首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Nitrogen oxides, such as nitric oxide, have been shown to regulate neuronal functions, including neurotransmitter release. We investigated the effect of S-nitroso-l -cysteine (SNC) on noradrenaline (NA) release in the rat hippocampus in vivo and in vitro. SNC stimulated [3H]NA release from prelabeled hippocampal slices in a dose-dependent manner. SNC stimulated endogenous NA release within 30 min to almost five times the basal level in vivo (microdialysis in freely moving rats). In a Na+-containing Tyrode's buffer, SNC-stimulated [3H]NA release was inhibited 30% by the coaddition of l -leucine. In the Na+-free, choline-containing buffer, SNC-stimulated [3H]NA release, which was similar to that in the Na+-containing buffer, was inhibited markedly by l -leucine, l -alanine, l -methionine, l -phenylalanine, and l -tyrosine. The effects of the other amino acids examined were smaller or very limited. The effect of l -leucine was stronger than that of d -leucine. A specific inhibitor of the L-type amino acid transporter, 2-aminobicyclo[2.2.1]-heptane-2-carboxylate (BCH), inhibited the effects of SNC on [3H]NA release in the Na+-free buffer. Uptake of l -[3H]leucine into the slices in the Na+-free buffer was inhibited by SNC, BCH, and l -phenylalanine, but not by l -lysine. The effect of SNC on cyclic GMP accumulation was not inhibited by l -leucine, although SNC stimulated cyclic GMP accumulation at concentrations up to 25 µM, much less than the concentration that stimulates NA release. These findings suggest that SNC is incorporated into rat hippocampus via the L-type-like amino acid transporter, at least in Na+-free conditions, and that SNC stimulates NA release in vivo and in vitro in a cyclic GMP-independent manner.  相似文献   

2.
Lakatos  M.  Baranyi  M.  Erőss  L.  Nardai  S.  Török  T. L.  Sperlágh  B.  Vizi  E. S. 《Neurochemical research》2020,45(1):16-33

The release of [3H]dopamine ([3H]DA) and [3H]noradrenaline ([3H]NA) in acutely perfused rat striatal and cortical slice preparations was measured at 37 °C and 17 °C under ischemic conditions. The ischemia was simulated by the removal of oxygen and glucose from the Krebs solution. At 37 °C, resting release rates in response to ischemia were increased; in contrast, at 17 °C, resting release rates were significantly reduced, or resting release was completely prevented. The removal of extracellular Ca2+ further increased the release rates of [3H]DA and [3H]NA induced by ischemic conditions. This finding indicated that the Na+/Ca2+ exchanger (NCX), working in reverse in the absence of extracellular Ca2+, fails to trigger the influx of Ca2+ in exchange for Na+ and fails to counteract ischemia by further increasing the intracellular Na+ concentration ([Na+]i). KB-R7943, an inhibitor of NCX, significantly reduced the cytoplasmic resting release rate of catecholamines under ischemic conditions and under conditions where Ca2+ was removed. Hypothermia inhibited the excessive release of [3H]DA in response to ischemia, even in the absence of Ca2+. These findings further indicate that the NCX plays an important role in maintaining a high [Na+]i, a condition that may lead to the reversal of monoamine transporter functions; this effect consequently leads to the excessive cytoplasmic tonic release of monoamines and the reversal of the NCX. Using HPLC combined with scintillation spectrometry, hypothermia, which enhances the stimulation-evoked release of DA, was found to inhibit the efflux of toxic DA metabolites, such as 3,4-dihydroxyphenylacetaldehyde (DOPAL). In slices prepared from human cortical brain tissue removed during elective neurosurgery, the uptake and release values for [3H]NA did not differ from those measured at 37 °C in slices that were previously maintained under hypoxic conditions at 8 °C for 20 h. This result indicates that hypothermia preserves the functions of the transport and release mechanisms, even under hypoxic conditions. Oxidative stress (H2O2), a mediator of ischemic brain injury enhanced the striatal resting release of [3H]DA and its toxic metabolites (DOPAL, quinone). The study supports our earlier findings that during ischemia transmitters are released from the cytoplasm. In addition, the major findings of this study that hypothermia of brain slice preparations prevents the extracellular calcium concentration ([Ca2+]o)-independent non-vesicular transmitter release induced by ischemic insults, inhibiting Na+/Cl?-dependent membrane transport of monoamines and their toxic metabolites into the extracellular space, where they can exert toxic effects.

