the coordinated histidine residues, while the remaining exchangeable signal is assigned to a backbone N-H proton in close proximity to the CuA cluster. Signal e was found to decrease in intensity as the temperature was increased, indicating that proton e resides on a more solvent-exposed histidine residue. One-dimensional nOe studies at pH 7.5 allowed the histidine ring protons to be definitively assigned, while the remaining signals were assigned by comparison to previously reported spectra from CuA centers. The temperature dependence of the observed hyperfine-shifted 1H NMR signals of mutant N2OR were recorded over the temperature range of 276-315 K. Both Curie and anti-Curie temperature dependencies are observed for sets of hyperfine-shifted protons. Signals a and h (cysteine protons) follow anti-Curie behavior (contact shift increases with increasing temperatures), while signals b-g, i, and j (histidine protons) follow Curie behavior (contact shift decreases with increasing temperatures). Fits of the temperature dependence of the observed hyperfine-shifted signals provided the energy separation (Delta EL) between the ground (2B3u) and excited (2B2u) states. The temperature data obtained for all of the observed hyperfine-shifted histidine ligand protons provided a Delta EL value of 62 +/- 35 cm-1. The temperature dependence of the observed cysteine C beta H and C alpha H protons (a and h) were fit in a separate experiment providing a Delta EL value of 585 +/- 125 cm-1. The differences between the Delta EL values determined by 1H NMR spectroscopy and those determined by EPR or MCD likely arise from coupling between relatively low-frequency vibrational states and the ground and excited electronic states.  相似文献   

5.
Histidine C-2 proton resonances in rhesus monkey carbonic anhydrase B (carbonate hydro-lyase, EC 4.2.1.1) and bovine carbonic anhydrase were investigated using 270-MHz proton magnetic resonance. The results suggest that there are extensive three-dimensional homologies between the human B and rhesus B enzymes and between the human C and bovine enzymes. Resonances from solvent exchangeable protons have been observed in the 11-16 ppm range in the NMR spectra of human carbonic anhydrases B and C and bovine carbonic anhydrase. Up to five of these are sensitive to changes of pH and the presence of inhibitors. Three of these resonances are assigned to NH protons of the metal coordinated imidazole groups. These results are discussed in relation to various models for the catalytic mechanism of carbonic anhydrase.  相似文献   

6.
The 250-MHz high-resolution proton magnetic resonance spectra of gramicidin-S in solution in deuterated methanol, deuterated ethylene glycol, and binary mixtures of these solvents have been recorded. Starting from previously published partial assignments for deuterated methanol solution, the solvent transition yields partial assignments in deuterated ethylene glycol solution. In the latter the rotational correlation time for the peptide backbone, tauc, is calculated to be 14 ns at 25 degrees C. The long tauc leads to proton spin relaxation behavior that mimics that of moderate-sized proteins in water, and yields negative nuclear Overhauser effects, which have been measured for the protons of the phenylalanine ring. The results suggest that there is rapid and efficient spin-diffusion within closely-connected "islands" of protons, and less efficient spin-diffusion between islands. The results are compatible with the accepted solution conformation of gramicidin-S.  相似文献   

7.
In this study we report on thus-far unobserved proton hyperfine couplings in the well-known EPR signals of [NiFe] hydrogenases. The preparation of the enzyme in several highly homogeneous states allowed us to carefully re-examine the Ni(u)*, Ni(r)*, Ni(a)-C* and Ni(a)-L* EPR signals which are present in most [NiFe] hydrogenases. At high resolution (modulation amplitude 0.57 G), clear indications for hyperfine interactions were observed in the g(z) line of the Ni(r)* EPR signal. The hyperfine pattern became more pronounced in 2H2O. Simulations of the spectra suggested the interaction of the Ni-based unpaired electron with two equivalent, non-exchangeable protons (A1,2=13.2 MHz) and one exchangeable proton (A3=6.6 MHz) in the Ni(r)* state. Interaction with an exchangeable proton could not be observed in the Ni(u)* EPR signal. The identity of the three protons is discussed and correlated to available ENDOR data. It is concluded that the NiFe centre in the Ni(r)* state contains a hydroxide ligand bound to the nickel, which is pointing towards the gas channel rather than to iron.  相似文献   

