首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The flavin-containing monooxygenase (FMO) was purified from mouse lung microsomes. On SDS-PAGE, the purified enzyme separated as two bands, a major band of 58,000 daltons and a minor band of 59,000 daltons. Antibodies to mouse liver FMO cross-reacted with both bands in the purified preparations, whereas antibodies to rabbit lung FMO cross-reacted only with the major band. In microsomal preparations the major band was recognized by both antibodies, but neither antibody detected the minor band in microsomes. A cDNA encoding the pig liver FMO hybridized with mRNA isolated from mouse liver, kidney, and lung, whereas cDNA encoding the rabbit lung FMO hybridized only with mouse lung and kidney mRNA. Thermal stability studies showed that the FMO preparation purified from mouse lung consisted of a heat-stable and a heat-labile component. The heat-labile component of lung FMO was inhibited competitively by imipramine, whereas the heat-stable component was insensitive to the presence of imipramine. Immunoprecipitation of purified mouse lung FMO with anti-rabbit lung FMO completely removed the protein band reactive to anti-rabbit lung FMO while leaving reactivity to anti-liver FMO. The catalytic and immunochemical differences seen between FMO from rabbit lung and mouse lung appear to result from the expression of at least two forms of FMO in the mouse lung, one similar to the rabbit pulmonary form and one similar to the major mouse liver form of FMO.  相似文献   

2.
cDNA clones that code for a pig and human flavin-containing monooxygenase (FMO) have been isolated. The full-length sequence of the human cDNAs revealed that they encode a polypeptide of 532 amino acid residues containing putative FAD- and NADP-binding sites. The deduced amino acid sequence has 88 and 86% identity, respectively, with the pig and rabbit "hepatic" forms of FMO, but is only 58% similar to the rabbit "pulmonary" FMO, and thus represents the human ortholog of the "hepatic" form of FMO. However, as this FMO is present in low abundance in human adult liver, the general term "hepatic" for this form of the enzyme is misleading, and thus we propose the name FMO1 to describe this human FMO and its mammalian orthologs. Northern blot analysis demonstrated that human FMO1 mRNA is more abundant in fetal than in adult liver, indicating that in man the enzyme is subject to developmental regulation. Southern blot hybridization of human genomic DNA suggests that the protein is encoded by a single gene, which has been designated FMO1 and mapped to chromosome 1.  相似文献   

3.
An antibody to a UDP-glucuronosyltransferase (UDPGT) isoenzyme which catalyzes the glucuronidation of p-nitrophenol (PNP) in rabbit liver was raised in sheep and used to identify immunologically similar UDPGTs in rabbit and human livers. Immunoblotting experiments showed that the antisera specifically recognized PNP UDPGT but not estrone UDPGT purified from rabbit liver. Sheep anti-rabbit liver PNP UDPGT IgG immunoprecipitated PNP, 1-naphthol, and 4-methylumbelliferone glucuronidation activities in rabbit and human liver microsomal preparations. In rabbit liver microsomes the antibody did not immunoprecipitate estrone or estradiol glucuronidation activities. In human liver microsomes, 4-aminobiphenyl but not estriol glucuronidation activities were immunoprecipitated, suggesting that the antibody recognizes a specific UDPGT (pI 6.2) in human liver microsomes.  相似文献   

4.
The FAD-containing monooxygenase (FMO) has been purified from both mouse and pig liver microsomes by similar purification procedures. Characterization of the enzyme from these two sources has revealed significant differences in catalytic and immunological properties. The pH optimum of mouse FMO is slightly higher than that of pig FMO (9.2 vs. 8.7) and, while pig FMO is activated 2-fold by n-octylamine, mouse FMO is activated less than 20%. Compounds, including primary, secondary and tertiary amines, sulfides, sulfoxides, thiols, thioureas and mercaptoimidazoles were tested as substrates for both the mouse and pig liver FMO. Km- and Vmax-values were determined for substrates representative of each of these groups. In general, the mouse FMO had higher Km-values for all of the amines and disulfides tested. Mouse FMO had Km-values similar to those of pig FMO for sulfides, mercaptoimidazoles, thioureas, thiobenzamide and cysteamine. Vmax-values for mouse FMO with most substrates was approximately equal, indicating that as with pig FMO, breakdown of the hydroxyflavin is the rate limiting step in the reaction mechanism. Either NADPH or NADH will serve as an electron donor for FMO, however, NADPH is the preferred donor. Pig and mouse FMOs have similar affinity for NADPH (Km = 0.97 and 1.1 microM, respectively) and for NADH (Km = 48 and 73 microM, respectively). An antibody, prepared by immunizing rabbits with purified pig liver FMO, reacts with purified pig liver FMO but not with mouse liver FMO, indicating structural differences between these two enzymes. This antibody inhibited pig FMO activity up to 60%.  相似文献   

