首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this work was to study the effect of antimicrobial peptides: divergicin M35 and nisin A on Listeria monocytogenes LSD 530 potassium (K+) channels: ATP-sensitive (KATP), calcium-activated (BKCa), and depolarization-activated (Kv) types. Increase on K+ efflux and inhibition of cellular growth were observed after adding K+ channel activators pinacidil, NS1619, and cromakalim to divergicin M35. Increase in K+ efflux from log-phase cells was about 18 ± 1.1, 11 ± 0.63, and nmol mg−1 of cell dry weight (CDW) for pinacidil and NS1619, respectively, over the efflux obtained with divergicin M35 alone. Increases in K+ efflux obtained by adding the same K+ channel activators to nisin A fit a completely different profile. Divergicin M35 activates K+ channels, particularly of the Kv and BKCa types and to a lesser extent the KATP type, causing K+ efflux and consequently cell death.  相似文献   

2.
Summary A nisin-sensitive strain ofPediococcus sp possessed an uptake system for K+ which was apparently dependent on metabolic energy and ATPase activity. K+ uptake rate was dependent on the glucose and K+ concentrations and showed approximately Michaelis-Menten kinetics with respect to both of these variables with Kt values of 1.2 mM and 599 μM respectively. The presence of nisin inhibited K+ uptake with the percentage inhibition proportional to the nisin activity,. Total inhibition occurred at between 4.5 and 5.0 IU ml−1 and the MIC was approximately 0.6 IU ml−1.  相似文献   

3.
K+-conductive pathways were evaluated in isolated surface and crypt colonic cells, by measuring 86Rb efflux. In crypt cells, basal K+ efflux (rate constant: 0.24 ± 0.044 min−1, span: 24 ± 1.3%) was inhibited by 30 mM TEA and 5 mM Ba2+ in an additive way, suggesting the existence of two different conductive pathways. Basal efflux was insensitive to apamin, iberiotoxin, charybdotoxin and clotrimazole. Ionomycin (5 μM) stimulated K+ efflux, increasing the rate constant to 0.65 ± 0.007 min−1 and the span to 83 ± 3.2%. Ionomycin-induced K+ efflux was inhibited by clotrimazole (IC50 of 25 ± 0.4 μM) and charybdotoxin (IC50 of 65 ± 5.0 nM) and was insensitive to TEA, Ba2+, apamin and iberiotoxin, suggesting that this conductive pathway is related to the Ca2+-activated intermediate-conductance K+ channels (IKca). Absence of extracellular Ca2+ did neither affect basal nor ionomycin-induced K+ efflux. However, intracellular Ca2+ depletion totally inhibited the ionomycin-induced K+ efflux, indicating that the activation of these K+ channels mainly depends on intracellular calcium liberation. K+ efflux was stimulated by intracellular Ca2+ with an EC50 of 1.1 ± 0.04 μM. In surface cells, K+ efflux (rate constant: 0.17 ± 0.027 min−1; span: 25 ± 3.4%) was insensitive to TEA and Ba2+. However, ionomycin induced K+ efflux with characteristics identical to that observed in crypt cells. In conclusion, both surface and crypt cells present IKCa channels but only crypt cells have TEA- and Ba2+-sensitive conductive pathways, which would determine their participation in colonic K+ secretion.  相似文献   

4.
Nisin Z, a natural nisin variant, was recently isolated from Lactococcus lactis subspecies lactis NIZO 22186. The gene for this lantibiotic, designated nisZ, has been cloned, and its nucleotide sequence was found to be identical to that of the precursor nisin gene with the exception of a single mutation resulting in the substitution of Asn-27 for His-27 in the mature polypeptide (J. W. M. Mulders, I. J. Boerrigter, H. S. Rollema, R. J. Siezen, and W. M. de Vos, Eur. J. Biochem. 201:581-584, 1991). A K+ electrode was used to investigate the effect of various environmental parameters on the action of nisin Z against Listeria monocytogenes. Addition of nisin Z resulted in immediate loss of cell K+, depolarization of the cytoplasmic membrane, inhibition of respiratory activity, and hydrolysis and partial efflux of cellular ATP. The action of nisin Z was optimal at pH 6.0 and was significantly reduced by di- and trivalent cations. The lanthanide gadolinium (Gd3+) was an efficient inhibitor and prevented nisin Z activity completely at a concentration of 0.2 mM. Nisin Z-induced loss of cell K+ was reduced at low temperatures, presumably as a result of the increased ordering of the lipid hydrocarbon chains in the cytoplasmic membrane. In cells grown at 30°C, the action of nisin Z was prevented below 7°C, whereas in cells grown at 4°C nisin Z was able to induce K+ leakage at this low temperature.  相似文献   

