首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Laity JH  Montelione GT  Scheraga HA 《Biochemistry》1999,38(50):16432-16442
We have identified specific regions of the polypeptide chain of bovine pancreatic ribonuclease A (RNase A) that are critical for stabilizing the oxidative folding intermediate des-[40-95] (with three native disulfide bonds but lacking the fourth native Cys40-Cys95 disulfide bond) in an ensemble of largely disordered three-disulfide precursors (3S if des-[40-95]). A stable analogue of des-[40-95], viz., [C40A, C95A] RNase A, which contains three out of four native disulfide pairings, was previously found to have a three-dimensional structure very similar to that of the wild-type protein. However, it is determined here from GdnHCl denaturation experiments to have significantly reduced global stability, i.e., = 4.5 kcal /mol at 20 degrees C and pH 4.6. The local stability of [C40A, C95A] RNase A was also examined using site-specific amide (2)H/(1)H exchange measurements at pD 5.0 to determine the individual unfolding free energy of specific residues under both strongly native (12 degrees C) and more destabilizing (20 degrees C) conditions. Comparison of the relative stabilities at specific amide sites of [C40A, C95A] RNase A at both temperatures with the corresponding values for the wild-type protein at 35 degrees C corroborates previous experimental evidence that unidentified intramolecular contacts in the vicinity of the preferentially formed native one-disulfide (C65-C72) loop are crucial for stabilizing early folding intermediates, leading to des-[40-95]. Moreover, values of for residues at or near the third alpha-helix, and in part of the second beta-sheet of [C40A, C95A] RNase A, indicate that these two regions of regular backbone structure contribute to stabilizing the global chain fold of the des-[40-95] disulfide-folding intermediate in the wild-type protein. More significantly, we have identified numerous specific residues in the first alpha-helix and the first beta-sheet of the protein that are stabilized in the final step of the major oxidative regeneration pathway of RNase A (des-[40-95] --> N).  相似文献   

2.
Bovine pancreatic trypsin inhibitor (BPTI) is stabilized by 3 disulfide bonds, between cysteines 30-51, 5-55, and 14-38. To better understand the influence of disulfide bonds on local protein structure and dynamics, we have measured amide proton exchange rates in 2 folded variants of BPTI, [5-55]Ala and [30-51; 14-38]V5A55, which share no common disulfide bonds. These proteins resemble disulfide-bonded intermediates that accumulate in the BPTI folding pathway. Essentially the same amide hydrogens are protected from exchange in both of the BPTI variants studied here as in native BPTI, demonstrating that the variants adopt fully folded, native-like structures in solution. However, the most highly protected amide protons in each variant differ, and are contained within the sequences of previously studied peptide models of related BPTI folding intermediates containing either the 5-55 or the 30-51 disulfide bond.  相似文献   

3.
H Haruyama  Y Q Qian  K Wüthrich 《Biochemistry》1989,28(10):4312-4317
With proton nuclear magnetic resonance spectroscopy at 22 degrees C and pD 4.5, individual exchange rates in the range from 2 X 10(-5) to 1 X 10(-1) min-1 were observed for 23 amide protons in recombinant desulfatohirudin. The remaining 38 backbone amide protons exchange more rapidly than 1 X 10(-1) min-1. All 23 slowly exchanging protons are located in the polypeptide segment from residue 4 to residue 42, which forms a well-defined globular domain. Three different breathing modes of this molecular region are manifested in the exchange data, which appear to be correlated with the location of the three disulfide bonds. Chemical shift changes larger than 0.15 ppm between pH 2.5 and pH 5.0 arising from through-space interactions with carboxyl groups were observed for seven backbone amide protons. Two of these shifts can be explained by hydrogen bonds in the core of the protein, Gly 25 NH-Glu 43 O epsilon and Ser 32 NH-Asp 33 O delta, and two others by intraresidual NH-O epsilon interactions in Glu 61 and Glu 62. The remaining three pH shifts for Glu 35, Cys 39, and Ile 59 imply the existence of transient interactions between the molecular core and the flexible C-terminal segment 49-65, which have so far not been characterized by nuclear Overhauser effects or other conformational constraints.  相似文献   

