首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Evidence of the form and function of bipedal behavior in nonhuman primates provides critical evidence to test theories about the origins of hominid bipedalism. Bipedalism has long been considered an evolutionarily interesting but rare behavior in wild chimpanzees. During May 2001, chimpanzees of the Ruhija community in the Bwindi Impenetrable National Park, Uganda, engaged in an exceptional frequency of arboreal bipedalism when feeding in large Ficus trees. Seventy-eight bipedal bouts of at least 5 sec duration were recorded for the entire community (0.49 bouts/hr), with a mean duration of 13.7 sec (+/-1.6 sec). The animals employed many variations on the bipedal postural theme, ranging from erect standing on the largest substrates while grasping overhead limbs for support, to standing on one leg while suspending the other leg in space, to extended-lean standing, in which bipedal standing transitioned into horizontal arm-leg suspension as the animal reached for more distant fruits. Bipedalism was used as part of a behavioral repertoire that integrated brachiation, four-limbed suspension, and forelimb-supported standing for effective small-fruit foraging. These observations suggest that under certain ecological conditions, arboreal bipedalism can be an important posture for wild chimpanzees, and may have been an important behavioral precursor to full terrestrial bipedalism.  相似文献   

2.
Focal animal instantaneous sampling of adult male and female chimpanzee positional behavior was conducted during a 7-month study in the Tai Forest, Ivory Coast, in order to determine whether there are sex differences in the locomotion, posture, substrate use, and height preference of sexually dimorphic adult chimpanzees, and if so, whether these differences support predictions based on body size differences. Results indicate that as predicted, adult male and female chimpanzees differ in their arboreal locomotor behavior, with the larger males using less quadrupedalism and more climbing, scrambling, and aided bipedalism than females during feeding locomotion. There is a sex difference in height preference as well, with female chimpanzees consistently using more arboreal behavior than males, primarily during resting. Although it has been previously demonstrated that separate primate species of differing body size differ in locomotor and postural activities (Fleagle and Mittermeier, 1980; Crompton, 1984), this study clearly demonstrates that body size differences within a species can also be correlated with differences in locomotor behavior. These findings may influence how we interpret sex differences in body size of extinct species. © 1993 Wiley-Liss, Inc.  相似文献   

3.
A host of ecological, anatomical, and physiological selective pressures are hypothesized to have played a role in the evolution of hominid bipedalism. A referential model, based on the chimpanzee (Pan troglodytes) and bonobo (Pan paniscus), was used to test through experimental manipulation four hypotheses on the evolution of hominid bipedalism. The introduction of food piles (Carry hypothesis) increased locomotor bipedality in both species. Neither the introduction of branches (Display hypothesis) nor the construction of visual barriers (Vigilance hypothesis) altered bipedality in either species. Introduction of raised foraging structures (Forage hypothesis) increased postural bipedality in chimpanzees. These experimental manipulations provided support for carrying of portable objects and foraging on elevated food-items as plausible mechanisms that shaped bipedalism in hominids.  相似文献   

4.
与手偏好相比较,脚偏好被认为是研究大脑半球中语言功能偏侧性调控表达的一种更佳的行为预测指标。当前国际科学界对于人类大脑半球功能不对称性和肢体偏好进化起源的关注,有力地推动了非人灵长类物种肢体偏好行为学研究,其中关于树栖灵长类物种的相关研究,对身体姿势在灵长类肢体偏好表达的理解有十分关键作用。川金丝猴(Rhinopithecus roxellana)是我特有濒危灵长类物种,主要营树栖生活。本研究首次关注秦岭川金丝猴自发性非移动双足姿势(双足叠放)的脚偏好。研究发现在个体水平上每个焦点动物均表现出明显的脚偏好,在群组水平上表现出显著的右脚偏好,脚偏好表达无显著性别差异,其研究结果支持“姿势起源理论”。本文首次呈现野生旧大陆猴物种群组水平脚偏好的研究证据。  相似文献   