  相似文献   

3.
We have previously shown that monoamine uptake blocker-type antidepressants with different chemical structure and selectivity are able to inhibit neuronal nicotinic acetylcholine receptors (nAChRs) in concentrations observed during antidepressant treatment. The mechanism of action of these drugs is similar to that of mecamylamine, a channel blocker-type antagonist of nAChRs. Since mecamylamine has been shown to block also NMDA receptors, our aim was to investigate whether the monoamine uptake blockers may affect the function of these ionotropic glutamate receptors.We studied, therefore the effect of the two most potent nicotinic antagonist antidepressants, the tricyclic desipramine and the selective serotonin reuptake inhibitor fluoxetine on the NMDA-induced [3H]noradrenaline ([3H]NA) release from rat hippocampal slices. The NMDA-induced hippocampal [3H]NA release was effectively blocked by the selective, non-competitive NMDA antagonist MK-801 (IC50 = 0.54 μM), indicating that the [3H]NA release was mediated through NMDA receptors. This response was also dose-dependently inhibited by desipramine (IC50 = 14.57 μM) and fluoxetine (IC50 = 41.06 μM). The Na+-channel blocker TTX equally inhibited both the electrical stimulation- and the NMDA-evoked [3H]NA release (the IC50 was 55 nM and 66 nM, respectively), whereas the antidepressants inhibited only the NMDA-evoked response. These data suggest that the inhibitory effect of fluoxetine and desipramine on the NMDA-evoked [3H]NA release is exerted directly on NMDA receptors rather than indirectly on Na+-channels.Due to accumulation processes the concentration of desipramine and fluoxetine in the brain might be in the same range as the observed IC50 values, thus our data indicate that monoamine uptake blocker-type antidepressants are able to influence the function of NMDA receptors during antidepressant treatment, and the inhibitory effect on NMDA receptors might contribute to the therapeutic effects of these drugs.  相似文献   

4.
The dependence of ascorbate uptake on external cations was studied in primary cultures of rat cerebral astrocytes. Initial rates of ascorbate uptake were diminished by lowering the external concentrations of either Ca2+ or Na+. The Na+-dependence of astroglial ascorbate uptake gave Hill coefficients of approximately 2, consistent with a Na+-ascorbate cotransport system having stoichiometry of 2 Na+1 ascorbate anion. Raising external K+ concentration incrementally from 5.4 to 100 mM, so as to depolarize the plasma membrane, decreased the initial rate of ascorbate uptake, with the degree of inhibition depending on the level of K+. The depolarizing ionophores gramicidin and nystatin slowed ascorbate uptake by astrocytes incubated in 5.4 mM K+; whereas, the nondepolarizing ionophore valinomycin did not. Qualitatively similar results were obtained whether or not astrocytes were pretreated with dibutyryl cyclic AMP (0.25 mM for 2 weeks) to induce stellation. These data are consistent with the existence of an electrogenic Na+-ascorbate cotransport system through which the rate of ascorbate uptake is modulated by endogenous agents, such as K+, that alter astroglial membrane potential.  相似文献   

5.
We have comparatively investigated the effects of Hardwickiic acid and Salvinorin A on the K+-evoked overflow of [3H]noradrenaline ([3H]NA) and [3H]dopamine ([3H]DA) from mouse hippocampal and striatal nerve terminals, respectively. The K+-evoked overflow of [3H]DA was inhibited in presence of Salvinorin A (100 nM) but not in presence of Hardwickiic acid (100 nM). Hardwickiic acid (100 nM) mimicked Salvinorin A (100 nM) in facilitating K+-evoked hippocampal [3H]NA overflow and the two compounds were almost equipotent. Facilitation of [3H]NA overflow caused by 100 nM Hardwickiic acid was prevented by the κ-opioid receptor (KOR) antagonist norbinaltorphimine (norBNI, 100 nM) and by the selective δ-opioid receptor (DOR) antagonist naltrindole (100 nM), but was not altered by 100 nM D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP), a selective μ-opioid receptor (MOR) antagonist. We conclude that Hardwickiic acid modulates hippocampal [3H]NA overflow evoked by a mild depolarizing stimulus by acting at presynaptic opioid receptor subtypes.  相似文献   