4.
The burial of native disulfide bonds, formed within stable structure in the regeneration of multi-disulfide-containing proteins from their fully reduced states, is a key step in the folding process, as the burial greatly accelerates the oxidative folding rate of the protein by sequestering the native disulfide bonds from thiol-disulfide exchange reactions. Nevertheless, several proteins retain solvent-exposed disulfide bonds in their native structures. Here, we have examined the impact of an easily reducible native disulfide bond on the oxidative folding rate of a protein. Our studies reveal that the susceptibility of the (40-95) disulfide bond of Y92G bovine pancreatic ribonuclease A (RNase A) to reduction results in a reduced rate of oxidative regeneration, compared with wild-type RNase A. In the native state of RNase A, Tyr 92 lies atop its (40-95) disulfide bond, effectively shielding this bond from the reducing agent, thereby promoting protein oxidative regeneration. Our work sheds light on the unique contribution of a local structural element in promoting the oxidative folding of a multi-disulfide-containing protein.  相似文献   

5.
We intended to refold reduced ribonuclease A (RNase A) using polymeric microspheres. Polymeric microspheres were allowed to react with dithiothreitol (DTT) to immobilize the disulfide and thiol moieties on their surface. The fully reduced RNase A was added to the dispersion of the modified microspheres. Protein refolding and renaturation were estimated by the change in the number of disulfide bonds of RNase A and the recovery of the enzymatic activity, respectively. Without microspheres, the activity gradually recovered with the increase in the number of disulfide bonds. However, the formation of disulfide bonds of reduced RNase A was accelerated by adding the modified microspheres, and the rate of renaturation was increased depending on the amount of charged DTT and the reaction time of the immobilization. These results indicate that modified microspheres significantly catalyze the recovery of active RNase A from the reduced form. The protein adsorption data demonstrated that the disulfide moieties of the modified microspheres react with the thiol moieties of the reduced RNase A to form a mixed disulfide. The thiol/disulfide exchange reaction can possibly proceed at the microsphere/protein interface, resulting in the formation of a correct three-dimensional structure.  相似文献   

6.
The solution conformation of bovine anaphylatoxin C5a has been investigated by nuclear magnetic resonance (NMR) spectroscopy. The 1H-NMR spectrum is assigned in a sequential manner using a variety of two-dimensional NMR techniques. A qualitative interpretation of the short range nuclear Overhauser enhancement data involving the NH, C alpha H and C beta H protons suggests that C5a has four helices comprising residues 5-11, 15-25, 33-39 and 46-61, and is composed of a globular head (residues 5-61) and a C-terminal tail. The polypeptide fold was determined by hybrid distance geometry-dynamical simulated annealing calculations on the basis of 203 approximate interproton distance restraints, 22 distance restraints for 11 intrahelical hydrogen bonds (identified on the basis of the pattern of short range NOEs and slowly exchanging backbone amide protons) and restraints for the 3 disulfide bridges. The overall polypeptide fold is similar to that of the sequence related human recombinant anaphylatoxin C5a [(1988) Proteins 3, 139-145].  相似文献   

7.
You DJ  Chon H  Koga Y  Takano K  Kanaya S 《Biochemistry》2007,46(41):11494-11503
The crystal structure of ribonuclease HI from the hyperthermophilic archaeon Sulfolobus tokodaii (Sto-RNase HI) was determined at 1.6 A resolution. Sto-RNase HI exhibits not only RNase H activity but also double-stranded RNA-dependent ribonuclease (dsRNase) activity. The main-chain fold and steric configurations of the four acidic active-site residues of Sto-RNase HI are very similar to those of other type 1 RNases H. However, Arg118 of Sto-RNase HI is located at the position in which His124 of E. coli RNase HI, His539 of HIV-1 RNase H, and Glu188 of Bacillus halodurans RNase H are located. The mutation of this residue to Ala considerably reduced both the RNase H and dsRNase activities without seriously affecting substrate binding, suggesting that Arg118 is involved in catalytic function. This residue may promote product release by perturbing the coordination of the metal ion A as proposed for Glu188 of B. halodurans RNase H. In addition, the extreme C-terminal region of Sto-RNase HI is anchored to its core region by one disulfide bond and several hydrogen bonds. Differential scanning calorimetry measurements indicated that Sto-RNase HI is a hyperstable protein with a melting temperature of 102 degrees C. The mutations of the cysteine residues forming disulfide bond or elimination of the extreme C-terminal region greatly destabilized the protein, indicating that anchoring of the C-terminal tail is responsible for hyperstabilization of Sto-RNase HI.  相似文献   