5.
Gibbons are highly arboreal apes, and it is expected that their bipedal locomotion will show some particularities related to the arboreal environment. Previous research has shown that, during hylobatid bipedalism, unsupported phases are rare and stride frequencies are relatively low. This study confirms previous findings, and we suggest that low stride frequencies and the absence of unsupported phases are ways to reduce disadvantageous branch oscillations during arboreal travel. Despite these restrictions, gibbons are able to locomote at a wide range of speeds, implying that they likely exploit other mechanisms to modulate their locomotor speed. To investigate this possibility, we collected video images of a large number of spontaneous bipedal bouts of four untrained white-handed gibbons by using an instrumented walkway with four synchronized cameras. These video images were digitized to obtain a quantification of the 3D kinematics of hylobatid bipedalism. We defined a large number of spatiotemporal and kinematic gait variables, and the relationship between these gait variables and (dimensionless) speed was statistically tested. It was found that gibbons mainly increase stride length to increase their locomotor speed; the main speed-modulating mechanisms are hip and ankle excursion and coupled knee and ankle extension at toe-off. Although aerial phases are rare, gibbons generally adopt a bipedal bouncing gait at most speeds and a clear-cut gait transition, as seen in human locomotion, is absent. Comparison with human and bonobo bipedalism showed that the variability of the 3D joint angles of the hind limb are comparable during human and gibbon bipedalism, and much lower than during bonobo bipedalism. The low variability found in gibbons might be related to constraints imposed by the arboreal environment. These arboreal constraints clearly affect the bipedal gait characteristics of gibbons, but do not constrain the ability to adopt a bipedal bouncing gait during terrestrial locomotion.  相似文献   

6.
The degree to which non-human primate behavior is lateralized, at either individual or population levels, remains controversial. We investigated the relationship between hand preference and posture during tool use in chimpanzees (Pan troglodytes) during bipedal tool use. We experimentally induced tool use in a supported bipedal posture, an unsupported bipedal posture, and a seated posture. Neither bipedal tool use nor these supported conditions have been previously evaluated in apes. The hypotheses tested were 1) bipedal posture will increase the strength of hand preference, and 2) a bipedal stance, without the use of one hand for support, will elicit a right hand preference. Results supported the first, but not the second hypothesis: bipedalism induced the subjects to become more lateralized, but not in any particular direction. Instead, it appears that subtle pre-existing lateral biases, to either the right or left, were emphasized with increasing postural demands. This result has interesting implications for theories of the evolution of tool use and bipedalism, as the combination of bipedalism and tool use may have helped drive extreme lateralization in modern humans, but cannot alone account for the preponderance of right-handedness.  相似文献   

7.
Of the living apes, the chimpanzee (Pan troglodytes) and bonobo (Pan paniscus) are often presented as possible models for the evolution of hominid bipedalism. Bipedality in matched pairs of captive bonobos and chimpanzees was analyzed to test hypotheses for the evolution of bipedalism, derived from a direct referential model. There was no overall species difference in rates of bipedal positional behavior, either postural or locomotory. The hominoid species differed in the function or use of bipedality, with bonobos showing more bipedality for carrying and vigilance, and chimpanzees showing more bipedality for display.  相似文献   

8.
It has long been recognized that the bipedal posture reduces the surface area of the body exposed to the sun. In recent years, a theory has been developed by Wheeler that bipedalism evolved in the ancestor of the Hominidae in order to help relieve thermal stress on the animals in open equatorial environments. Bipedalism was said to afford a distinct adaptive advantage over quadrupedalism by permitting hominids to remain active in the open throughout the day. The heat load of the hypothetical hominid comprises the external environment as modelled by Wheeler and the animal's internal environment (i.e., the internal heat generated by its metabolic and locomotor activities, and its evaporative and respirative cooling capacities). When these factors are integrated in the calculation of the animal's thermal budget, the putative advantage of the bipedal over the quadrupedal posture is considerably reduced. The simulations conducted in this study suggest that the increased time afforded to early hominids in the open by bipedalism was relatively short and, therefore, of little or no adaptive significance. These results suggest that thermoregulatory considerations cannot be implicated as a first cause in the evolution of bipedalism in the hominid ancestor.  相似文献   