5.
+ and Na+ transport in RBCs from control mice (C57Bl/6J) and a transgenic (αHβSMDD]) mouse line that expresses high levels of human αH and βS-chains and has a small percent dense cells but does not exhibit anemia. In transgenic mouse RBCs (n= 5) under oxygenated conditions, K+ efflux was 0.22 ± 0.01 mmol/L cell × min and Na+ influx was 0.17 ± 0.02 mmol/L cell × min. Both fluxes were stimulated by 10 min deoxygenation in transgenic but not in control mice. The deoxy-stimulated K+ efflux from transgenic mouse RBCs was about 55% inhibited by 5 nm charybdotoxin (CTX), a blocker of the calcium activated K+-channel. To compare the fluxes between human and mouse RBCs, we measured the area of mouse RBCs and normalized values to area per liter of cells. The deoxy-simulated CTX-sensitive K+ efflux was larger than the CTX-sensitive K+ efflux observed in RBCs from SS patients. These results suggest that in transgenic mice, deoxygenation increases cytosolic Ca2+ to levels which open Ca2+-activated K+ channels. The presence of these channels was confirmed in both control and transgenic mice by clamping intracellular Ca2+ at 10 μm with the ionophore A23187 and measuring Ca2+-activated K+ efflux. Both types of mouse had similar maximal rates of CTX-sensitive, Ca2+-activated K+ efflux that were similar to those in human SS cells. The capacity of the mouse red cell membrane to regulate cytosolic Ca2+ levels was examined by measurements of the maximal rate of calmodulin activated Ca2+-ATPase activity. This activity was 3-fold greater than that observed in human RBCs thus indicating that mouse RBC membranes have more capacity to regulate cytosolic Ca2+ levels. In summary, transgenic mouse RBCs exhibit larger values of deoxy-stimulated K+ efflux and Na+ influx when compared to human SS cells. They have a similar Ca2+-activated K+ channel activity to human SS cells while expressing a very high Ca2+ pump activity. These properties may contribute to the smaller percent of very dense cells and to the lack of adult anemia in this animal model. Received: 23 October/Revised: 15 May 1997  相似文献   

6.
The change of intracellular pH of erythrocytes under different experimental conditions was investigated using the pH-sensitive fluorescent dye BCECF and correlated with (ouabain + bumetanide + EGTA)-insensitive K+ efflux and Cl loss. When human erythrocytes were suspended in a physiological NaCl solution (pH o = 7.4), the measured pH i was 7.19 ± 0.04 and remained constant for 30 min. When erythrocytes were transferred into a low ionic strength (LIS) solution, an immediate alkalinization increased the pH i to 7.70 ± 0.15, which was followed by a slower cell acidification. The alkalinization of cells in LIS media was ascribed to a band 3 mediated effect since a rapid loss of approximately 80% of intracellular Cl content was observed, which was sensitive to known anion transport inhibitors. In the case of cellular acidification, a comparison of the calculated H+ influx with the measured unidirectional K+ efflux at different extracellular ionic strengths showed a correlation with a nearly 1:1 stoichiometry. Both fluxes were enhanced by decreasing the ionic strength of the solution resulting in a H+ influx and a K+ efflux in LIS solution of 108.2 ± 20.4 mmol (l cells hr)−1 and 98.7 ± 19.3 mmol (l cells hr)−1, respectively. For bovine and porcine erythrocytes, in LIS media, H+ influx and K+ efflux were of comparable magnitude, but only about 10% of the fluxes observed in human erythrocytes under LIS conditions. Quinacrine, a known inhibitor of the mitochondrial K+(Na+)/H+ exchanger, inhibited the K+ efflux in LIS solution by about 80%. Our results provide evidence for the existence of a K+(Na+)/H+ exchanger in the human erythrocyte membrane. Received: 22 December 1999/Revised: 10 April 2000  相似文献   