5.
The flavin monooxygenases (FMO) catalyse the NADPH and oxygen-dependent oxidation of a wide range of nucleophilic nitrogen-, sulfur-, phosphorus-, and selenium heteroatom-containing chemicals, drugs, and agricultural agents. In the present study, sheep liver microsomal FMO activity was determined by measuring the S-oxidation rate of methimazole and the average specific activity obtained from different microsomal preparations was found to be 3.8 +/- 1.5 nmol methimazole oxidized min(-1) mg(-1) microsomal protein (mean +/- SE, n = 7). The presence of 0.1% Triton X-100 in the reaction mixture caused an increase of specific sheep liver microsomal FMO activity towards methimazole to 6.1 +/- 1.4 nmol methimazole oxidized min(-1) mg(-1) microsomal protein (mean +/- SE, n = 6). Metabolism of imipramine and chlorpromazine was measured by following the oxidation of cofactor NADPH spectrophotometrically at 340 nm. Sheep liver microsomal FMO activity towards imipramine and chlorpromazine was found to be 10.7 and 12.3 nmol NADPH oxidized min(-1) mg(-1) microsomal protein, respectively. Characterization of sheep liver enzyme was carried out using methimazole as substrate and the maximum FMO enzyme activity was detected at 37 degrees C and at pH 8.0. The apparent K(m) value of sheep liver microsomal FMO for methimazole was 0.118 mM. Effects of the detergents Triton X-100, Cholate, and Emulgen 913, on FMO activity were determined and FMO activity was found to increase with the addition of detergents to the reaction medium. Sheep liver microsomal FMO-catalysed methimazole oxidation was inhibited by imipramine and chlorpromazine when these drugs were used at high concentrations. Western blot-immunochemical analysis revealed the presence of FMO3 in sheep liver microsomes.  相似文献   

6.
Inhibitory antibodies against NADPH-cytochrome P-450 reductase, detergent solubilization to dissociate functional interaction between the reductase and cytochrome P-450, and selective trypsin degradation have been used to characterize flavin-containing monooxygenase activity in microsomes from different tissues and species. A comparison of assay methods is reported. The native microsome-bound flavin-containing monooxygenase of mouse, rabbit, and rat liver, lung, and kidney can metabolize compounds containing thiol, sulfide, thioamide, secondary and tertiary amine, hydrazine, and phosphine substituents. Therefore, this enzyme from these common experimental animals has catalytic capabilities similar to those of the well-characterized porcine liver enzyme. True allosteric activation by n-octylamine does not appear to be a property of either the mouse, rabbit, or rat liver enzymes, but is a property of the pig liver and mouse lung enzymes. The microsomal pulmonary flavin-containing monooxygenase of the rabbit has some unique substrate preferences which differ from the mouse lung enzyme. Both the rabbit and mouse pulmonary enzymes have recently been shown to be distinct enzyme forms. However, the rat pulmonary flavin-containing monooxygenase appears to be catalytically identical to the rat liver enzyme, and does not have any of the unusual catalytic properties of either the rabbit or mouse lung enzymes. Enzyme activity of mouse, rabbit, and rat kidney microsomes is qualitatively similar to the hepatic activities. Substrates which saturate the microsome-bound flavin-containing monooxygenase at 1.0 mM, including thiourea, thioacetamide, methimazole, cysteamine, and thiobenzamide, are metabolized at common maximal velocities. This suggests that the kinetic mechanism of the native enzyme is similar to that established for the isolated porcine liver enzyme in that the rate-limiting step of catalysis occurs after substrate binding, and that all substrates capable of saturating the microsomal enzyme should be metabolized at a common maximal velocity.  相似文献   