8.
In human metallothionein-2, the exchange rate constants of ten amide protons were found to range from 1.7 x 10(-4) to 1 x 10(-1) min-1 at pH 6.3 and 8 degrees C. Most of these slowly exchanging protons could be associated with hydrogen bonds in secondary structure elements of the alpha-domain. Amide proton exchange rates thus present an additional criterion for the structural characterization of different metallothioneins, which could be particularly valuable for comparisons of different homologous protein preparations containing nuclear magnetic resonance-inactive metal ions, where the metal-polypeptide co-ordinative bonds cannot be identified directly.  相似文献   

9.
A fully active semisynthetic ribonuclease, RNase 1-118:111-124, may be prepared by enzymatically removing six residues from the COOH terminus of the protein (positions 119-124) and then complementing the inactive RNase 1-118 with a chemically synthesized peptide containing the COOH-terminal 14 residues of the molecule (RNase 111-124) [M. C. Lin, B. Gutte, S. Moore, and R. B. Merrifield (1970) J. Biol. Chem. 245, 5169-5170]. Nitration of tyrosine-115 in the peptide followed by complex formation with RNase 1-118 affords a fully active enzyme containing a unique nitrotyrosine residue in a position which is known and which is very likely to be completely exterior to the active site region. The binding constant between the tetradecapeptide and RNase 1-118 (5 X 10(6) M-1 at pH 6.0) is not changed by the nitration. Crystals of the nitrated complex are isomorphous with those of RNase 1-118:111-124, for which a refined 1.8-A structure has recently been obtained.  相似文献   

10.
Two-dimensional 1H-NMR studies have been performed on ribonuclease F1 (RNase F1), which contains 106 amino acid residues. Sequence-specific resonance assignments were accomplished for the backbone protons of 99 amino acid residues and for most of their side-chain protons. The three-dimensional structures were constructed on the basis of 820 interproton-distance restraints derived from NOE, 64 distance restraints for 32 hydrogen bonds and 33 phi torsion-angle restraints. A total of 40 structures were obtained by distance geometry and simulated-annealing calculations. The average root-mean-square deviation (residues 1-106) between the 40 converged structures and the mean structure obtained by averaging their coordinates was 0.116 +/- 0.018 nm for the backbone atoms and 0.182 +/- 0.015 nm for all atoms including the hydrogen atoms. RNase F1 was determined to be an alpha/beta-type protein. A well-defined structure constitutes the core region, which consists of a small N-terminal beta-sheet (beta 1, beta 2) and a central five-stranded beta-sheet (beta 3-beta 7) packed on a long helix. The structure of RNase F1 has been compared with that of RNase T1, which was determined by X-ray crystallography. Both belong to the same family of microbial ribonucleases. The polypeptide backbone fold of RNase F1 is basically identical to that of RNase T1. The conformation-dependent chemical shifts of the C alpha protons are well conserved between RNase F1 and RNase T1. The residues implicated in catalysis are all located on the central beta-sheet in a geometry similar to that of RNase T1.  相似文献   

