首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A micro-test using immobilized thylakoid membranes as sensing element in a micro-electrochemical cell has been developed to assess impairment at the level of the light-driven transport of electrons. In this study, thylakoids isolated from spinach leaves were either immobilized by entrapment in poly(vinylalcohol) bearing styrylpyridinium groups or by chemical immobilization in an albumin-glutaraldehyde crosslinked matrix. The two immobilization procedures were compared upon the sensitivity of the immobilized materials to detect nine herbicides targetting photosystem II. Despite the largely differing mode of immobilization, the procedures led to strikingly similar detection capabilities for herbicides. Inherent characteristics of both immobilization procedures are also discussed.  相似文献   

2.
In this paper, we have presented a minireview on the interaction of bicarbonate, formate and herbicides with the thylakoid membranes.The regulation of photosynthetic electron transport by bicarbonate, formate and herbicides is described. Bicarbonate, formate, and many herbicides act between the primary quinone electron acceptor QA and the plastoquinone pool. Many herbicides like the ureas, triazines and the phenol-type herbicides act, probably, by the displacement of the secondary quinone electron acceptor QB from its binding site on a QB-binding protein located at the acceptor side of Photosystem II. Formate appears to be an inhibitor of electron transport; this inhibition can be removed by the addition of bicarbonate. There appears to be an interaction of the herbicides with bicarbonate and/or It has been suggested that both the binding of a herbicide and the absence of bicarbonate may cause a conformational alteration of the environment of the QB-binding site. The alteration brought about by a herbicide decreases the affinity for another herbicide or for bicarbonate; the change caused by the absence of bicarbonate decreases the affinity for herbicides. Moreover, this change in conformation causes an inhibition of electron transport. A bicarbonate-effect in isolated intact chloroplasts is demonstrated.Paper presented at the FESPP meeting (Strasbourg, 1984)  相似文献   

3.
The effects of DDT, some of its analogs, and selected cyclodiene insecticides on isolated spinach (Spinacea oleracea L.) thylakoids were identified, characterized, and compared to responses induced by selected herbicides. Except for endrin, the insecticides inhibited light-induced electron transport, altered chlorophyll fluorescence transients, and competitively displaced [14C]atrazine [2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine], a known photosystem II inhibitor, from the membranes. The insecticides appeared to act at, or near B, the secondary electron acceptor of photo-system II. Binding of DDT and dieldrin was estimated at 900 and 2200 molecules, respectively, per photosynthetic unit (490 chlorophyll molecules). The insecticides also inhibited valinomycin-induced swelling of the thylakoid membrane. Whereas inhibition of electron transport can be attributed to interaction by the insecticides with a proteinaceous component of the thylakoid membrane, interference with the action of valinomycin may involve interaction with lipoidal constituents of the membrane.  相似文献   

4.
Myriophyllum spicatum (Haloragaceae) is a highly competitive freshwater macrophyte that produces and releases algicidal and cyanobactericidal polyphenols. Among them, beta-1,2,3-tri-O-galloyl-4,6-(S)-hexahydroxydiphenoyl-D-glucose (tellimagrandin II) is the major active substance and is an effective inhibitor of microalgal exoenzymes. However, this mode of action does not fully explain the strong allelopathic activity observed in bioassays. Lipophilic extracts of M. spicatum inhibit photosynthetic oxygen evolution of intact cyanobacteria and other photoautotrophs. Fractionation of the extract provided evidence for tellimagrandin II as the active compound. Separate measurements of photosystem I and II activity with spinach (Spinacia oleracea) thylakoid membranes indicated that the site of inhibition is located at photosystem II (PSII). In thermoluminescence measurements with thylakoid membranes and PSII-enriched membrane fragments M. spicatum extracts shifted the maximum temperature of the B-band (S(2)Q(B)(-) recombination) to higher temperatures. Purified tellimagrandin II in concentrations as low as 3 microM caused a comparable shift of the B-band. This demonstrates that the target site of this inhibitor is different from the Q(B)-binding site, a common target of commercial herbicides like 3-(3,4-dichlorophenyl)-1,1-dimethylurea. Measurements with electron paramagnetic resonance spectroscopy suggest a higher redox midpoint potential for the non-heme iron, located between the primary and the secondary quinone electron acceptors, Q(A) and Q(B). Thus, tellimagrandin II has at least two modes of action, inhibition of exoenzymes and inhibition of PSII. Multiple target sites are a common characteristic of many potent allelochemicals.  相似文献   