7.
Cytochrome P-450j has been purified to electrophoretic homogeneity from hepatic microsomes of adult male rats administered ethanol and compared to the corresponding enzyme from isoniazid-treated rats. The enzymes isolated from ethanol- and isoniazid-treated rats have identical chromatographic properties, minimum molecular weights, spectral properties, peptide maps, NH2-terminal sequences, immunochemical reactivities, and substrate selectivities. Both preparations of cytochrome P-450j have high catalytic activity in aniline hydroxylation, butanol oxidation, and N-nitrosodimethylamine demethylation with turnover numbers of 17-18, 37-46, and 15 nmol product/min/nmol of P-450, respectively. A single immunoprecipitin band exhibiting complete identity was observed when the two preparations were tested by double diffusion analysis with antibody to isoniazid-inducible cytochrome P-450j. Ethanol- and isoniazid-inducible rat liver cytochrome P-450j preparations have also been compared and contrasted with cytochrome P-450 isozyme 3a, the major ethanol-inducible isozyme from rabbit liver. The rat and rabbit liver enzymes have slightly different minimum molecular weights and somewhat different peptide maps but similar spectral, catalytic, and immunological properties, as well as significant homology in their NH2-terminal sequences. Antibody to either the rat or rabbit isozyme cross-reacts with the heterologous enzyme, showing a strong reaction of partial identity. Antibody against isozyme 3a specifically recognizes cytochrome P-450j in immunoblots of induced rat liver microsomes. Aniline hydroxylation catalyzed by the reconstituted system containing cytochrome P-450j is markedly inhibited (greater than 90%) by antibody to the rabbit protein. Furthermore, greater than 85% of butanol or aniline metabolism catalyzed by hepatic microsomes from ethanol- or isoniazid-treated rats is inhibited by antibody against isozyme 3a. Results of antibody inhibition studies suggest that cytochrome P-450j is induced four- to sixfold by ethanol or isoniazid treatment of rats. All of the evidence presented in this study indicates that the identical cytochrome P-450, P-450j, is induced in rat liver by either isoniazid or ethanol, and that this isozyme is closely related to rabbit cytochrome P-450 isozyme 3a.  相似文献   

8.
9.
The type I iodothyronine deiodinase (ID-I) of liver is an important enzyme for the conversion of the prohormone thyroxine (T4) to the active thyroid hormone 3,3',5-triiodothyronine (T3). Because it is an integral membrane protein of low abundance, purification of ID-I from rat liver has proven to be difficult. We have analyzed ID-I in liver microsomal fractions from various animals to reveal possible species differences and to explore alternative sources for the isolation of the enzyme. ID-I was characterized by enzyme assay with 3,3',5'-triiodothyronine (rT3) as the preferred substrate and by affinity-labeling with N-bromoacetyl-[125I]T3 (BrAc[125I]T3). Labeled ID-I subunit was identified and quantified by SDS-PAGE and autoradiography. The Mr of ID-I in the species investigated varied between 25.7 and 29.1 kDa. Rat and dog liver microsomes had a markedly higher enzyme content than microsomes of human, mouse, rabbit, cow, pig, sheep, goat, chicken or duck liver. Rat liver microsomes showed the highest ID-I activity of all species examined. Turnover numbers for ID-I varied between 264 and 1059 min-1, with rabbit and goat showing the highest values. However, dog liver ID-I displayed an exceptionally low turnover number of 78 min-1. In conclusion, ID-I has similar properties in all species examined with the notable exception of dog.  相似文献   

10.
1. Cytochrome P-450LgM2 was purified from sheep lung microsomes in the presence of detergents, Emulgen 913 and cholate. 2. The purification procedure involved the chromatography of the detergent solubilized microsomes on DEAE-cellulose and hydroxylapatite. 3. Cytochrome P-450LgM2 was further purified on second DEAE-cellulose and hydroxylapatite columns. 4. The specific content of the highly purified P-450LgM2 was 16-18 nmol P-450/mg protein and purified 164-fold. 5. The yield was 16% of the initial content in microsomes. 6. The SDS-polyacrylamide slab gel electrophoresis (PAGE) of the purified lung cytochrome P-450LgM2 showed one protein band having the monomer molecular weight of 49,500. 7. The absolute CO-difference spectrum of dithionate-reduced P-450LgM2 gave a peak at 451 nm. 8. When sheep lung cytochrome P-450LgM2 and P-450LM2 purified from liver of phenobarbital (PB)-induced rabbit were subjected to Western Blotting and visualized immunochemically with anti-P-450LM2, they showed identical mobilities. 9. P-450LgM2 was found to be very active in N-demethylation of benzphetamine in a reconstituted system containing purified sheep lung reductase and synthetic lipid. 10. Turnover numbers (min-1) for benzphetamine, aniline, ethylmorphine and p-nitrophenol were determined to be 273, 1.2, 15.5 and 1.05, respectively, in a reconstituted microsomal lung monooxygenase system. 11. Spectral, electrophoretic, biocatalytic and immunochemical properties of sheep lung P-450LgM2 were found to be similar to those of P-450 isozyme 2, purified from PB-treated rabbit liver and of rabbit lung microsomes.  相似文献   