9.
Recent studies have indicated that chimpanzee bipedality is mechanically inefficient and dynamically unlike that of humans, thus undermining the chimpanzee analogy for mechanical aspects of the early evolution of hominid bipedalism. This paper continues this theme by measuring the forces and stresses engendered by the muscles during bipedal locomotion, for an untrained chimpanzee and for data from chimpanzees which have been encouraged to walk bipedally, presented in the literature. Peak stresses in the triceps surae were lower for the untrained chimpanzee than for the trained subjects because during the late stance phase, when peak ankle moments occur, the centre of pressure of the ground reaction force on the foot of the untrained chimpanzee stayed close to the ankle joint. In contrast, for the trained subjects it moved closer to the toes, as in human bipedalism. Quadriceps and hip extensor stresses are approximately 30% larger for the untrained chimpanzee than for the trained subjects, because the trained chimpanzees walked with a more erect posture. These results may reflect the way in which muscles can develop in response to training, since research on humans has shown that muscle physiological cross-sectional area increases as a result of exercise, resulting in smaller stresses for a given muscle force. During a slow walk, untrained chimpanzees were found to exert far greater muscle stresses than humans do when running at moderate speed, particularly in the muscles that extend the hip, because of the bent-hip, bent-knee posture.  相似文献   

10.
Bipedalism is a defining feature of the hominin lineage, but the nature and efficiency of early hominin walking remains the focus of much debate. Here, we investigate walking cost in early hominins using experimental data from humans and chimpanzees. We use gait and energetics data from humans, and from chimpanzees walking bipedally and quadrupedally, to test a new model linking locomotor anatomy and posture to walking cost. We then use this model to reconstruct locomotor cost for early, ape-like hominins and for the A.L. 288 Australopithecus afarensis specimen. Results of the model indicate that hind limb length, posture (effective mechanical advantage), and muscle fascicle length contribute nearly equally to differences in walking cost between humans and chimpanzees. Further, relatively small changes in these variables would decrease the cost of bipedalism in an early chimpanzee-like biped below that of quadrupedal apes. Estimates of walking cost in A.L. 288, over a range of hypothetical postures from crouched to fully extended, are below those of quadrupedal apes, but above those of modern humans. These results indicate that walking cost in early hominins was likely similar to or below that of their quadrupedal ape-like forebears, and that by the mid-Pliocene, hominin walking was less costly than that of other apes. This supports the hypothesis that locomotor energy economy was an important evolutionary pressure on hominin bipedalism.  相似文献   

11.
Many reasons for the emergence of bipedalism have been proposed, including postural arguments which highlight that a sub-optimal form of bipedalism ("shuffling") might have been used by protohominids to cover short distances between resources that require bipedal standing. Bipedal shuffling may have been employed because it avoids the cost of raising the trunk from the quadrupedal orientation, which we assume is the habitual locomotor stance of protohominids. To date, these postural proposals have not been analytically assessed, a lack we rectify herein. Our model seeks to specify a threshold distance, below which bipedal shuffling uses less energy than quadrupedalism. Parameters for the model include the mechanical cost of transport, the ratio of bipedal to quadrupedal cost, and the cost associated with raising the trunk. We found that, using reasonable model parameters, open distances of approximately 9-16 m support the use of bipedal shuffling. Protohominids may have used shuffling as an energetically effective way to traverse between resource patches.  相似文献   

12.
The presence of a bipedal gait in fossil apes is now recognized as the earliest paleontological evidence of the beginnings of the human lineage. Thus, the search for the selective pressure that led to the adoption of bipedal posture and gait is the search for the origins of the human adaptation. One of the most popular candidates for the origin of erect posture is its purported energetic advantage.1–4 This argument is reevaluated in light of data on the energetic cost of locomotion in mammals and, particularly, data on the effect of bipedalism on cost. I go on to discuss what morphological traces we might expect to see of changes in the locomotor economy of our ancestors once bipedalism became established.  相似文献   

