首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Exoprotease Activity of Two Marine Bacteria during Starvation   总被引:5,自引:7,他引:5       下载免费PDF全文
Exoprotease activity during 120 h of total energy and nutrient starvation was examined in two marine bacteria, Vibrio sp. strain S14 and Pseudomonas sp. strain S9. The activity was determined by spectrophotometric measurement of the rate of release of soluble color from an insoluble azure dye derivative of hide powder (hide powder azure). Starved cells of both strains (5 h for S14, and 4 or 24 h for S9) showed greater extracellular proteolytic activity than at the onset of starvation. The exoprotease activity of cells starved for longer periods of time then decreased, but was found to be present at significant levels throughout the starvation period studied (120 h). The accumulation of exoprotease activity in the bulk phase during starvation indicated that both strains constitutively excreted extracellular proteases. As deduced from experiments with chloramphenicol, de novo protein synthesis during starvation was required for the production and/or release of the exoproteases into the surrounding environment. The degradation of hide powder azure allowed an immediate increase in respiration rate, also by long-term-starved cells. This suggests that metabolic systems are primed to respond to the availability of substrates, allowing the cells to recover rapidly. The regulation of exoprotease activity was also studied and found to be different in the two strains. Casamino Acids repressed exoprotease activity in Pseudomonas sp. strain S9, whereas a mechanism similar to catabolite repression was found for Vibrio sp. strain S14 in that glucose repressed activity and cyclic AMP reversed this effect. The exoproteases appeared to be metalloproteinases because the addition of EDTA to cell-free starvation supernatants from both strains significantly inhibited the activity of the proteases.  相似文献   

2.
Starvation-Survival Physiological Studies of a Marine Pseudomonas sp.   总被引:24,自引:17,他引:7       下载免费PDF全文
Starved cultures of a marine Pseudomonas sp. showed a 99.9% decrease in viable cell count during the first 25 days of starvation, yet the culture maintained 105 viable cells per ml for over 1 year. The physiological responses of populations of a marine Pseudomonas sp. to nutrient starvation were observed for periods of up to 40 days. At various intervals during starvation, the numbers of total, viable, and respiring cells were determined within the cultures. The ATP content, endogenous respiration rate, uptake rates, and percent respiration for exogenous glucose and glutamate were determined throughout the starvation period to characterize the physiological changes in the cells. It was observed that, after initial adjustment periods, all parameters tested reached stabilized states after 18 to 25 days of starvation. The results indicate that the actively respiring subpopulation, rather than the viable or total cell numbers, is the most appropriate denominator for interpretation of observed activities on an individual cell basis.  相似文献   

3.
Initial Phases of Starvation and Activity of Bacteria at Surfaces   总被引:21,自引:14,他引:7       下载免费PDF全文
The activity of the hydrophilic Vibrio sp. strain DW1 and the hydrophobic Pseudomonas sp. strain S9, which both undergo starvation-induced responses, was examined at nutrient-enriched and nutrient-deficient interfaces. The initial period of response to a starvation regime (“dwarfing” phase) is a sequence of two processes: fragmentation and continuous size reduction of the fragmented cells. This dwarfing phase is also one of intense metabolic activity as supported by O2 uptake measurements of the endogenous metabolism and the use of inhibitors of the proton flow, the electron transport chain, and membrane-bound ATPase. Hydrophilic bacteria become even smaller at nutrient-deficient surfaces than in the liquid phase upon starvation, and this is reflected in a higher endogenous metabolism exhibited by surface-associated cells compared with those in the liquid phase. On the other hand, hydrophobic bacteria dwarfing at surfaces did not exhibit a greater size reduction and exhibited an endogenous metabolism that was only slightly higher than that of cells in the liquid phase. Bacterial scavenging of surface-localized nutrients is related to the degree of irreversible binding of dwarf and starved bacteria, which in turn may be related to the degree of cell surface hydrophobicity.  相似文献   