6.
Abstract: We have previously demonstrated that activation of the Na+-Ca2+ exchanger in the reverse mode causes Ca2+ influx in astrocytes. In addition, we showed that the exchange activity was stimulated by nitric oxide (NO)/cyclic GMP and inhibited by ascorbic acid. The present study demonstrates that the Na+-Ca2+ exchanger is involved in agonist-induced Ca2+ signaling in cultured rat astrocytes. The astrocytic intracellular Ca2+ concentration ([Ca2+]i) was increased by l -glutamate, noradrenaline (NA), and ATP, and the increases were all attenuated by the NO generator sodium nitroprusside (SNP). SNP also reduced the ionomycin-induced increase in [Ca2+]i. The Na-induced Ca2+ signal was also attenuated by S-nitroso-l -cysteine and 8-bromo cyclic GMP, whereas it was enhanced by 3,4-dichlorobenzamil, an inhibitor of the Na+-Ca2+ exchanger. Treatment of astrocytes with antisense, but not sense, deoxynucleotides to the sequence encoding the Na+-Ca2+ exchanger enhanced the ionomycin-induced increase in [Ca2+]i and blocked the effects of SNP and 8-bromo cyclic GMP in reducing the NA-induced Ca2+ signal. Furthermore, the ionomycin-induced Ca2+ signal was enhanced by removal of extracellular Na+ and pretreatment with ascorbic acid. These findings indicate that the Na+-Ca2+ exchanger is a target for NO modulation of elevated [Ca2+]i and that the exchanger plays a role in Ca2+ efflux when [Ca2+]i is raised above basal levels in astrocytes.  相似文献   

7.
Central pontine myelinolysis is one of the idiopathic or iatrogenic brain dysfunction, and the most common cause is excessively rapid correction of chronic hyponatraemia. While myelin disruption is the main pathology, as the diagnostic name indicates, a previous study has reported that astrocyte death precedes the destruction of the myelin sheath after the rapid correction of chronic low Na+ levels, and interestingly, certain brain regions (cerebral cortex, hippocampus, etc.) are specifically damaged but not cerebellum. Here, using primary astrocyte cultures derived from rat cerebral cortex and cerebellum, we examined how extracellular Na+ alterations affect astrocyte death and whether the response is different between the two populations of astrocytes. Twice the amount of extracellular [Na+] and voltage‐gated Na+ channel opening induced substantial apoptosis in both populations of astrocytes, while, in contrast, one half [Na+] prevented apoptosis in cerebellar astrocytes, in which the Na+–Ca2+ exchanger, NCX2, was highly expressed but not in cerebral astrocytes. Strikingly, the rapid correction of chronic one half [Na+] exposure significantly increased apoptosis in cerebellar astrocytes but not in cerebral astrocytes. These results indicate that extracellular [Na+] affects astrocyte apoptosis, and the response to alterations in [Na+] is dependent on the brain region from which the astrocyte is derived. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Astrocytes possess a concentrativel-ascorbate (vitamin C) uptake mechanism involving a Na+-dependentl-ascorbate transporter located in the plasma membrane. The present experiments examined the effects of deprivation and supplementation of extracellularl-ascorbate on the activity of this transport system. Initial rates ofl-ascorbate uptake were measured by incubating primary cultures of rat astrocytes withl-[14C]ascorbate for 1 min at 37°C. We observed that the apparent maximal rate of uptake (V max) increased rapidly (<1 h) when cultured cells were deprived ofl-ascorbate. In contrast, there was no change in the apparent affinity of the transport system forl-[14C]ascorbate. The increase inV max was reversed by addition ofl-ascorbate, but notD-isoascorbate, to the medium. The effects of external ascorbate on ascorbate transport activity were specific in that preincubation of cultures withl-ascorbate did not affect uptake of 2-deoxy-D-[3H(G)]glucose. We conclude that the astroglial ascorbate transport system is modulated by changes in substrate availability. Regulation of transport activity may play a role in intracellular ascorbate homeostasis by compensating for regional differences and temporal fluctuations in external ascorbate levels.  相似文献   