11.
Carty RP  Pincus MR  Scheraga HA 《Biochemistry》2002,41(50):14815-14819
In the initial stages of the oxidative folding of both bovine pancreatic ribonuclease A (RNase A) and a 58-72 fragment thereof from the fully reduced, denatured state, the 65-72 correctly paired disulfide bond forms in preponderance over the incorrectly paired 58-65 disulfide bond. Since both disulfide-bonded loops contain the same number of amino acid residues, the question arises as to whether the native pairing results from interactions within the 58-72 segment that lead to a nativelike structure even in its fully reduced form. To answer this question, the chain buildup procedure, based on ECEPP, including a solvation treatment, was used to generate the low-energy structures for the 58-72 RNase segment, beginning with residue 72 and building back to residue 58; in this fragment, all three Cys residues (at positions 58, 65, and 72) initially exist in the reduced (CysH) state. After the open-chain energy minima of the 65-72 peptide were generated, these conformations were allowed to form the 65-72 disulfide bond, and the energies of the resulting oxidized conformations were reminimized and rehydrated. The global minimum of the loop-closed 65-72 structure and many of the low-lying loop-closed minima could be superimposed on the energy-minimized X-ray structure for residues 65-72. The low-energy structures for the full open chain 58-72 peptide were then computed and were allowed to form disulfide bonds either between residues 65 and 72 (native) or between residues 58 and 65 (non-native), and their energies were reminimized and rehydrated in the loop-closed state. Although the overall fold of the 65-72 loop-closed global minimum was the same as for the energy-minimized X-ray structure of these residues, the overall rms deviation was 3.9 A because of local deviations among residues 58-64. In contrast, the 65-72 segment of the global minimum of the 58-72 fragment could be superimposed on the corresponding residues of the energy-minimized X-ray structure. The lowest-energy structure for the 58-65 non-native paired 58-72 sequence was 6 kcal/mol higher in energy than that for the 58-72 peptide with the 65-72 disulfide bond formed. These results suggest that the native pairing of the 65-72 peptide arises from energetic determinants (adoption of left-handed single-residue conformations by Gly 68, and side chain interactions involving Gln 69) contained within this peptide sequence.  相似文献   

12.
The effect of strongly destabilizing mutations, I106A and V108G of Ribonuclease A (RNase A), on its structure and stability has been determined by NMR. The solution structures of these variants are essentially equivalent to RNase A. The exchange rates of the most protected amide protons in RNase A (35°C), the I106A variant (35°C), and the V108G variant (10°C) yield stability values of 9.9, 6.0, and 6.8 kcal/mol, respectively, when analyzed assuming an EX2 exchange mechanism. Thus, the destabilization induced by these mutations is propagated throughout the protein. Simulation of RNase A hydrogen exchange indicates that the most protected protons in RNase A and the V108G variant exchange via the EX2 regime, whereas those of I106A exchange through a mixed EX1 + EX2 process. It is striking that a single point mutation can alter the overall exchange mechanism. Thus, destabilizing mutations joins high temperatures, high pH and the presence of denaturating agents as a factor that induces EX1 exchange in proteins. The calculations also indicate a shift from the EX2 to the EX1 mechanism for less protected groups within the same protein. This should be borne in mind when interpreting exchange data as a measure of local stability in less protected regions.  相似文献   

13.
The backbone amide proton exchange with the solvent was investigated in 2H2O solutions of the basic pancreatic trypsin inhibitor and two chemical modifications thereof, which were obtained by transamination of the N-terminus and by cleavage of the disulfide bond 14-38, respectively. The three proteins have nearly identical conformations, but the stability with respect to thermal denaturation is markedly different. Exchange rates for a large number of individually assigned amide protons located both in central and peripheral parts of the protein structures were measured by two-dimensional correlated spectroscopy (COSY). From analysis of the individual proton exchange rates in the three proteins at different temperatures, an interplay of global and local structure fluctuations was characterized, which promote hydrogen exchange in distinct regions of the molecules. The exchange of particular amide protons may be governed by different motional processes at different temperatures. As a general trend, global fluctuations involving breakage of numerous hydrophilic secondary bonds appear to be dominant at higher temperatures, whereas at lower temperatures the influence of local fluctuations in hydrophobic regions of the protein structures is also clearly noticeable.  相似文献   

14.
Summary Two-dimensional 1H NMR techniques were used to determine the spatial structure of ectatomin, a toxin from the venom of the ant Ectatomma tuberculatum. Nearly complete proton resonance assignments for two chains of ectatomin (37 and 34 amino acid residues, respectively) were obtained using 2D TOCSY, DQF-COSY and NOESY experiments. The cross-peak volumes in NOESY spectra were used to define the local structure of the protein and generate accurate proton-proton distance constraints employing the MARDIGRAS program. Disulfide bonds were located by analyzing the global fold of ectatomin, calculated with the distance geometry program DIANA. These data, combined with data on the rate of exchange of amide protons with deuterium, were used to obtain a final set of 20 structures by DIANA. These structures were refined by unrestrained energy minimization using the CHARMm program. The resulting rms deviations over 20 structures (excluding the mobile N- and C-termini of each chain) are 0.75 ? for backbone heavy atoms, and 1.25 ? for all heavy atoms. The conformations of the two chains are similar. Each chain consists of two α-helices and a hinge region of four residues; this forms a hairpin structure which is stabilized by disulfide bridges. The hinge regions of the two chains are connected together by a third disulfide bridge. Thus, ectatomin forms a four-α-helical bundle structure.  相似文献   