4.
The uptake of leucine by S14, an unidentified marine Gram-negative bacterium, was studied during a starvation period of 96 h. The S14 cells displayed two separate uptake systems with different affinities for leucine. The Km values of these systems were 0.76 μM and 20 μM, respectively. The time of exposure to starvation had a marked effect on both uptake systems, not by changing the affinity for leucine, but rather by altering the velocity of uptake (Vmax). A marked increase in the uptake capacity was noted for the high-affinity system, whereas the uptake velocity decreased for the low-affinity system. An osmotic shock treatment resulted in an almost complete loss of substrate binding activity. A gradual recovery of the leucine uptake subsequent to the osmotic shock was observed during a 72-h period of starvation. Separation of the osmotic shock supernatant by gel filtration revealed two proteins, 37 and 44 kDa in size, with leucine binding activity.  相似文献   

5.
Comparative microbial functions in the plant root zone were studied by evaluating rhizosphere-derivedPseudomonas andArthrobacter growth in chemostat culture and responses to root-exudate-related nutrients after varied starvation periods. These organisms were chosen to represent zymogenous and autochthonous microbes, respectively. In chemostat culture, thePseudomonas isolate showed increased energy charge and decreased populations with higher growth rates, whereas theArthrobacter had lower energy charge and cell population values which did not change appreciably with growth rate. The responses of these two types of organisms also differed with starvation. ThePseudomonas lost its ability to respire efficiently in the presence of several known root exudate components, whereas theArthrobacter isolate, in comparison, maintained a lower but more consistent ability to utilize these nutrients with increased starvation. TheArthrobacter also showed increased utilization of several substrates after starvation, suggesting its potential ability to function under restricted nutrient availability conditions. These results suggest thatPseudomonas-type organisms in the rhizosphere may best function in periods of more intense exudate release, whereas organisms of theArthrobacter- type may be more efficient at nutrient utilization during periods of lesser nutrient flux. Based on these data the rhizosphere-derivedPseudomonas isolate was considered to be an appropriate bacterium to use in more complex rhizosphere microcosm experiments where nutrient flux dynamics would be emphasized.  相似文献   

6.
The role of exogenous metabolites as putative signal molecules mediating and/or regulating the carbon starvation adaptation program in Vibrio sp. strain S14 was investigated. Addition of the stationary-phase supernatant extract (SSE) of Vibrio sp. strain S14 to logarithmic-phase cells resulted in a significant number of carbon starvation-induced proteins being up-regulated. Halogenated furanones, putative antagonists of acylated homoserine lactones (AHLs), inhibited the synthesis of proteins specifically induced upon carbon starvation. The effect of the furanone was the opposite of that caused by SSE with respect to the up- and down-regulation of protein expression, indicating that both the furanone and the putative signalling molecules were acting on the same regulatory pathway. Culturability was rapidly lost when Vibrio sp. strain S14 was starved in the presence of the furanone at a low concentration. The furanone also had a negative effect on the ability of carbon-starved cells to mount resistance against UV irradiation and hydrogen peroxide exposure. The SSE of Vibrio sp. strain S14 had the ability to provide cross-protection against the loss in viability caused by the furanone. We have further demonstrated that the SSE taken from low- as well as high-cell-density cultures of Vibrio sp. strain S14 induced luminescence in Vibrio harveyi. Taken together, the results in this report provide evidence that Vibrio sp. strain S14 produces extracellular signalling metabolites during carbon and energy starvation and that these molecules play an important role in the expression of proteins crucial to the development of starvation- and stress-resistant phenotypes.  相似文献   

7.
The chemotactic responses by starved cells of marine Vibrio sp. strain S14 differed from those elicited by cells that were not nutrient limited. The rate of chemotaxis at different concentrations of several attractants varied for starved and growing cells. Vibrio sp. strain S14 showed positive chemotaxis to leucine, valine, arginine, and glucose at the onset of energy and nutrient deprivation. A continued, though decreased, positive response was demonstrated fro leucine, arginine, and glucose at 10 h of starvation. Cells starved for 3 h displayed a stronger response to glucose than those starved for shorter or longer times. However, cells starved for 5 and 10 h responded more strongly to a lower concentration of glucose than did cells starved for 0 and 3 h. Starvation for 24 h elicited no measurable chemotaxis to leucine, arginine, or glucose. The motility decreased by over 95% in the cell population after 24 h of starvation, which resulted in a low sensitivity in the chemotaxis assay. A switch in the response to valine was observed by 3 h of starvation. The addition of nutrients of 22-h-starved cells elicited a temporary positive chemotactic response to leucine by 2 and 4 h of nutrient recovery, while cells at 1 and 6 h of recovery showed no response. At 2 h of recovery, the greatest response was recorded to 10−4 M leucine, whereas at 4 h it was to 10−2 M leucine. Ten to fifty percent of the 22-h-starved cell population regained their motility after 4 h of nutrient-aided recovery. It is possible that two types of chemosensory systems exist in marine bacteria. Starved and growing cells responded to different concentrations of the attractant, and growing cells displayed a saturated chemotactic system with leucine as the attractant, unlike the response during starvation.  相似文献   