5.
C Jegersch?ld  I Virgin  S Styring 《Biochemistry》1990,29(26):6179-6186
Strong illumination of oxygen-evolving organisms inhibits the electron transport through photosystem II (photoinhibition). In addition the illumination leads to a rapid turnover of the D1 protein in the reaction center of photosystem II. In this study the light-dependent degradation of the D1 reaction center protein and the light-dependent inhibition of electron-transport reactions have been studied in thylakoid membranes in which the oxygen evolution has been reversibly inhibited by Cl- depletion. The results show that Cl(-)-depleted thylakoid membranes are very vulnerable to damage induced by illumination. Both the D1 protein and the inhibition of the oxygen evolution are 15-20 times more sensitive to illumination than in control thylakoid membranes. The presence, during the illumination, of the herbicide 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) prevented both the light-dependent degradation of the D1 protein and the inhibition of the electron transport. The protection exerted by DCMU is seen only in Cl(-)-depleted thylakoid membranes. These observations lead to the proposal that continuous illumination of Cl(-)-depleted thylakoid membranes generates anomalously long-lived, highly oxidizing radicals on the oxidizing side of photosystem II, which are responsible for the light-induced protein damage and inhibition. The presence of DCMU during the illumination prevents the formation of these radicals, which explains the protective effects of the herbicide. It is also observed that in Cl(-)-depleted thylakoid membranes, oxygen evolution (measured after the readdition of Cl-) is inhibited before electron transfer from diphenylcarbazide to dichlorophenolindophenol.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Wim F.J. Vermaas  Charles J. Arntzen   《BBA》1983,725(3):483-491
We have analyzed the binding of synthetic quinones and herbicides which inhibit electron transport at the acceptor side of Photosystem II (PS II) of the photosynthetic electron-transport chain in thylakoid membranes. These data show that quinones and PS II-directed herbicides compete for binding to a common binding environment within a PS II region which functions as the Q / PQ oxidoreductase. We observed that (1) synthetic quinones cause a parallel inhibition of electron transport and [14C]herbicide displacement, and (2) herbicide binding is affected both by the fully oxidized and fully reduced form of a quinone. Quinone function and inhibitor binding were also investigated in thylakoids isolated from triazine-resistant weed biotypes. We conclude the following. (1) The affinity of the secondary accepting quinone, B, is decreased in resistant thylakoids. (2) The observation that the equilibrium concentration of reduced Q after transferring one electron to the acceptor side of PS II is increased in resistant as compared to susceptible chloroplasts may be explained both by a decrease in the affinity of PQ for the herbicide / quinone binding environment, and by a decrease of the midpont redox potential of the B / B couple. (3) The binding environment regulating quinone and herbicide affinity may be divided roughly into two domains; we suggest that the domain regulating quinone head-group binding is little changed in resistant membranes, whereas the domain-regulating quinone side-group binding (and atrazine) is altered. This results in increased inhibitory activity of tetrachloro-p-benzoquinone and phenolic herbicides, which are hypothesized to utilize the quinone head-group domain. The two domains appear to be spatially overlapping because efficient atrazine displacement by tetrachloro-p-benzoquinone is observed.  相似文献   

7.
The effects of growth temperature on chloroplast responses to norflurazon and amitrole, two herbicides inhibiting carotenogenesis, at phytoene desaturation and lycopene cyclization, respectively, were studied in leaves of maize plants grown at 20 degrees C and 30 degrees C in light. At the lower temperature both chemicals caused severe photo-oxidative damage to chloroplasts. In organelles of norflurazon-treated leaves neither carotenoids nor chlorophylls were detectable and the thylakoid system was dismantled. In organelles of amitrole-treated leaves lycopene was accumulated, but small quantities of beta-carotene and xanthophylls were also produced. Moreover, some chlorophyll and a few inner membranes still persisted, although these latter were disarranged, lacking essential protein components and devoid of photosynthetic function. The increase in plant growth temperature to 30 degrees C did not change the norflurazon effects on carotenoid synthesis and the photo-oxidative damage suffered by chloroplasts. By contrast, in organelles of amitrole-treated leaves a large increase in photoprotective carotenoid biosynthesis occurred, with a consequent recovery of chlorophyll content, ultrastructural organization and thylakoid composition and functionality. This suggests that thermo-modulated steps could exist in the carotenogenic pathway, between the points inhibited by the two herbicides. Moreover it shows that, unlike C(3) species, C(4) species, such as maize, can express a strong tolerance to herbicides like amitrole, when supplied to plants growing at their optimum temperature conditions.  相似文献   