9.
Effects of two triterpene glycosides, isolated from the holothurian Psolus fabricii, on rat brain Na+,K+-ATPase (Na,K-pump; EC 3.6.1.3) were investigated. Psolusosides A and B (PsA and PsB) inhibited rat brain Na+,K+-ATPase with I50 values of 1×10−4 M and 3×10−4 M, respectively. PsA significantly stimulated [3H]ATP binding to Na+,K+-ATPase, weakly increased [3H]ouabain binding to the enzyme, and inhibited K+-phosphatase activity to a smaller degree than the total reaction of ATP hydrolysis. In contrast, PsB decreased [3H]ATP binding to Na+,K+-ATPase, and had no effect on [3H]ouabain binding to the enzyme. K+-Phosphatase activity was inhibited by PsB in parallel with Na+,K+-ATPase activity. The fluorescence intensity of tryptophanyl residues of Na+,K+-ATPase was increased by PsA and decreased by PsB in a dose-dependent manner. The excimer formation of pyrene, a hydrophobic fluorescent probe, was decreased by PsA only. The different characteristics of inhibition mode for these substances were explained by peculiarities of their chemical structures and distinctive affinity to membrane cholesterol.  相似文献   

10.
A high affinity (KD 35 nM) binding site for [3H]cocaine is detected in rat brain Striatum present at 2–3 pmol/mg protein of synaptic membranes. This binding is displaced by cocaine analogues with the same rank order as their inhibition of [3H]dopamine ([3H]DA) uptake into striatal synaptosomes (r = 0.99), paralleling the order of their central stimulant activity. The potent DA uptake inhibitors nomifensine, mazindol, and benztropine are more potent inhibitors of this high affinity [3H]cocaine binding than desipramine and imipramine. Cathinone and amphetamine, which are more potent central stimulants than cocaine, displace the high affinity [3H] cocaine binding stereos-pecifically, but with lower potency (IC50 ~ 1μM) than does cocaine. It is suggested that the DA transporter in Striatum is the putative “cocaine receptor.

Binding of [3H] cocaine, measured in 10 mM Na2HPO4-0.32 M sucrose, pH 7.4 buffer, is inhibited by physiologic concentrations of Na+ and K+ and by biogenic amines. DA and Na+ reduce the affinity of the putative “cocaine receptor” for [3H]cocaine without changing the Bmax, suggesting that inhibition may be competitive. However, TRIS reduces [3H]cocaine binding non-competitively while Na+ potentiates it in TRIS buffer. Binding of [3H]mazindol is inhibited competitively by cocaine. In phosphate-sucrose buffer, cocaine and mazindol are equally potent in inhibiting [3H]mazindol binding, but in TRIS-NaCl buffer cocaine has 10 times lower potency. It is suggested that the cocaine receptor in the striatum may be an allosteric protein with mazindol and cocaine binding to overlapping sites, while Na+ and DA are allosteric modulators, which stabilize a lower affinity state for cocaine.  相似文献   

11.
Abstract— The treatment of cerebellar membranes of rat brain with a low concentration of Triton X-100 followed by sufficient washing results in an increase of the Na+-independent binding of [3H]GABA and a total loss of the Na +-dependent binding of [3H]GABA. The Na+-independent binding of [3H]GABA was more abundant in membranes of cerebellum than in membranes of other rat brain regions and mainly localized in the synaptic membrane fraction of a cerebellar homogenate. In the Triton-treated membranes, the Na+-independent binding of [3H]GABA was a saturable process, which could be resolved into two components, a high and a low affinity component with dissociation constants of 4.5 and 30 nm , respectively. The neurophysiological agonists, muscimol, GABA, and imidazole acetic acid, and the antagonist, bicuculline, inhibited the high affinity Na+-independent binding of [3H]GABA by 50% at 0.003, 0.012, 0.3 and 10 μm respectively. These data suggest that the Na+-independent binding of [3H]GABA in the Triton-treated cerebellar membranes represents the synaptic receptors of GABA. It is emphasized that extensive washing of the membranes after a Triton treatment is necessary in order to detect the high affinity Na+-independent binding of [3H]GABA.  相似文献   