8.
A budding coccoid bacterium, (CH1), a Vibrio sp. and a Pseudomonas sp. were investigated for factors governing their attachment to glass surfaces in static batch culture and laminar flow continuous culture systems. An analysis of variance showed that the three species exhibited very different responses. For CH1 attachment was dependent on cell density, incubation time and nutrient concentration. The Vibrio sp. was affected by nutrient concentration while the attachment of the Pseudomonas sp. was independent of cell density, incubation time and nutrient concentration. A comparison of attachment to hydrophilic and hydrophobic surfaces showed that attachment of the Vibrio sp. and CH1 to hydrophilic surfaces was 3 and 10 times greater respectively than to hydrophobic surfaces while Pseudomonas attached in equal numbers to both surfaces. The continuous culture system with defined flow hydrodynamics and growth conditions at steady state revealed a random sampling effect 3 times smaller than the batch culture system did. When the biofilm development of Pseudomonas sp. was followed during 46 h at different fluid shear under laminar and turbulent flow conditions, the former biofilm reached 3.3·108 cells·cm-2 and the latter 8.2·107 cells·cm-2.Non-common abbreviation NSS Nine salt solution  相似文献   

9.
Vibrio and Pseudomonas species have been shown to be part of the normal microbiota of Atlantic salmon (Salmo salar L.), with some strains causing disease in fish. The factors affecting their prevalence and persistence in the salmon gut, however, have not been well studied. In this study, we collected 340 Vibrio and 150 Pseudomonas isolates from the hindgut of farmed Tasmanian Atlantic salmon, fed with two commercially available diets. Samples were collected every 6–8 weeks between July 2011 and May 2012. Isolates from selective agar were initially identified using biochemical tests and confirmed using genus-specific primers and 16S ribosomal RNA (16S rRNA) sequencing. Random amplified polymorphic DNA (RAPD) PCR was used to type both Pseudomonas and Vibrio; the latter was further typed using a biochemical fingerprinting method (PhP-RV plates). We observed low species diversity with strains comprising Vibrio ichthyoenteri/Vibrio scophthalmi, Vibrio crassostreae/Vibrio splendidus, Aliivibrio finisterrensis, Photobacterium phosphoreum and Pseudomonas fragi. Out of 340 Vibrio isolates, 238 (70 %) belonged to 21 clonal types and were found predominantly during summer when water temperatures reached 15 to 21 °C. Of these, the four major clonal types were found in multiple samples (70 %). P. fragi, on the other hand, was only found during the colder water temperatures and belonged to 18 clonal types. The presence of both groups of bacteria and their clonal types were independent of the fish diets used, suggesting that the water temperature was the main factor of the prevalence and persistence of these bacteria in the gut of Atlantic salmon.  相似文献   

10.
Specificity of Octopine Uptake by Rhizobium and Pseudomonas Strains   总被引:6,自引:2,他引:4       下载免费PDF全文
The octopine-utilizing strain Agrobacterium tumefaciens B6S3 and three nonagrobacteria which had the capacity to utilize this opine were compared for octopine uptake. The characteristics of uptake by Rhizobium meliloti A3 and strain B6S3 were similar. In both bacteria, uptake activity was inducible by octopine and by the related opine octopinic acid, and competition assays showed that these two opine substrates were accepted by the same uptake system with an equivalent affinity. Cells of Pseudomonas putida 203 accumulated octopine against a concentration gradient, and this activity was induced specifically by octopine. While strain 203 did not utilize octopinic acid, a spontaneous mutant with a combined capacity for octopine and octopinic acid utilization was obtained. Both opines induced octopine uptake by this mutant, but octopinic acid was not a substrate for the induced system. Thus, the Pseudomonas uptake system exhibited a different specificity for octopine than the corresponding Agrobacterium system. The nonfluorescent pseudomonad GU187j, which utilized the three related opines octopine, octopinic acid, and nopaline, was constitutive for octopine uptake. Strain GU187j possessed a system which accepted these three opines, but not arginine or ornithine, with a similar affinity.  相似文献   