13.
Arboreal, and in particular suspensory, postures may elicit a preference for the strongest limb to be used in postural support in large bodied primates. However, selection may have favored ambilaterality rather than a preference for a particular hand in chimpanzees (Pan troglodytes) fishing arboreally for ants. To investigate the influence of arboreality on hand preference we recorded handedness in seven captive bonobos (Pan paniscus) manipulating a foraging device during terrestrial and arboreal postures in a symmetrical environment, observing 2726 bouts of manipulation. When accessing the foraging device in the arboreal position the bonobos adopted predominantly suspensory postures. There was no population level hand preference for manipulating the foraging device in either the terrestrial or arboreal positions. However, four of seven individuals that interacted with the foraging devices showed a significant preference for one hand (two were left handed, two were right handed) when manipulating the foraging device in the arboreal position whereas only one individual (left handed) showed a preference in the terrestrial position. This suggests that individuals may have a preferred or strongest limb for postural support in a symmetrical arboreal environment, resulting in a bias to use the opposite hand for manipulation. However, the hand that is preferred for postural support differs between individuals. Although our sample is for two captive groups at the same zoo, our findings suggest that the demand of maintaining arboreal postures and environmental complexity influence hand preference.  相似文献   

14.
The original hominoid brachiators probably used typical terrestrial quadrupedalism as their alternate mode of ground locomotion. The development of knuckle walking made possible a shortening of the flexor muscles to improve the hand grip for more efficient arm-swinging. Bipedalism equally served to free the hands from palmar application to the ground, and likewise permits manual flexor shortening. Recently discovered australopithecine limb bones may be interpreted as indicating a primarily arboreal adaptation, emphasizing brachiation, with bipedalism being no more than an alternate mode. Thus the origin of bipedal adaptations might be viewed not as a means of leaving the trees, but rather as a step in perfecting brachiation.  相似文献   

15.
The transition among hominids from quadrupedalism to bipedalism resulted in modifications in their musculoskeletal morphology. It is unclear, however, whether changes in the circuitry of the CNS were also necessary in order to accommodate the unique balance requirements of two-limb support. This study addresses the issue of modifications in control strategies by investigating the rapid, automatic postural responses of feline and human subjects to sudden disturbances of balance in the anteroposterior (AP) direction while they stand quadrupedally and bipedally on movable platforms. Postural responses are characterized in terms of segmental adjustments, generated AP shear forces, and electromyographic activity. Feline and human subjects correct posture similarly when standing quadrupedally. Furthermore, both species correct stance primarily with their hindlimbs and use their forelimbs as supportive struts. In contrast, both species use completely different correctional strategies when standing bipedally. Morphological restrictions, however, prevent cats from adopting the pillar-like plantigrade posture of human beings. Thus, the correctional strategies of bipedal cats are distinct from those of bipedal human subjects. It is concluded that 1) automatic postural response patterns of quadrupedal Felis and bipedal Homo reflect the different biomechanical characteristics of the initial postures rather than species differences in CNS circuitry controlling stance; 2) hindlimb-dominated posture control is probably a common and relatively ancient pattern; and 3) reorganization of hominid CNS circuitry was probably unnecessary because hindlimb control was already a feature of the system.  相似文献   

16.
The evolution of erect posture and locomotion continues to be a major focus of interest among paleoanthropologists and functional morphologists. To date, virtually all of our knowledge about the functional role of the back muscles in the evolution of bipedalism is based on human experimental data. In order to broaden our evolutionary perspective on the vertebral region, we have undertaken an electromyographic (EMG) analysis of three deep back muscles (multifidus, longissimus thoracis, iliocostalis lumborum) in the chimpanzee (Pan troglodytes) and gibbon (Hylobates lar) during bipedal walking. The recruitment patterns of these three muscles seen in the chimpanzee closely parallel those observed in the gibbon. The activity patterns of multifidus and longissimus are more similar to each other than either is to iliocostalis. Iliocostalis recruitment is clearly related to contact by the contralateral limb during bipedal walking in both species. It is suggested that in both the chimpanzee and gibbon, multifidus controls trunk movement primarily in the sagittal plane, iliocostalis responds to and adjusts movement in the frontal plane, while longissimus contributes to both of these functions. In many respects, the activity patterns shared by the chimpanzee and gibbon are quite consistent with recent human experimental data. This suggests a basic similarity in the mechanical constraints placed on the back during bipedalism among these three hominoids. Thus, the acquisition of habitual bipedalism in humans probably involved not so much a major change in back muscle action or function, but rather an improvement in the mechanical advantages and architecture of these muscles.  相似文献   