12.
Experimental data suggest that halothane anesthesia is associated with significant changes in dopamine (DA) concentration in some brain regions but the mechanism of this effect is not well known. Rat brain cortical slices were labeled with [3H]DA to further characterize the effects of halothane on the release of this neurotransmitter from the central nervous system. Halothane induced an increase on the release of [3H]DA that was dependent on incubation time and anesthetic concentration (0.012, 0.024, 0.048, 0.072 and 0.096 mM). This effect was independent of extracellular or intracellular calcium. In addition, [3H]DA release evoked by halothane was not affected by TTX (blocker of voltage-dependent Na+ channels) or reserpine (a blocker of vesicular monoamine transporter). These data suggest that [3H]DA release induced by halothane is non-vesicular and would be mediated by the dopamine transporter (DAT) and norepinephrine transporter (NET). GBR 12909 and nomifensine, inhibitors of DAT, decreased the release of [3H]DA evoked by halothane. Nisoxetine, a blocker of NET, reduced the release of [3H]DA induced by halothane. In addition, GBR 12909, nisoxetine and, halothane decrease the uptake of [3H]DA into rat brain cortical slices. A decrease on halothane-induced release of [3H]DA was also observed when the brain cortical slices were incubated at low temperature and low extracellular sodium, which are known to interfere with the carrier-mediated release of the neurotransmitter. Ouabain, a Na+/K+ ATPase pump inhibitor, which induces DA release through reverse transport, decreased [3H]DA release induced by halothane. It is suggested that halothane increases [3H]DA release in brain cortical slices that is mediated by DAT and NET present in the plasma membrane.  相似文献   

13.
The effect of 2-receptor blockage on the extraneuronal turnover of noradrenaline (NA) has been studied in the intact rat brain. Tropolone and yohimbine, along with reserpine or desmethylimipramine, were given 30 min after intracerebroventricular injection of [7-3H]NA, i.e. after the tracer had been stored or inactivated. Tropolone given alone did not change the fractions of3H-activity recovered as [3H]NA from hypothalamus, septum, striatum and pons-medulla, but in the presence of yohimbine improved the [3H]NA recovery in all areas except pons-medulla. The maximum effect was seen in the hypothalamus of reserpine-treated rats. Since the 2-autoreceptors were blocked, the increased [3H]NA recovery does not reflect a down-regulated neuronal NA turnover. Instead it seems to show that a fraction greater than normal of neuronally released NA had been taken up into astrocytes and remained unmetabolized if catechol-O-methyltransferase was inactive. It is assumed that yohimbine enabled the protective tropolone effect by blocking astrocytic 2-receptors that otherwise, either by itself or by antagonizing -receptor-induced hyperpolarization or cAMP formation, had impaired parameters that stimulate the high-affinity NA Uptake1 of astrocytes (e.g. membrane potential, Na+, K+-ATPase) or control the gap junction permeability in the glial syncytium.  相似文献   

14.
Abstract: Primary astrocyte cultures from neonatal rat brains show uptake of [3H]norepinephrine ([3H]NE). This uptake has a high-affinity component with an apparent Km of approximately 3 × 10?7 M. At 10?7 M [3H]NE both the initial rate of uptake and steady-state content of [3H]NE is inhibited by up to 95% by omission of external Na+. The Na+-dependent component of this uptake is totally inhibited by the tricyclic antidepressants desipramine (DMI) and amitryptyline with IC50 values of 2 × 10?9 and 4 × 10?8 M, respectively. Inhibition of [3H]NE uptake by DMI shows competitive kinetics. These characteristics are essentially identical to those found for high-affinity uptake of NE in total membrane or synaptosome fractions from rodent brains and suggests that such uptake in neural tissue is not exclusively neuronal.  相似文献   

15.
Na+ dependent [3H]glutamine uptake was found in liposomes reconstituted with solubilized rat kidney brush border in the presence of intraliposomal K+. The reconstituted system was optimised with respect to the critical parameters of the cyclic detergent removal procedure, i.e., the detergent used for the solubilization, the protein concentration, the detergent/phospholipid ratio and the number of passages through a single Amberlite column. Time dependent [3H]glutamine accumulation in proteoliposomes occurred only in the presence of external Na+and internal K+. The transporter showed low if there is any tolerance towards the substitution of Na+ or K+ for other cations. Valinomycin strongly stimulated the transport indicating that it is electrogenic. Intraliposomal glutamine had no effect. From the dependence of the transport rate on the Na+ concentration cooperativity index close to 1 was derived, indicating that 1 Na+ should be involved in the cotransport with glutamine. The electrogenicity of the transport originated from the Na+ transport. Optimal rate of 0.1 mM [3H]glutamine uptake was found in the presence of 50 mM intraliposomal K-gluconate. At higher K-gluconate concentrations the transport rate decreased. The activity of the reconstituted transporter was pH dependent with optimal function in the range pH 6.5-7.0. [3H]glutamine (and [3H]leucine) uptake was inhibited by all the neutral but not by the positively or negatively charged amino acids. The sulfhydryl reagents HgCl2, mersalyl, p-hydroxymercuribenzoate and the substrate analogue 2-aminobicyclo[2,2,1]heptane-2-carboxylate strongly inhibited the transporter, whereas the amino acid analogue α-(methylamino)isobutyrate had no effect. The inhibition by mersalyl was protected by the presence of the substrate. On the basis of the Na+ dependence, the electrogenic transport mode and the specificity towards the amino acids, the reconstituted transporter was classified as B°-like.  相似文献   