15.
David C  Foley S  Mavon C  Enescu M 《Biopolymers》2008,89(7):623-634
The reductive unfolding of bovine serum albumin (BSA) and human serum albumin (HSA) induced by dithiothreitol (DTT) is investigated using Raman spectroscopy. The resolution of the S-S Raman band into both protein and oxidized DTT contributions provides a reliable basis for directly monitoring the S-S bridge exchange reaction. The related changes in the protein secondary structure are identified by analyzing the protein amide I Raman band. For the reduction of one S-S bridge of BSA, a mean Gibbs free energy of -7 kJ mol(-1) is derived by studying the reaction equilibrium. The corresponding value for the HSA S-S bridge reduction is -2 kJ mol(-1). The reaction kinetics observed via the S-S or amide I Raman bands are identical giving a reaction rate constant of (1.02 +/- 0.11) M(-1) s(-1) for BSA. The contribution of the conformational Gibbs free energy to the overall Gibbs free energy of reaction is further estimated by combining experimental data with ab initio calculations.  相似文献   

16.
N B Leontis  P B Moore 《Biochemistry》1986,25(19):5736-5744
Imino proton exchange has been examined by NMR in the 5S RNA of Escherichia coli, its principal RNase A resistant fragment, fragment 1 (bases 1-11, 69-120), and complexes between that fragment and ribosomal protein L25 by using both real-time and relaxation techniques. Fragment 1 RNA imino protons exchange at rates between 0.5 and 15 s-1 at 303 K in 5 mM cacodylate buffer, pH 7.4. In contrast with many tRNAs, intact 5S RNA contains no imino protons with exchange lifetimes as great as 1 min. Consistent with the results of Gueron and his colleagues [Leroy, J. L., Bolo, N., Figueroa, N., Plateau, P., & Gueron, M. (1985) J. Biomol. Struct. Dyn. 2,915-939; Leroy, J. L., Broseta, D., & Gueron, M. (1985) J. Mol. Biol. 184, 165-178] with tRNA, exchange in 5S RNA is catalyst-limited under conditions generally used for imino proton spectroscopy, such as those given above. Using Gueron's catalyst saturation technique, base pair opening rates have been measured for several AU and GU base pairs in fragment 1. They range from 50 to 300 s-1 at 303 K and depend on base pair type and also to some degree on context. Similar studies have been done on complexes of L25 and fragment 1. The binding of L25 to fragment 1 reduces the exchange rate of many imino protons within the region to which it binds, consistent with the hypothesis that its binding stabilizes the secondary structure of 5S RNA.  相似文献   

17.
The backbone dynamics of the EF-hand Ca(2+)-binding protein, calbindin D9k, has been investigated in the apo, (Cd2+)1 and (Ca2+)2 states by measuring the rate constants for amide proton exchange with solvent. 15N-1H correlation spectroscopy was utilized to follow direct 1H-->2H exchange of the slowly exchanging amide protons and to follow indirect proton exchange via saturation transfer from water to the rapidly exchanging amide protons. Plots of experimental rate constants versus intrinsic rate constants have been analyzed to give qualitative insight into the opening modes of the protein that lead to exchange. These results have been interpreted within the context of a progressive unfolding model, wherein hydrophobic interactions and metal chelation serve to anchor portions of the protein, thereby damping fluctuations and retarding amide proton exchange. The addition of Ca2+ or Cd2+ was found to retard the exchange of many amide protons observed to be in hydrogen-bonding environments in the crystal structure of the (Ca2+)2 state, but not of those amide protons that were not involved in hydrogen bonds. The largest changes in rate constant occur for residues in the ion-binding loops, with substantial effects also found for the adjacent residues in helices I, II and III, but not helix IV. The results are consistent with a reorganization of the hydrogen-bonding networks in the metal ion-binding loops, accompanied by a change in the conformation of helix IV, as metal ions are chelated. Further analysis of the results obtained for the three states of metal occupancy provides insight into the nature of the changes in conformational fluctuations induced by ion binding.  相似文献   