8.
Electron nuclear double resonance (ENDOR) spectroscopy is used to probe the coordination of the mixed valence (Fe(II).Fe(III)) diiron cluster of the methane monooxygenase hydroxylase component (MMOH-) isolated from Methylosinus trichosporium OB3b. ENDOR resonances are observed along the principal axis directions g1 = 1.94 and g3 = 1.76 from at least nine different protons and two different nitrogens. The nitrogens are strongly coupled and appear to be directly coordinated to the cluster irons. The ratio of their superhyperfine coupling constants is roughly 4:7, which equals the ratio of the spin expectation values of the Fe(II) and Fe(III) in the ground state and suggests that at least one nitrogen is coordinated to each iron of the mixed valence cluster. Moreover, the superhyperfine and quadrupole coupling constants assigned to the Fe(III) site (AN = 13.6 MHz, PN = 0.7 MHz) are comparable with those observed for semimethemerythrin sulfide (AN = 12.1 MHz, PN = 0.7 MHz), for which the nitrogen ligands are histidines. At least three of the coupled protons exchange slowly when MMOH- is incubated in D2O, and 2H ENDOR resonances are subsequently observed. These observations are also consistent with histidine ligation of the iron cluster. On addition of the inhibitor dimethyl sulfoxide (Me2SO) to MMOH- the EPR spectrum sharpens and shifts dramatically. Only one set of 14N ENDOR resonances is observed with frequencies equal to those assigned to the Fe(III)-histidine resonances of uncomplexed MMOH- suggesting that the nitrogen coordination to the Fe(II) site is altered or possibly lost in the presence of Me2SO. 2H ENDOR resonances are observed in the presence of d6-Me2SO indicating that the inhibitor Me2SO binds near or possibly to the diiron cluster. In contrast, no 2H ENDOR resonances are observed from d4-methanol upon addition to MMOH-. Thus, the changes observed in the EPR spectrum of MMOH- upon addition of methanol may result from binding to a site away from the diiron cluster or from bulk solvent effects on the protein structure.  相似文献   

9.
Cross-relaxation effects are demonstrated between the imino protons and other protons in yeast tRNAPhe and H2O. A detailed examination has been made of the observed relaxation rate of the proton resonance at 11.8 ppm from DSS as a function of the D2O content in the solvent. This result, as well as the size and number of observed nuclear Overhauser effects, suggests that dipolar magnetization transfer between solvent H2O, amino, imino, and other tRNA protons may dominate the relaxation processes of the imino protons at low temperature. At higher temperatures the observed relaxation rate is dominated by chemical exchange. The selective nuclear Overhauser effects are shown to be an important aid in resonance assignments. By these means we were able to identify tow protons from the wobble base pair GU4 at 11.8 ppm and 10.4 ppm.  相似文献   

10.
NMR studies of the interaction of chromomycin A3 with small DNA duplexes I   总被引:2,自引:0,他引:2  
1H and 31P NMR spectral analysis of a chromomycin/d(ATGCAT)2 complex provides strong evidence for a nonintercalative mode of drug binding. Investigation of the imino proton region of the duplex suggests a protection of one of the two guanine imino protons from fast exchange with the bulk water up to at least 45 degrees C by the drug. Subsequent one-dimensional nuclear Overhauser enhancement experiments place the exchangeable chromomycin chromophoric hydroxyl proton less than 0.45 nm from this guanine imino proton and the chromophore 7-methyl less than 0.45 from the internal thymine 6-proton and/or the guanine 8-proton. 1H two-dimensional NMR reveals that the duplex retains a right-handed B conformation but there are distortions at the TGC region of one chain and large deviations in the chemical shift of protons relative to the uncomplexed duplex in the other chain in the same TGC region. The data suggest that the chromomycin chromophore is oriented such that the hydrophilic side of the ring system is proximal to the helix center in the major groove near the TG region while the aromatic side of the ring is oriented away from the helix but is partially protected from the solvent by the aliphatic chain, which bends back over the two aromatic protons. Changes in the 31P spectrum of the duplex on binding of the drug are different from the effect of either actinomycin or netropsin on nucleic acid fragments.  相似文献   