8.
Incubation of pea thylakoid membranes with [32P]-NAD+ in the presence of cholera toxin resulted in the [32P]-ADP-ribosylation of a 60 kDa thylakoid membrane polypeptide. When ATP was included in the incubation mixture, a 29 kDa polypeptide was also labelled. In the absence of electron transfer cofactors or inhibitors, the extent of labelling depended on whether the membranes were preincubated in the light or dark and also on the developmental stage of the leaves used for thylakoid isolation. Irrespective of the latter, the strongest labelling was observed when DCMU was present in the light. After pretreatment of the thylakoid membranes with cholera toxin plus NAD+ under the same conditions, light-stimulated GTPase activity and protein phosphorylation were inhibited. The extent of inhibition for both processes appeared to be correlated with the amount of [32P]-ADP-ribosylation found when [32P]-NAD+ was included in the pretreatment mixture. The data presented are fully consistent with the 60 and 29 kDa polypeptides functioning as thylakoid membrane associated guanine nucleotide binding regulatory proteins.  相似文献   

9.
After differential centrifugation of cell-free extracts of Chlorogloeopsis fritschii, 71% of the original glutamine synthetase (GS) activity was associated with the thylakoids, while little activity was detected in the cytoplasmic membranes. Monospecific antiserum to a purified GS inhibited 88% of the enzyme activity in solubilized thylakoid membranes. An antiserum raised against thylakoids gave 81% inhibition. However, using intact thylakoid membranes, only 7% inhibition was obtained with the GS antiserum, indicating that GS is located inside the thylakoid membranes.The author is with the Department of Biological Sciences, University of Science and Technology, Irbid, Jordan  相似文献   

10.
The antioxidant effects of thylakoid Vitamin E (α-tocopherol)   总被引:2,自引:1,他引:1  
Vitamin E (α-tocopherol) is essential for the prevention of photo-oxidative deterioration of biomembranes. The occurrence, relative biological activity and distribution of tocopherols in photosynthetic membranes is considered together with the possible biochemical and biophysical mechanisms by which tocopherols confer protection upon illuminated membranes. The common protective effects of Vitamin E in photo-synthetic membranes and in medically important light-induced diseases and conditions of the skin and eye in animal cell membranes are discussed. The importance of the Vitamin E-Vitamin C thylakoid antioxidant system is also examined, in terms of susceptibility to photo-oxidative damage under stress conditions including chilling, ageing and senescence, drought, atmospheric pollutants, herbicides and photosensitizing fungal toxins.  相似文献   

11.
Bicarbonate (or carbon dioxide) is required for electron transport in isolated broken pea chloroplasts. The site of action of the bicarbonate ion is between the primary electron acceptor of Photosystem 2, Q, and the plastoquinone pool. After trypsin treatment the Hill reaction with ferricyanide does not require bicarbonate. Photosystem 2 inhibiting herbicides act also at this site. Therefore, a possible interaction of bicarbonate and these herbicides in their effect on photosynthetic electron transport was studied.
The reciprocal of the Hill reaction rate in CO2-depleted chloroplasts was plotted against the reciprocal of added bicarbonate concentration in the absence and in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), 2-methoxy-4,6-bis (ethylamino)-1,3,5-triazine (simeton) or 4,6-dinitro- o -cresol (DNOC). From these Lineweaver-Burk plots we concluded that DCMU and simeton inhibit both bicarbonate binding and Vmax. There is a purely competitive inhibition of bicarbonate binding by DNOC. We suggest that DNOC may exert its inhibition of electron transport by removing bicarbonate from its binding site.
In isolated thylakoid membranes of Synechococcus leopoliensis we did not find a bicarbonate effect nor inhibition by DNOC after Q, indicating that in the thylakoids of this blue-green alga the binding site for bicarbonate and DNOC between Q and plastoquinone is absent.  相似文献   