11.
Rabbit lung flavin-containing monooxygenase (FMO, EC 1.14.13.8) was denatured, reduced, carboxymethylated, digested with endoproteinase Glu-C or trypsin, and subjected to mass spectrometric analysis. The amino acid sequences of selected peptides were determined by tandem mass spectrometry. Over 90% of rabbit lung FMO was mapped by liquid secondary ion mass spectrometry (LSIMS). The FMO N-terminal amino acid was found to be N-acetylated, and the N-terminal 23 amino acid peptide contained an FAD binding domain consisting of Gly-X-Gly-X-X-Gly. Another peptide was found to contain a NADP+ binding domain consisting of Gly-X-Gly-X-X-Ala. The mapped and/or sequenced peptides were found to be completely consistent with the peptide sequence deduced from the cDNA data and the previously published gas-phase sequencing data. Further mass spectrometry and protein analytical work unambiguously showed that rabbit lung FMO existed in tight association with a calcium-binding protein, calreticulin. Over 68% of rabbit lung calreticulin was mapped by LSIMS. Tandem mass spectrometric and gas-phase sequencing studies provided direct evidence for the identification of the N-terminal and other rabbit lung calreticulin-derived peptide sequences that were identical to other previously reported calreticulins. The complexation of calreticulin to rabbit lung FMO could account for some of the unusual physical properties of this FMO enzyme form.  相似文献   

12.
Carbonic anhydrase (CA) IV was purified to homogeneity from rat lung microsomal and plasma membranes. The single N-terminal amino acid sequence showed 55% similarity to that reported for human CA IV. A monospecific antibody to the 39-kDa rat enzyme that cross-reacts on Western blots with CA IVs from other mammalian species was produced in rabbits. Digestion of rat lung enzyme with endoglycosidase (peptide-N-glycosidase F) reduced the Mr to 36,000, suggesting that rat CA contains one N-linked oligosaccharide chain. All of eight additional mammalian CA IVs that were examined also contained oligosaccharide chains, as evidenced by reduction in Mr from 52,000 (cow, sheep, and rabbit), 42,000 (pig, guinea pig, and dog), and 39,000 (mouse and hamster) to 36,000 after treatment of the respective lung microsomal membranes with peptide-N-glycosidase F. The 36-kDa human enzyme showed no change in molecular mass with this treatment. Thus, the human CA IV is the exceptional one in lacking carbohydrate. Rat lung CA IV was found to be relatively resistant to sodium dodecyl sulfate and to be anchored to membranes by a phosphatidylinositol-glycan linkage; both properties were found to be shared by other mammalian CA IVs. Western blot analysis indicated distribution of CA IV in rat tissues other than kidney and lung where it was previously known to be present. CA IV was particularly abundant in rat brain, muscle, heart, and liver, all locations where the CA IV enzyme was not known to be present previously. None was detected in rat skin or spleen.  相似文献   