11.
The aim of the study was to characterise the diversity and niche-specific colonization of Vibrio spp. in a marine aquaria system by a cultivation-dependent approach. A total of 53 Vibrio spp. isolates were cultured from different ecological niches in a marine aquarium including microplastic (MP) and sandy sediment particles (12 weeks after added sterile to the system), detritus, and the surrounding aquarium water. Based on the 16S rRNA gene sequence phylogeny and multilocus sequence analysis (MLSA) the isolates were assigned to seven different phylotypes. Six phylotypes were identified by high probability to the species level. The highest phylotype diversity was cultured from detritus and water (six out of seven phylotypes), while only two phylotypes were cultured from MP and sediment particles. Genomic fingerprinting indicated an even higher genetic diversity of Vibrio spp. at the strain (genotype) level. Again, the highest diversity of genotypes was recovered from detritus and water while only few partially particle-type specific genotypes were cultured from MP and sediment particles. Phylotype V-2 formed an independent branch in the MLSA tree and could not be assigned to a described Vibrio species. Isolates of this phylotype showed highest 16S rRNA gene sequence similarity to type strains of Vibrio japonicus (98.5%) and Vibrio caribbeanicus (98.4%). A representative isolate, strain THAF100T, was characterised by a polyphasic taxonomic approach and Vibrio aquimaris sp. nov., with strain THAF100T (=DSM 109633T = LMG 31434T = CIP 111709T) as type strain, is proposed as novel species.  相似文献   

12.
1. The route of l-threonine degradation was studied in four strains of the genus Pseudomonas able to grow on the amino acid and selected because of their high l-threonine aldolase activity. Growth and manometric results were consistent with the cleavage of l-threonine to acetaldehyde+glycine and their metabolism via acetate and serine respectively. 2. l-Threonine aldolases in these bacteria exhibited pH optima in the range 8.0–8.7 and Km values for the substrate of 5–10mm. Extracts exhibited comparable allo-l-threonine aldolase activities, Km values for this substrate being 14.5–38.5mm depending on the bacterium. Both activities were essentially constitutive. Similar activity ratios in extracts, independent of growth conditions, suggested a single enzyme. The isolate Pseudomonas D2 (N.C.I.B. 11097) represents the best source of the enzyme known. 3. Extracts of all the l-threonine-grown pseudomonads also possessed a CoA-independent aldehyde dehydrogenase, the synthesis of which was induced, and a reversible alcohol dehydrogenase. The high acetaldehyde reductase activity of most extracts possibly resulted in the underestimation of acetaldehyde dehydrogenase. 4. l-Serine dehydratase formation was induced by growth on l-threonine or acetate+glycine. Constitutively synthesized l-serine hydroxymethyltransferase was detected in extracts of Pseudomonas strains D2 and F10. The enzyme could not be detected in strains A1 and N3, probably because of a highly active `formaldehyde-utilizing' system. 5. Ion-exchange and molecular exclusion chromatography supported other evidence that l-threonine aldolase and allo-l-threonine aldolase activities were catalysed by the same enzyme but that l-serine hydroxymethyltransferase was distinct and different. These results contrast with the specificities of some analogous enzymes of mammalian origin.  相似文献   