12.
Light-induced phosphorylation of light-harvesting chlorophyll a/b complex II (LHCII) proteins in plant thylakoid membranes requires an activation of the LHCII kinase via binding of plastoquinol to cytochrome b(6)f complex. However, a gradual down-regulation of LHCII protein phosphorylation occurs in higher plant leaves in vivo with increasing light intensity. This inhibition is likely to be mediated by increasing concentration of thiol reductants in the chloroplast. Here, we have determined the components involved in thiol redox regulation of the LHCII kinase by studying the restoration of LHCII protein phosphorylation in thylakoid membranes isolated from high-light-illuminated leaves of pumpkin (Cucurbita pepo), spinach (Spinacia oleracea), and Arabidopsis. We demonstrate an experimental separation of two dynamic activities associated with isolated thylakoid membranes and involved in thiol regulation of the LHCII kinase. First, a thioredoxin-like compound, responsible for inhibition of the LHCII kinase, became tightly associated and/or activated within thylakoid membranes upon illumination of leaves at high light intensities. This reducing activity was completely missing from membranes isolated from leaves with active LHCII protein phosphorylation, such as dark-treated and low-light-illuminated leaves. Second, hydrogen peroxide was shown to serve as an oxidant that restored the catalytic activity of the LHCII kinase in thylakoids isolated from leaves with inhibited LHCII kinase. We propose a dynamic mechanism by which counteracting oxidizing and reducing activities exert a stimulatory and inhibitory effect, respectively, on the phosphorylation of LHCII proteins in vivo via a novel membrane-bound thiol component, which itself is controlled by the thiol redox potential in chloroplast stroma.  相似文献   

13.
Photosynthetic characteristics of detached green barley leavesafter 72 h of treatment with 0·2 mol m–3 of thepyridazinone herbicides SAN 6706, SAN 9785 and SAN 9789 werestudied. For comparison, the effects of 0·01 mol m–3diuron were also investigated. Pyridazinone herbicides causedonly a slight reduction of the total carotene content of thebarley leaves. The total chlorophyll content, as well as thelinolenic to linoleic acid ratio of chloroplast glycerolipids,however, remained unchanged. Diuron treatment caused total inhibitionof electron transport, as revealed by fast fluorescence inductionof leaves and the Hill reaction activity of chloroplasts. The14CO2-nxation by the leaves and the light-induced fluorescencequenching were also completely inhibited in vivo by diuron.Pyridazinone herbicides left 20–40% of the 14CO2-fixationfound in the control, in spite of the fact that their fast fluorescenceinduction tracings showed inhibition in the electron transport.Chloroplasts isolated from the leaves treated with pyridazinoneswere found to be highly active in mediating the ferricyanide-dependentHill reaction. In order to test the ability of pyridazinonesto inhibit photosynthetic electron transport in vivo, their‘prompt’ effect on fluorescence was also investigated.It is concluded that pyridazinone herbicides can readily andrapidly enter the chloroplasts and inhibit the photosyntheticelectron transport in vivo. The differences between the long-termeffects of pyridazinones and those of diuron suggest differencesin the inhibitory effectiveness on the various photosyntheticparameters between the two herbicide groups. It is suggestedthat pyridazinones can leave the chloroplasts during isolationowing to the loose binding onto the thylakoid membranes. Key words: Pyridazinone herbicides, electron transport, fluorescence induction  相似文献   