13.
The phosphohydrolase component of the microsomal glucose-6-phosphatase system has been identified as a 36.5-kDa polypeptide by 32P-labeling of the phosphoryl-enzyme intermediate formed during steady-state hydrolysis. A 36.5-kDa polypeptide was labeled when disrupted rat hepatic microsomes were incubated with three different 32P-labeled substrates for the enzyme (glucose-6-P, mannose-6-P, and PPi) and the reaction terminated with trichloroacetic acid. Labeling of the phosphoryl-enzyme intermediate with [32P]glucose-6-P was blocked by several well-characterized competitive inhibitors of glucose-6-phosphatase activity (e.g. Al(F)-4 and Pi) and by thermal inactivation, and labeling was not seen following incubations with 32Pi and [U-14C]glucose-6-P. In agreement with steady-state dictates, the amount of [32P]phosphoryl intermediate was directly and quantitatively proportional to the steady-state glucose-6-phosphatase activity measured under a variety of conditions in both intact and disrupted hepatic microsomes. The labeled 36.5-kDa polypeptide was specifically immunostained by antiserum raised in sheep against the partially purified rat hepatic enzyme, and the antiserum quantitatively immunoprecipitated glucose-6-phosphatase activity from cholate-solubilized rat hepatic microsomes. [32P]Glucose-6-P also labeled a similar-sized polypeptide in hepatic microsomes from sheep, rabbit, guinea pig, and mouse and rat renal microsomes. The glucose-6-phosphatase enzyme appears to be a minor protein of the hepatic endoplasmic reticulum, comprising about 0.1% of the total microsomal membrane proteins. The centrifugation of sodium dodecyl sulfate-solubilized membrane proteins was found to be a crucial step in the resolution of radiolabeled microsomal proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.  相似文献   

14.
Various rat liver cytochrome P-450 (P-450) isozymes are targets for mechanism-based inactivation by 3,5-diethoxycarbonyl-2,6-dimethyl-4-ethyl-1,4- dihydropyridine (4-ethyl DDC). Unlike rat liver, which contains multiple P-450 isozymes, rabbit lung contains only three major isozymes referred to as forms 2, 5, and 6. We have examined the ability of 4-ethyl DDC to destroy P-450 heme in hepatic and pulmonary microsomes from untreated and beta-naphthoflavone (beta NF)-treated rabbits. This compound destroyed 31% of the P-450 in either hepatic microsomal preparation, but was ineffective at lowering P-450 and heme levels in pulmonary microsomes when examined at a range of concentrations (0.45-5.0 mM). These data suggest that rabbit pulmonary P-450 forms 2, 5, and 6 are not targets for destruction by 4-ethyl DDC, despite the ability of this compound to inactivate rat liver P-450c, the orthologue of rabbit lung form 6.  相似文献   

15.
Solubilization and partial purification of the rabbit pulmonary and hepatic N,N-dimethylaniline N-oxidases were carried out in order to study the effect of Hg2+ in vitro observed previously in the microsomal enzymes. Rabbit lung microsomal N,N-dimethylaniline (DMA) N-oxidase activity was stimulated 1.5–2 times by 0.1 mM Hg2+ added in vitro. This concentration of mercury inhibited hepatic microsomal N-oxidase by 50%. Upon solubilization and partial purification of the lung N-oxidase enzyme, stimulation of the N-oxidase activity by 0.1 mM Hg2+ was lost. It was found that the concentration of Hg2+ that would stimulate the partially purified pulmonary N-oxidases was 25 μM or less. Stimulation by 0.1 mM Hg2+ of the partially purified N-oxidase from lung was restored by addition of flavins (FMN or FAD) or a heat-stable (NH4)2SO4 precipitated fraction obtained during the purification of the N-oxidase from solubilized pulmonary or hepatic microsomes. However, addition of the flavins or the solubilized, heat-stable fraction from liver or lung microsomes did not reverse inhibition by 0.1 mM Hg2+ of the N-oxidase in hepatic microsomes or in partially purified preparations from these hepatic microsomes. Kinetic data suggest that flavins and the heatstable factor isolated from microsomes lower the concentration of free Hg2+.The determination of kinetics of Hg2+ inhibition (liver) and activation (lung) with the partially purified N-oxidases showed that the pulmonary and hepatic DMA N-oxidase enzymes are markedly different with respect to their in vitro response to Hg2+. This suggests that the N-oxidases from liver and lung may be different enzymes.  相似文献   