11.
J Feigon  W A Denny  W Leupin  D R Kearns 《Biochemistry》1983,22(25):5930-5942
A variety of one-dimensional proton NMR methods have been used to investigate the properties of two synthetic DNA decamers, d(ATATCGATAT) and d(ATATGCATAT). These results, in conjunction with the results of two-dimensional NMR experiments, permit complete assignment of the base proton resonances. Low-field resonances were assigned by sequential "melting" of the A . T base pairs and by comparison of the spectra of the two decamers. Below 20 degree C spin-lattice relaxation is dominated by through-space dipolar interactions. A substantial isotope effect on the G imino proton relaxation is observed in 75% D2O, confirming the importance of the exchangeable amino protons in the relaxation process. A somewhat smaller isotope effect is observed on the T imino proton relaxation. At elevated temperatures spin-lattice relaxation of the imino protons is due to proton exchange with solvent. Apparent activation energies for exchange vary from 36 kcal/base pair for base pairs (3,8) to 64 kcal/mol for the most interior base pairs (5,6), indicating that disruption of part, or all, of the double helix contributes significantly to the exchange of the imino protons in these decamers. By contrast, single base pair opening events are the major low-temperature pathways for exchange from A X T and G X C base pairs in the more stable higher molecular weight DNA examined in other studies. The temperature dependence of the chemical shifts and line widths of certain aromatic resonances indicates that the interconversion between the helix and coil states is not in fast exchange below the melting temperature, Tm. Within experimental error, no differential melting of base pairs was found in either molecule, and both exhibited melting points Tm = 50-52 degrees C. Spin-spin and spin-lattice relaxation rates of the nonexchangeable protons (TH6, AH8, and AH2) are consistent with values calculated by using an isotropic rotor model with a rotational correlation time of 6 ns and interproton distances appropriate for B-family DNA. The faster decay of AH8 compared with GH8 is attributed to an interaction between the thymine methyl protons and the AH8 protons in adjacent adenines (5'ApT3'). The base protons (AH8, GH8, and TH6) appear to be located close (1.9-2.3 A) to sugar H2',2" protons.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
High-resolution proton nuclear magnetic resonance spectroscopy and nuclear Overhauser effects for the low-field exchangeable proton resonances of human normal adult hemoglobin in aqueous solvents are being used to confirm and extend the assignments of these resonances to specific protons at the intersubunit interfaces of the molecule. Most of these exchangeable proton resonances of human normal adult hemoglobin have been found to be absent in the spectra of isolated alpha or beta subunits. This finding indicates that they are specific spectral markers for the quaternary structure of the hemoglobin tetramer. Based on the nuclear Overhauser effect results, we have assigned the exchangeable proton resonance at +7.4 ppm downfield from H2O to the hydrogen-bonded proton between alpha 103(G10)His and beta 108(G10)Asn at the alpha 1 beta 1 interface. The nuclear Overhauser effect results have also confirmed the assignments of the exchangeable proton resonances at +9.4 and +8.2 ppm downfield from H2O previously proposed by workers in this laboratory based on a comparison of human normal adult hemoglobin and appropriate mutant hemoglobins. This independent confirmation of previously proposed assignments is necessary in view of the possible long-range conformational effects of single amino-acid substitutions in mutant hemoglobin molecules.  相似文献   

13.
Studies on the respiratory nitrate reductase (EC 1.7.99.4) from Escherichia coli K12 by electron-paramagnetic-resonance spectroscopy indicate that its molybdenum centre is comparable with that in other molybdenum-containing enzymes. Two Mo(V) signals may be observed; one shows interaction of Mo(V) with a proton exchangeable with the solvent and has: A (1H) 0.9-1.2mT; g1 = 1.999; g2=1.985; g3 = 1.964; gav. = 1.983. Molybdenum of both signal-giving species may be reduced with dithionite and reoxidized with nitrate.  相似文献   