14.
Singh  Abhay K.  Singhal  G.S. 《Photosynthetica》1999,36(1-2):213-223
Irradiation of thylakoid membranes at 40 °C resulted in complete inhibition of photosystem (PS) 2 activity measured as 2,6-dichlorophenol indophenol (DCIP) photoreduction either in the absence or presence of 1,5-diphenylcarbazide (DPC). Concomitant with the inactivation of PS2 activity, several thylakoid proteins were lost and high molecular mass cross-linking products appeared that cross-reacted with antibodies against proteins of PS2 but not with antibodies against proteins of other three complexes PS1, ATP synthase, and cytochrome b6f. Irradiation of thylakoid membranes suspended in buffer of basic pH or high concentration of Tris at 25 °C resulted in the formation of cross-linking products similar to those in thylakoid membranes irradiated at 40 °C. Presence of radical scavengers and DPC during the high temperature treatment prevented the formation of cross-linking products. These results suggest the involvement of oxygen evolving co mplex (OEC) in the formation of cross-linking between PS2 proteins in thylakoid membrane irradiated at high temperature. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

15.
《BBA》1987,891(1):85-93
When spinach thylakoid membranes were treated with pancreatic phospholipase A2, phospholipids were degraded and the uncoupled non-cyclic electron-flow activity (from H2O to NADP+) was progressively inhibited. To discriminate between the relative contributions of the hydrolysis products (free fatty acids and lysophospholipids) and of the phospholipid depletion per se to inhibit the activity, we made use of the known property of bovine serum albumin to remove such hydrolysis products from membranes. Using careful washings and adequate lipid extraction procedures, we could ascertain that all hydrolysis products generated by phospholipase A2 were effectively removed from the thylakoid membrane by bovine serum albumin treatment. When bovine serum albumin was added to thylakoid membranes after various incubation times with the phospholipase A2, the electron-flow activity was rapidly, but not completely restored. However, when phospholipid hydrolysis exceeded a certain extent (70–85%), the activity was totally inhibited and its restoration by albumin was no longer possible. Addition of EGTA to the phospholipase A2-treated membranes blocked both the enzyme action and the progress of electron-flow inhibition. Under these conditions, the amplitude of the albumin-induced restoration of electron-flow rate did not depend on the time span between EGTA block and albumin addition. We show that phospholipid depletion of thylakoid membranes is entirely responsible for the irreversible (albumin-insensitive) inhibition of the electron flow from H2O to NADP+ by phospholipase A2. Plotting the extent (%) of this inhibition vs. the extent (%) of phospholipid depletion allowed us to distinguish three populations of both phosphatidylglycerol and phosphatidylcholine. The first one, which was easily accessible to the enzyme, did not support greatly the electron-flow activity (around 40% of each phospholipid destroyed vs. only 10% or less inhibition). On the other hand, the electron-flow activity strongly depended on the second, less accessible population of phospholipids (around 40% of each phospholipid destroyed vs. 90% inhibition). Finally, the third population of phospholipids was not involved in the uncoupled non-cyclic electron flow activity.  相似文献   

16.
A proteolytic enzyme responsible for the breakdown of a 22-kDa protein, whose abundance decreases in thylakoid membranes during germination of green spores of the fern Osmunda japonica , was partially purified from the thylakoid membranes of quiescent spores by a combination of ammonium sulfate fractionation, ion-exchange chromatography on DEAE-Toyopearl 650 S and size-fractionation HPLC on G3000SW. The enzyme was found to be a cysteine endoproteinase, as judged by its dependency on sulfhydryl reagents and inhibition by E-64 and iodoacetate, and by the appearance of distinct proteolytic products that were not further degraded during prolonged reaction time. Highest protease activity was observed around pH 9.7, the activity being partially suppressed by cations. The Km of the 22-kDa protein as a substrate in the proteolysis was 67 μg ml−1, equivalent to 3 μ M . The enzyme, with a native molecular mass of about 43 kDa, showed high specificity against the 22-kDa protein as a substrate. The isolated protease could not degrade the 22-kDa protein associated with fresh thylakoid membranes but digested the protein in the presence of 0.05% Triton X-100.  相似文献   