16.
Hepatic flavin-containing monooxygenases catalyze NADPH-dependent oxygenation of a wide variety of drugs that possess a nucleophilic heteroatom. Two forms of these enzymes (form 1 and 2) have been isolated from rabbit liver microsomes and partially characterized (Ozols, J., 1989, Biochem. Biophys. Res. Commun. 163, 49-55). The complete amino acid sequence of form 2 is presented here. Sequence determination was achieved by pulsed liquid-phase and solid-phase sequencing of 40 peptides generated by chemical and enzymatic cleavages, including CNBr cleavage of tryptophanyl residues. Form 2 monooxygenase contains 533 amino acid residues and has a molecular weight of 60,089. The COOH terminus of this enzyme is very hydrophobic and presumably functions to anchor the protein to the membrane. Form 2 is readily degraded, since a form lacking residues 1 to 278 and a form without the COOH-terminal segment were also isolated from solubilized membrane preparations. The amino acid sequence of form 2 is 52% identical to that of form 1 and shows 55% identity to the sequence of rabbit lung monooxygenase derived from the cDNA data. The putative FAD and NADP binding segments around residues 9 and 190 are conserved in all three forms. Three variable segments can also be identified in these isoforms. These are residues 308 to 321, residues 408 to 421, and the membrane binding domain, residues 505 to 533. A comparison of the presently limited amino acid sequence data of flavin-containing monooxygenases (FMOs) implies that a particular FMO in different mammalian species may be very similar, but isozymes within a species may exhibit more extensive variability with respect to homology and catalytic activity. This study documents the structural diversity of a second hepatic FMO from rabbit liver and establishes this class of drug-metabolizing enzymes as a family of related proteins.  相似文献   

17.
18.
1. In order to elucidate the molecular structure and the distribution of the enzyme in different microsomes, specific antibodies have been developed against rabbit liver NADPH-cytochrome P-450 reductase. 2. The monoclonal antibody (MAb B1) against rabbit liver reductase cross-reacted well with reductases from various animal species and those from various tissues of the rabbit. 3. NADPH-cytochrome P-450 reductase from rabbit tissues such as liver, lung, adrenal gland, kidney and polymorphonuclear leukocyte were closely related in structure and antigenic properties, in addition to having similar catalytic properties. 4. No multiple forms of the reductase in the rabbit were observed in liver nor in other tissues.  相似文献   

19.
Progesterone 21-hydroxylation in hepatic microsomes from adult male sheep is a quantitatively important metabolic pathway (0.27 +/- 0.08 nmol deoxycorticosterone formed/min/mg protein; representing 13-25% of total progesterone conversion). This study was undertaken to determine whether the ovine hepatic progesterone 21-hydroxylase may be another member of the P450 2C subfamily, normally associated with progesterone 21-hydroxylation in rodent liver. An IgG preparation raised in rabbits against purified rat liver microsomal cytochrome P450 2C6 was found to recognize a single antigen (MW 52 kDa) in sheep liver microsomes. This protein was present in sheep liver (apparent concentration 16 +/- 4 ng/micrograms microsomal protein) representing approx. 28% of the corresponding content of P450 2C6 in untreated rat liver. Preincubation of the anti-P450 2C6 IgG with hepatic microsomes was found to decrease the rate of progesterone 21-hydroxylation to 50-80% of uninhibited control. Taken together, from these findings it is apparent that a P450 enzyme, most likely from the 2C subfamily, catalyses deoxycorticosterone formation from progesterone in sheep liver and that this is a quantitatively important pathway of progesterone hydroxylation in these fractions.  相似文献   

20.
NADPH-cytochrome c reductase [NADPH: ferricytochrome oxidoreductase, EC 1.6.2.4] was highly purified from the membrane fraction of porcine polymorphonuclear leukocytes by column chromatographies on DEAE cellulose DE-52, 2',5'-ADP-agarose, Sephacryl S-300, and Bio-gel HTP. Upon sodium dodecyl sulfate polyacrylamide gel electrophoresis, the purified preparation gave a main band with a molecular weight of 80,000. The enzyme contained 0.79 mol of FAD and 0.88 mol of FMN per mol, and was capable of exhibiting a benzphetamine N-demethylation activity in the presence of cytochrome P-450 purified from rabbit liver microsomes and dilauroylphosphatidylcholine, as is the case with liver NADPH-cytochrome P-450 reductase. The cytochrome c reductase activity of the polymorphonuclear leukocytes (PMN) enzyme was precipitated with rabbit anti-guinea pig liver NADPH-cytochrome P-450 reductase IgG followed by addition of guinea pig anti-rabbit IgG antibody. The biochemical and immunological properties of the PMN enzyme so far examined were similar to those of the liver enzyme, although its function in leukocytes has not yet been determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号