14.
Hyperfine interactions (1H and 14N) with the paramagnetic Cu(II)-site obtained from frozen solutions of human and bovine erythrocyte superoxide dismutase (superoxide:superoxide oxidoreductase, EC 1.15.1.1) as well as from their derivatives produced by anion binding (N3-, CN-) and by depletion of the Zn(II) site were studied using electron nuclear double resonance (ENDOR) spectroscopy at about 15 K. Both interactions were found to be identical in human and bovine erythrocyte superoxide dismutase. In all compounds, an anisotropic, exchangeable 1H interaction with a nearly constant coupling value (approximately 3 MHz along g perpendicular ) was observed which is due to either histidine NH- or water protons. Other proton interactions were tentatively assigned to H beta 1 of His-44, H delta 2 of His-46 and to H beta 2 of His-44. Depletion of the Zn(II) site did not alter appreciably the pattern of the proton interactions. The 14N couplings of the native specimen indicated equivalent coordination, whereas Zn(II) depletion and CN- addition were found to produce either some or drastic inequivalences, respectively. For N3- addition to either the native or the Zn(II)-depleted sample only minor effects on the respective 14N coupling pattern were observed.  相似文献   

15.
Electron-nuclear double-resonance (ENDOR) spectra of protons coupled to molybdenum(V) in reduced xanthine oxidase samples have been recorded. Under appropriate conditions these protons may be studied without interference from protons coupled to reduced iron-sulfur centers. Spectra have been obtained for the molybdenum(V) species known as Rapid, Slow, Inhibited, and Desulfo Inhibited. Resonances corresponding to at least nine protons or sets of protons are observed for all four species, with coupling constants in the range 0.08-4 MHz. Most of these protons do not exchange when 2H2O is used as solvent. Additional protons giving couplings up to 40 MHz are also detected. These correspond to EPR-detectable protons studied in earlier work. The strongly coupled protons may be replaced by 2H, through appropriate use of 2H2O or of 2H-substituted substrates, with consequent disappearance of the 1H resonances. In most cases the corresponding 2H ENDOR features have also been observed. The nature of the various coupled protons is briefly discussed. Results permit specific conclusions to be drawn about the structures of the Inhibited and Desulfo Inhibited species. In particular, the data indicate that the aldehyde residue of the Inhibited species has been oxidized and that the four protons derived from the ethylene glycol molecule in the Desulfo Inhibited species are not all equivalent. Recent assignments [Edmondson, D.E., & D'Ardenne, S.C. (1989) Biochemistry 28, 5924-5930] of the weakly coupled protons in the latter species appear not to be soundly based. The possibility of obtaining more detailed structural information from the spectra is briefly considered.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
17.
The role of the protein shell in the formation of the hydrous ferric oxide core of ferritin is poorly understood. A VO2+ spin probe study was undertaken to characterize the initial complex of Fe2+ with horse spleen apoferritin (96% L-subunits). A competitive binding study of VO2+ and Fe2+ showed that the two metals compete 1:1 for binding at the same site or region of the protein. Curve fitting of the binding data showed that the affinity of VO2+ for the protein was 15 times that of Fe2+. Electron nuclear double resonance (ENDOR) measurements on the VO(2+)-apoferritin complex showed couplings from two nitrogen nuclei, tentatively ascribed to the N1 and N3 nitrogens of the imidazole ligand of histidine. The possibility that the observed nitrogen couplings are from two different ligands is not precluded by the data, however. A pair of exchangeable proton lines with a coupling of approximately 1 MHz is tentatively assigned to the NH proton of the coordinated nitrogen. A 30-40% reduction in the intensity of the 1H matrix ENDOR line upon D2O-H2O exchange indicates that the metal-binding site is accessible to solvent and, therefore, to molecular oxygen as well. The ENDOR data provide the first evidence for a principle iron(II)-binding site with nitrogen coordination in an L-subunit ferritin. The site may be important in Fe2+ oxidation during the beginning stages of core formation.  相似文献   