16.
Sodium plays a major role in different astrocytic functions, including maintenance of ion homeostasis and uptake of neurotransmitters and metabolites, which are mediated by different Na+-coupled transporters. In the current study, the role of an electrogenic sodium-bicarbonate cotransporter (NBCe1), a sodium-potassium-chloride transporter 1 (NKCC1) and sodium-potassium ATPase (Na+-K+-ATPase) for the maintenance of [Na+]i was investigated in cultured astrocytes of wild-type (WT) and of NBCe1-deficient (NBCe1-KO) mice using the Na+-sensitive dye, asante sodium green-2. Our results suggest that cytosolic Na+ was higher in the presence of CO2/HCO3 (15 mM) than CO2/HCO3-free, HEPES-buffered solution in WT, but not in NBCe1-KO astrocytes (12 mM). Surprisingly, there was a strong dependence of cytosolic [Na+] on the extracellular [HCO3] attributable to NBCe1 activity. Pharmacological blockage of NKCC1 with bumetanide led to a robust drop in cytosolic Na+ in both WT and NBCe1-KO astrocytes by up to 6 mM. There was a strong dependence of the cytosolic [Na+] on the extracellular [K+]. Inhibition of the Na+-K+-ATPase led to larger increase in cytosolic Na+, both in the absence of K+ as compared with the presence of ouabain and in NBCe1-KO astrocytes as compared with WT astrocytes. Our results show that cytosolic Na+ in mouse cortical astrocytes can vary considerably and depends greatly on the concentrations of HCO3 and K+, attributable to the activity of the Na+-K+-ATPase, of NBCe1 and NKCC1.  相似文献   

17.
Summary Ascorbic acid is essential for the formation of bone by osteoblasts, but the mechanism by which osteoblasts transport ascorbate has not been investigated previously. We examined the uptake ofl-[14C]ascorbate by a rat osteoblast-like cell line (ROS 17/2.8) and by primary cultures of rat calvaria cells. In both systems, cells accumulatedl-[14C]ascorbate during incubations of 1–30 min at 37°C. Unlike propionic acid, which diffuses across membranes in protonated form, ascorbic acid did not markedly alter cytosolic pH. Initial ascorbate uptake rate saturated with increasing substrate concentration, reflecting a high-affinity interaction that could be described by Michaelis-Menten kinetics (apparentK m =30±2 m andV max=1460±140 nmol ascorbate/g protein/min in ROS 17/2.8 cells incubated with 138mm extracellular Na+). Consistent with a stereoselective carrier-mediated mechanism, unlabeledl-ascorbate was a more potent inhibitor (IC50=30±5 m) ofl-[14C]ascorbate transport than wasd-isoascorbate (IC50=380±55 m). Uptake was dependent on both temperature and Na+, since it was inhibited by cooling to 4°C and by substitution of K+, Li+ or N-methyl-d-glucamine for extracellular Na+. Decreasing the external Na+ concentration lowered both the affinity of the transporter for ascorbate and the apparent maximum velocity of transport. We conclude that osteoblasts possess a stereoselective, high-affinity, Na+-dependent transport system for ascorbate. This system may play a role in the regulation of bone formation.  相似文献   