13.
The effects of mannitol were investigated by comparing some metabolic features in colonial derivatives, I-110 and L1-110, ofRhizobium japonicum strain 3IIb110, grown either on glucose alone (G-cells) or in glucose media supplemented with mannitol (GM-cells). The polyol stimulated the synthesis of not only mannitol dehydrogenase, which is active in derivative L1-110, but also the nicotinamide adenine dinucleotide (NAD)-linked 6-phosphogluconate (6-PG) dehydrogenase (EC 1.1.1.43). As revealed by radiorespirometry, when GM-cells were allowed to metabolize glucose, they produced relatively more CO2 from the first and sixth carbons of the sugar than G-cells did. This finding is evidence that NAD-linked 6-PG dehydrogenase might initiate an unknown pathway different from the hexose cycle and the pentose phosphate (PP) pathway. Mannitol exerted no allosteric control on the oxygen consumption and the glucose transport systems. Active uptake of the polyol was correlated with the presence of mannitol dehydrogenase (EC 1.1.1.67); it did not hinder the transport of glucose even though both systems derive their energy for active transport from a common source presumptively characterized as the energized membrane state. Mannitol, however, suppressed by two- or threefold the glucose uptake system. Addition of the polyol to the cell suspensions of both colonial types ofR. japonicum metabolizing glucose caused an immediate 40–50% drop of adenosine triphosphate (ATP) concentrations, owing in part to the mannitol kinase reaction. Type I-110 failed to overcome this reduction of ATP levels, and low growth rates could results. In contrast, type L1-110 offsets the reduction of ATP concentration by oxidizing mannitol as an additional source of energy through mannitol dehydrogenase, fructokinase, and a sequence of glycolytic reactions. The polyol also induced type L1-110 to produce extracellular slimy materials that, apparently, harbor amounts of ATP and proteins.  相似文献   

14.
To achieve high mannitol production by Lactococcus lactis, the mannitol 1-phosphatase gene of Eimeria tenella and the mannitol 1-phosphate dehydrogenase gene mtlD of Lactobacillus plantarum were cloned in the nisin-dependent L. lactis NICE overexpression system. As predicted by a kinetic L. lactis glycolysis model, increase in mannitol 1-phosphate dehydrogenase and mannitol 1-phosphatase activities resulted in increased mannitol production. Overexpression of both genes in growing cells resulted in glucose-mannitol conversions of 11, 21, and 27% by the L. lactis parental strain, a strain with reduced phosphofructokinase activity, and a lactate dehydrogenase-deficient strain, respectively. Improved induction conditions and increased substrate concentrations resulted in an even higher glucose-to-mannitol conversion of 50% by the lactate dehydrogenase-deficient L. lactis strain, close to the theoretical mannitol yield of 67%. Moreover, a clear correlation between mannitol 1-phosphatase activity and mannitol production was shown, demonstrating the usefulness of this metabolic engineering approach.  相似文献   

15.
The ultrastructure of leaf mesophyll cells of in vitro cultured Hypericum perforatum L. plants regenerated after cryopreservation was studied. Electron microscopy analysis revealed that the chloroplasts in plants pretreated with abscisic acid and regenerated after cryopreservation were round, with increased amount of starch, rather small volume of the thylakoid system, and destroyed envelope. Plants pretreated with 0.3 M mannitol and cooled at rates of 0.1 or 0.3 °C min?1 possessed chloroplasts with high starch content that resulted in a reduction of a membrane system. However, the pretreatment with 0.3 M mannitol and cooling at a rate of 0.2 °C min?1 was the best as chloroplast ultrastructure resembled the controls regenerated without cryopreservation.  相似文献   

16.
Growth on ethanesulfonic acid as the only sulfur source was found to occur in ten of the 14 green algae tested and in three of the ten cyanobacteria analyzed. Similar growth could not be demonstrated in the higher plant Lemna minor, or in tissue cultures of anise, sunflower and tobacco. Organisms growing on sulfonic acids as the only sulfur source developed an uptake system for ethanesulfonate found neither in algae growing on sulfate nor in algae unable to utilize sulfonic acids for growth. The development of sulfonate transport was not caused by substrate induction, but by conditions of sulfate starvation. The presence of this uptake system was always correlated with an increased sulfate-uptake capacity. Enhanced sulfate uptake was found in all S-deficient and sulfonate-grown cultures tested, indicating sulfate limitation as the regulatory signal. A lag period of 2–2.5 h after transfer to sulfate deprivation was needed for expression of both enhanced sulfate uptake and ethanesulfonate uptake in case of the green alga Chlorella fusca. It is speculated that the availability of sulfate (pool size) or a metabolic product in equilibrium with oxidized sulfur compounds (sulfate ester? sulfolipids?) controls sulfate and sulfonate uptake systems. The principle of (coordinated) derepression by starvation is discussed as a general strategy in photosynthetic organisms.  相似文献   