18.
A previously introduced kinetic-rate constant (k/k(0)) method, where k and k(0) are the folding (unfolding) rate constants in the mutant and the wild-type forms, respectively, of a protein, has been applied to obtain qualitative information about structure in the transition state ensemble (TSE) of bovine pancreatic ribonuclease A (RNase A), which contains four native disulfide bonds. The method compares the folding (unfolding) kinetics of RNase A, with and without a covalent crosslink and tests whether the crosslinked residues are associated in the folding (unfolding) transition state (TS) of the noncrosslinked version. To confirm that the fifth disulfide bond has not introduced a significant structural perturbation, we solved the crystal structure of the V43C-R85C mutant to 1.6 A resolution. Our findings suggest that residues Val43 and Arg85 are not associated, and that residues Ala4 and Val118 may form nonnative contacts, in the folding (unfolding) TSE of RNase A.  相似文献   

19.
Protein disulfide isomerase (PDI) and its pancreatic homolog (PDIp) are folding catalysts for the formation, reduction, and/or isomerization of disulfide bonds in substrate proteins. However, the question as to whether PDI and PDIp can directly attack the native disulfide bonds in substrate proteins is still not answered, which is the subject of the present study. We found that RNase can be thermally unfolded at 65°C under non-reductive conditions while its native disulfide bonds remain intact, and the unfolded RNase can refold and reactivate during cooling. Co-incubation of RNase with PDI or PDIp during thermal unfolding can inactivate RNase in a PDI/PDIp concentration-dependent manner. The alkylated PDI and PDIp, which are devoid of enzymatic activities, cannot inactivate RNase, suggesting that the inactivation of RNase results from the disruption of its native disulfide bonds catalyzed by the enzymatic activities of PDI/PDIp. In support of this suggestion, we show that both PDI and PDIp form stable disulfide-linked complexes only with thermally-unfolded RNase, and RNase in the complexes can be released and reactivated dependently of the redox conditions used. The N-terminal active site of PDIp is essential for the inactivation of RNase. These data indicate that PDI and PDIp can perform thiol-disulfide exchange reactions with native disulfide bonds in unfolded RNase via formation of stable disulfide-linked complexes, and from these complexes RNase is further released.  相似文献   

20.
The X-ray structure of [N-acetyl]-apamin has been solved at 0.95 A resolution. It consists of an 1-7 N-terminal loop stabilized by an Asn-beta-turn motif (2-5 residues) and a helical structure spanning the 9-18 residues tightly linked together by two disulfide bonds. However, neither this accurate X-ray nor the available solution structures allowed us to rationally explain the unusual downfield shifts observed for the Asn(2) and Glu(7) amide signals upon Glu(7) carboxylic group ionization. Thus, apamin and its [N-acetyl], [Glu(7)Gln], [Glu(7)Asp], and [Asn(2)Abu] analogues and submitted to NMR structural studies as a function of pH. We first demonstrated that the Glu(7) carboxylate group is responsible for the large downfield shifts of the Asn(2) and Glu(7) amide signals. Then, molecular dynamics (MD) simulations suggested unexpected interactions between the carboxylate group and the Asn(2) and Glu(7) amide protons as well as the N-terminal alpha-amino group, through subtle conformational changes that do not alter the global fold of apamin. In addition, a structural study of the [Asn(2)Abu] analogue, revealed an essential role of Asn(2) in the beta-turn stability and the cis/trans isomerization of the Ala(5)-Pro(6) amide bond. Interestingly, this proline isomerization was shown to also depend on the ionization state of the Glu(7) carboxyl group. However, neither destabilization of the beta-turn nor proline isomerization drastically altered the helical structure that contains the residues essential for binding. Altogether, the Asn(2) and Glu(7) residues appeared essential for the N-terminal loop conformation and thus for the selective formation of the native disulfide bonds but not for the activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号