18.
The release of [3H]GABA induced by elevated extracellular potassium (K)o, from thin rat brain cortex slices, has been compared with that of [3H]noradrenaline ([3H]NA), released by the same procedures, both from normal slices, and from slices pre-treated with reserpine and nialamide, [3H]NA being predominantly a vesicular component in the former situation, and a soluble substance in the latter one. 46 mM-(K)o released considerably more [3H]NA from normal than from drug-treated slices, while the release of GABA was about two thirds of the latter. When 4min ‘pulses’ of increasing concentrations of potassium were applied, it was observed that the release of GABA and of [3H]NA from drug-treated slices increased in proportion to (K)o, up to 36-46 mM and then declined considerably with higher (K)o. The dependency of potassium-induced release on the concentration of calcium in the medium, indicated that release of [3H]NA from normal slices was proportional to calcium up to 1.5-2 mM, while that of [3H]NA from drug-treated slices increased up to 0.5 mM-Calcium, and then declined with higher concentrations. GABA release also increased up to 0.5 mM-calcium, but no further changes were observed at higher concentrations. The calcium antagonist D-600 inhibited high (K)o-induced release of [3H]NA from normal slices to a greater extent than that of [3H]GABA or of [3H]NA from drug-treated slices. These results, in which elevated (K)o-induced release of [3H]GABA resembles considerably that of soluble NA, but differs from that of NA present in synaptic vesicles, suggest that release of [3H]GABA also occurs from the soluble cytoplasmic compartment, and that the partial calcium requirement that is found is unrelated to that of transmitter secretion. These findings are also a further indication of the lack of specificity of elevated (K)o as a stimulus for inducing transmitter secretions.  相似文献   

19.
We examined the metabolic and ionoregulatory responses of the Amazonian cichlid, Astronotus ocellatus, to 20 h exposure to severe hypoxia (0.37 ± 0.19 mg O2/l; 4.6% air saturation) or 8 h severe hypoxia followed by 12 h recovery in normoxic water. During 20 h exposure to hypoxia, white muscle [ATP] was maintained at normoxic levels primarily through a 20% decrease in [creatine phosphate] (CrP) and an activation of glycolysis yielding lactate accumulation. Muscle lactate accumulation maintained cytoplasmic redox state ([NAD+]/[NADH]) and was associated with an inactivation of the mitochondrial enzyme pyruvate dehydrogenase (PDH). The inactivation of PDH was not associated with significant changes in cytoplasmic allosteric modulators ([ADPfree], redox state, or [pyruvate]). Hypoxia exposure caused a ∼65% decrease in gill Na+/K+ ATPase activity, which was not matched by changes in Na+/K+ ATPase α-subunit protein abundance indicating post-translational modification of Na+/K+ ATPase was responsible for the decrease in activity. Despite decreases in gill Na+/K+ ATPase activity, plasma [Na+] increased, but this increase was possibly due to a significant hemoconcentration and fluid shift out of the extracellular space. Hypoxia caused an increase in Na+/K+ ATPase α-subunit mRNA abundance pointing to either reduced mRNA degradation during exposure to hypoxia or enhanced expression of Na+/K+ ATPase α-subunit relative to other genes.  相似文献   

20.
Summary Photophores of Porichthys notatus were examined by electron-microscopic radioautography following incubation in tritiated noradrenaline ([3H]NA) or serotonin ([3H]5-HT). Nerve varicosities surrounding the photocytes were found to accumulate [3H]NA but not [3H]5-HT, providing compelling evidence for the catecholaminergic nature of the monoaminergic innervation of photophores. The photocytes themselves appeared selectively labelled with both tracers, but the intensity of labelling after [3H]5-HT incubation was considerably greater than after [3H]NA. Stereological sampling of organelle content in photocytes showed ultrastructural differences between [3H]NA- and [3H]5-HT-labelled cells, probably related to light emission induced by NA. The main changes noted after incubation with [3H]NA were mitochondrial swelling and disorganization, increased coalescence of photocytic vesicles and extrusion of vesicular material into the extracellular matrix. With respect to the subcellular localization of [3H]NA and [3H]5-HT within the photocytes, statistical analysis of the distribution of silver grains disclosed a preferential affinity of both labels for appositional zones between mitochondria and coalescent vesicles. Moreover, in the case of 5-HT, selective affinity was also exhibited by sites comprising vesicular membrane and adjacent cytoplasm, suggesting binding of this biogenic amine to the entire membrane of photocytic vesicles.Supported by grants from the Natural Sciences and Engineering Research Council (M.A.), and Medical Research Council of Canada (L.D.). Dr. Pierre Legendre kindly provided advice on statistical methods  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号