17.
18.
Changes of chloroplast thylakoid membrane stacks and Chl a/b ratio in the plumule of sacred lotus (Nelumbo nucifera Gaertn) seeds during their germination under light were as follows: Before germination there were giant grana and very low Chi a/b ratio (0.9) in the chloroplasts. Two days after germination, the thylakoid membranes of the giant grana gradually loosened and even destacked (disintegrated), the Chl a/b ratio was 1.06. Four clays after germination, the newly formed grana thylakoid membranes were 3–5 times shorter than those of the supergrana thylakoid membranes before germination and less grana stacks were seen; the Chl a/b ratio was 1.42. Six days after germination, the stacked thylakoi membranes became more orderly arranged. In addition the grana increased in number, the stroma thylakoid membranes were scarce, the Chl a/b ratio was 2.16. Eiglt days after germination, the thylakoid membranes in each granum decreased, but the total number of grana increased only slightly. In the meantime, some large starch grains and more stroma thylakoid membranes appeared; the Chl a/b ratio was 2.77. Ten days after germination normal thylakoid membrane structure was formed both in grana and stroma lamellae. They were arranged orderly as in the chloroplasts of other higher plants; the Chl a/b ratio was 2.80. The following conclusions could be drawn from the above mentioned results: 1) There was a negative correlation between the degree of stacking of the grana thylakoid membranes and the Chl a/b ratio. This statement further proved that the membranes stacking might mainly be induced by LHCII. 2) Development of the grana thylakoid membranes within chloroplasts from sacred lotus plumule followed that of the stroma thylakoid membranes, and the tendency of changes of their Chl 2/b ratio being from the lowest to the highest and then to normal were quite different from those of other higher plants. The chloroplasts iri the latter plants contain long parallel stacks of nonappressed primary thylakoids at second step, and the changes of their ratio of Chl a/b tend to be from the highest to the lowest and then to normal. There are indications that sacred lotus plumule might employ a distinctive developing pathway. This provides an important basis for Nelumbo to possess an unique position in phylogeny of Angiospermae.  相似文献   

19.
Plasma membranes were isolated and separated from thylakoid membranes by discontinuous sucrose density gradient centrifugation of crude membranes prepared by French pressure cell extrusion of lysozyme-treated Anacystis nidulans. Two distinct populations of chlorophyll-free plasma membrane vesicles were obtained exhibiting buoyant densities of 1.087 and 1.100 g/cm3 as opposed to a uniform density of 1.192 g/cm3 for thylakoid membranes. Plasma and thylakoid membranes were characteristically different also with respect to fatty acid and protein composition, cytochrome oxidase activity, and pigment content as analyzed by spectrophotometry, spectrofluorimetry, and high performance liquid chromatography. Apart from carotenoids, chlorophyll a was the only major photosynthetic pigment detected in thylakoid membranes while plasma membranes contained virtually no chlorophyll a but (besides large amounts of carotenoids) protochlorophyllide a and chlorophyllide a as revealed by solvent partition (between n-hexane and acetone or methanol), room and low temperature fluorescence emission and excitation spectra, and analytical separation and identification by high performance liquid chromatography and comparison with authentic standards. The protochlorophyllide in the plasma membrane could be transformed into chlorophyllide in the dark in vitro by incubating the membrane preparation with NADPH; NADP+ effected the reverse transition.  相似文献   

20.
Plasma and thylakoid membranes were isolated and purified from the cyanobacterium Anacystis nidulans. Spectrophotometric examination of acetone extracts gave major absorption bands resulting from carotenoids and chlorophyll a in plasma and thylakoid membranes, respectively. Only a very small absorption peak at 663 nm was detected in acetone extracts of plasma membranes which, in contrast to the corresponding peak from thylakoid membranes, could not be extracted into n-hexane; methanol, on the other hand, was effective with both plasma and thylakoid membranes. Aqueous membrane suspensions excited at 435 nm gave strong fluorescence emission at 662 nm for plasma membranes, but only a very small one for thylakoid membranes which had been adjusted to equal absorbance at 678 nm. Excitation spectra of the 668 nm fluorescence emission peak in acetone extracts of plasma and thylakoid membranes were strikingly different from each other. Finally, high performance liquid chromatography afforded clear-cut preparative separation of the two "chlorophyll-like" pigments in plasma and thylakoid membranes, respectively, and identification by comparison with retention characteristics known from the literature, together with a pure chlorophyll a standard. Our results indicate that the highly fluorescent and polar "chlorophyll-like" pigment in plasma membranes of Anacystis is a chlorophyll precursor, viz. chlorophyllide a.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号