17.
Starvation-Survival Processes of a Marine Vibrio   总被引:23,自引:21,他引:2       下载免费PDF全文
Levels of DNA, RNA, protein, ATP, glutathione, and radioactivity associated with [35S]methionine-labeled cellular protein were estimated at various times during the starvation-survival process of a marine psychrophilic heterotrophic Vibrio sp., Ant-300. Values for the macromolecules were analyzed in terms of total, viable, and respiring cells. Electron micrographs (thin sections) were made on log-phase and 5.5-week-starved cells. On a per-cell basis, the levels of protein and DNA rapidly decreased until a constant level was attained. A second method in which radioactive sulfur was used for monitoring protein demonstrated that the cellular protein level decreased for approximately 2.5 weeks and then remained constant. An initial decrease in the RNA level with starvation was noted, but with time the RNA (orcinol-positive material) level increased to 2.5 times the minimum level. After 6 weeks of starvation, 45 to 60% of the cells remained capable of respiration, as determined by iodonitrotetrazolium violet-formazan granule production. Potential respiration and endogenous respiration levels fell, with an intervening 1-week peak, until at 2 weeks no endogenous respiration could be measured; respiratory potential remained high. The cell glutathione level fell during starvation, but when the cells were starved in the presence of the appropriate amino acids, glutathione was resynthesized to its original level, beginning after 1 week of starvation. The cells used much of their stored products and became ultramicrocells during the 6-week starvation-survival process. Ant-300 underwent many physiological changes in the first week of starvation that relate to the utilization or production of ATP. After that period, a stable pattern for long-term starvation was demonstrated.  相似文献   

18.
The levels of the oxidation enzyme methanol dehydrogenase and the serine pathway enzymes, hydroxypyruvate reductase, glycerate kinase, serine transhydroxymethylase, serine-glyoxylate aminotransferase, phosphoenolpyruvate carboxylase, and malyl-coenzyme A lyase, were studied in cells of the facultative methylotrophs Pseudomonas AM1, Pseudomonas 3A2 and Hyphomicrobium X grown on different substrates. Induction and dilution curves for these enzymes suggest they may be regulated coordinately in Hyphomicrobium X, but not in Pseudomonas AM1 or 3A2. Glyoxylate stimulated the serine transhydroxymethylase activity in methanol-grown cells of all three organisms. A secondary alcohol dehydrogenase activity was detected at low levels in Pseudomonas AM1 and Hyphomicrobium X, but not in Pseudomonas 3A2.  相似文献   

19.
A study was done of the pathways of nitrogen assimilation in the facultative methylotrophsPseudomonas MA andPseudomonas AM1, with ammonia or methylamine as nitrogen sources and with methylamine or succinate as carbon sources. When methylamine was the sole carbon and/or nitrogen source, both organisms possessed enzymes of the glutamine synthetase/glutamate synthase pathway, but when ammonia was the nitrogen sourcePseudomonas AM1 also synthesized glutamate dehydrogenase with a pH optimum of 9.0, andPseudomonas MA elaborated both glutamate dehydrogenase (pH optimum 7.5) and alanine dehydrogenase (pH optimum 9.0). Glutamate dehydrogenase and glutamate synthase from both organisms were solely NADPH-dependent; alanine dehydrogenase was NADH-dependent. No evidence was obtained for regulation of glutamine synthetase by adenylylation in either organism, nor did glutamine synthetase appear to regulate glutamate dehydrogenase synthesis.  相似文献   

20.
Experiments with youngHordeum sativum andHelianthus annus plants showed that in the excretion of mannitol in the guttation liquid observed byGroenewegen andMills (1960) after uptake by the root system of plants, the osmotic concentration of mannitol in the nutrient medium and the temperature are significant. The beginning of mannitol excretion during guttation is accelerated considerably by the increase of the osmotic concentration of mannitol in the nutrient medium and the rising temperature. The osmotic concentration of mannitol is also important for the duration of mannitol excretion in the guttation liquid after transfer of the plants into a nutrient medium without mannitol. In the presence of mannitol in the nutrient medium water uptake by the root system and growth are inhibited and the tissues of the organs above ground and of the root system are dehydrated. The inhibitory effect of mannitol on the water uptake by the root system is immediate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号