17.
The bipedal behavior of a troop of olive baboons (Papio anubis) is described. Bipedalism is relatively rare but nevertheless occurs in a wide variety of situations, although bipedalism during feeding occurs much more frequently than in other situations. The incidence of bipedalism varies between different age-sex classes and between individuals within age-sex classes. This pattern of bipedalism occurred within an overall adaptive response, particularly in feeding behavior, which was similar to that of the gelada baboon (Theropithecus gelada). The data on bipedalism is used together with an existing model of early hominid differentiation based on T. gelada to indicate the types of bipedal behavior which might have occurred in early hominid small object feeders and to suggest how a bipedal pattern of this type might have served as a basis for the action of selection for a more committedly bipedal pattern at later stages of hominid evolution.  相似文献   

18.
19.
We investigated the energetic costs of quadrupedal and bipedal walking in two Japanese macaques. The subjects were engaged in traditional bipedal performance for years, and are extremely adept bipeds. The experiment was conducted in an airtight chamber with a gas analyzer. The subjects walked quadrupedally and bipedally at fixed velocities (<5 km/hr) on a treadmill in the chamber for 2.5-6 min. We estimated energy consumption from carbon dioxide (CO2) production. While walking bipedally, energetic expenditure increased by 30% relative to quadrupedalism in one subject, and by 20% in another younger subject. Energetic costs increased linearly with velocity in quadrupedalism and bipedalism, with bipedal/quadrupedal ratios remaining almost constant. Our experiments were relatively short in duration, and thus the observed locomotor costs may include presteady-state high values. However, there was no difference in experimental duration between bipedal and quadrupedal trials. Thus, the issue of steady state cannot cancel the difference in energetic costs. Furthermore, we observed that switching of locomotor mode (quadrupedalism to bipedalism) during a session resulted in a significant increase of CO2 production. Taylor and Rowntree ([1973] Science 179:186-187) noted that the energetic costs for bipedal and quadrupedal walking were the same in chimpanzees and capuchin monkeys. Although the reason for this inconsistency is not clear, species-specific differences should be considered regarding bipedal locomotor energetics among nonhuman primates. Extra costs for bipedalism may not be great in these macaques. Indeed, it is known that suspensory locomotion in Ateles consumes 1.3-1.4 times as much energy relative to quadrupedal progression. This excess ratio surpasses the bipedal/quadrupedal energetic ratios in these macaques.  相似文献   

20.
Although much research has been carried out on Australopithecus afarensis locomotion, no consensus has yet been reached. Our new critic study on femoral material brings to the fore a strictly bipedal behaviour within this taxon. Our results are based on the pertinence of human anatomical characteristics among A. afarensis and on the absence of characteristics revealing arboreal displacement. These results have emerged from our different observation and interpretation of some preceding authors concerning the anatomy of these fossil hominids. It is important to underline that apomorphic characteristics of this species are difficult to interpret. They must not however be used to support the idea of arboreal displacement simply based on the fact of a no totally human morphe. We believe that present day humans do not necessarily reflect the earliest strict bipedal anatomic model. An the other hand, it appears that the disagreement between the two locomotor hypothesis for A. afarensis that are bipedalism and arboreal displacement, facing the possibility of bipedalism associated with negligible arboreal displacement, results more from an evolutionary fact than from a real scientific conflict.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号