18.
The 1H nuclear magnetic resonance spectral characteristics of the cyano-Met form of Chironomus thummi thummi monomeric hemoglobins I, III and IV in 1H2O solvent are reported. A set of four exchangeable hyperfine-shifted resonances is found for each of the two heme-insertion isomers in the hyperfine-shifted region downfield of ten parts per million. An analysis of relaxation, exchange rates and nuclear Overhauser effects leads to assignments for all these resonances to histidine F8 and the side-chains of histidine E7 and arginine FG3. It is evident that in aqueous solution, the side-chain from histidine E7 does not occupy two orientations, as found for the solid state, rather the histidine E7 side-chain adopts a conformation similar to that of sperm whale myoglobin or hemoglobin A, oriented into the heme pocket and in contact with the bound ligand. Evidence is presented to show that the allosteric transition in the Chironomus thummi thummi hemoglobins arises from the "trans effect". An analysis of the exchange with bulk solvent of the assigned histidine E7 labile proton confirms that the group is completely buried within the heme pocket in a manner similar to that found for sperm whale cyano-Met myoglobin, and that the transient exposure to solvent is no more likely than in mammalian myoglobins with the "normal" distal histidine orientation. Finally, a comparison of solvent access to the heme pocket of the three monomeric C. thummi thummi hemoglobins, as measured from proton exchange rates of heme pocket protons, is made and correlated to binding studies with the diffusible small molecules such as O2.  相似文献   

19.
We present the results of studies of an aqueous sample of a highly {15N,2H} enriched protein, the SH3 domain from Fyn. Measurements of 1H relaxation and interactions between H2O solvent and exchangeable protons are given, as well as a method for increasing the effective longitudinal relaxation of solvent exchangeable proton resonances. The long-range isotope shifts are measured, for 1H and 15N, which arise due to perdeuteration. Simulations, which employed a 7 or 8 spin relaxation matrix analysis, were compared to the experimental data from a time series of 2D NOESY datasets for some resonances. The agreement between experiment and simulation suggest that, with this 1H dilute sample, relatively long mixing times (up to 1.2 s) can be used to detect specific dipolar interactions between amide protons up to about 7Å apart. A set of 155 inter-amide NOEs and 7 side chain NOEs were thus identified in a series of 3D HSQC-NOESY-HSQC experiments. These data, alone and in combination with previously collected restraints, were used to calculate sets of structures using X-PLOR. These results are compared to the available X-ray and NMR structures of the Fyn SH3 domain.  相似文献   

20.
The Mo(V) forms of the Tyr343Phe (Y343F) mutant of human sulfite oxidase (SO) have been investigated by continuous wave (CW) and variable frequency pulsed EPR spectroscopies as a function of pH. The CW EPR spectrum recorded at low-pH (∼6.9) has g-values similar to those known for the low-pH form of the native vertebrate SO (original lpH form); however, unlike the spectrum of original lpH SO, it does not show any hyperfine splittings from a nearby exchangeable proton. The detailed electron spin echo (ESE) envelope modulation (ESEEM) and pulsed electron-nuclear double resonance (ENDOR) experiments also did not reveal any nearby protons that could belong to an exchangeable ligand at the molybdenum center. These results suggest that under low-pH conditions the active site of Y343F SO is in the “blocked” form, with the Mo(V) center coordinated by sulfate. With increasing pH the EPR signal from the “blocked” form decreases, while a signal similar to that of the original lpH form appears and becomes the dominant signal at pH >9. In addition, both the CW EPR and ESE-detected field-sweep spectra reveal a considerable contribution from a signal similar to that usually detected for the high-pH form of native vertebrate SO (original hpH form). The nearby exchangeable protons in both of the component forms observed at high-pH were studied by the ESEEM spectroscopy. These results indicate that the Y343F mutation increases the apparent pKa of the transition from the lpH to hpH forms by ∼2 pH units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号