7.
We examined the effects of pH, internal ionized Ca (Ca2+ i ), cellular ATP, external divalent cations and quinine on Cl-independent ouabain-resistant K+ efflux in volume-clamped sheep red blood cells (SRBCs) of normal high (HK) and low (LK) intracellular K+ phenotypes. In LK SRBCs the K+ efflux was higher at pH 9.0 (350%) than at pHs 7.4 and 6.5, and was inhibited by external divalent cations, quinine, and cellular ATP depletion. The above findings suggest that the increased K+ efflux at alkaline pH is due to the opening of ion channels or specific transporters in the cell membrane. In addition, K+ efflux was activated (100%) when Ca2+ i was increased (+A23187, +Ca2+ o ) into the μm range. However, in comparison to human red blood cells, the Ca2+ i -induced increase in K+ efflux in LK SRBCs was fourfold smaller and insensitive to quinine and charybdotoxin. The Na+ efflux was also higher at pH 9.0 than at pH 7.4, and activated (about 40%) by increasing Ca2+ i . In contrast, in HK SRBCs the K+ efflux at pH 9.0 was neither inhibited by quinine nor activated by Ca2+ i . These studies suggest the presence in LK SRBCs, of at least two pathways for Cl-independent K+ and Na+ transport, of which one is unmasked by alkalinization, and the other by a rise in Ca2+ i . Received: 23 May 1996/Revised: 6 December 1996  相似文献   

8.
Efflux and tissue content of N-acetylaspartate (NAA) and amino acids were evaluated from cultured and acutely prepared hippocampal slices in response to changes in osmolarity. The osmoregulator taurine, but not NAA, was lost from both types of slices after moderate reductions in extracellular osmolarity (−60 mOsm) for 10–48 h. Hypoosmotic shock (−166 mOsm) for 5 min resulted in unselective efflux of several amino acids from acutely prepared slices. Notably, the efflux of taurine, but not NAA, was prominent also after the shock. Efflux of NAA was markedly enhanced by NMDA and high K+, in particular after the stimulation period. The high K+-mediated efflux was decreased by high extracellular osmolarity and a NMDA-receptor antagonist. The results indicate that NAA efflux can be induced by a sudden non-physiological decrease in extracellular osmolarity but not by prolonged more moderate changes in osmolarity. The mechanisms behind the efflux of NAA by high K+ are complex and may involve both swelling and activation of NMDA-receptors.  相似文献   

9.
39K nuclear magnetic resonance was used to measure the efflux of K+ from suspensions of human erythrocytes [red blood cells (RBCs)], that occurred in response to the calcium ionophore, A23187 and calcium ions; the latter activate the Gárdos channel. Signals from the intra- and extracellular populations of 39K+ were selected on the basis of their longitudinal relaxation times, T 1, by using an inversion- recovery pulse sequence with the mixing time, τ1, chosen to null one or other of the signals. Changes in RBC volume consequent upon efflux of the ions also changed the T 1 values so a new theory was implemented to obviate a potential artefact in the data analysis. The velocity of the K+ efflux mediated by the Gárdos channel was 1.19±0.40 mmol (L RBC)−1 min−1 at 37°C.  相似文献   

10.
Summary Measurements are described of fusicoccin (FC)-stimulated H+ efflux in barley (Hordeum vulgare L.) roots when K+ and Na+ concentrations were varied. In low-salt roots H+ efflux was stimulated in both 5 mM KCl and NaCl. In salt-saturated roots H+ efflux was stimulated more effectively in KCl than in NaCl solution. The stimulation of H+ efflux thus is parallel with the selectivity of these different root preparations for K+ and Na+ and with estimates of permeability ratios (P Na/P K) determined from electrical measurements. It is suggested that the results support electrogenic coupling between FC-stimulated H+ efflux and cation uptake.  相似文献   

11.
The peculiarities of osmoregulation of circulating red blood cells of the stenohaline giant gobyGobius cobitis and the euryhaline toad gobyGobius batrachocephalus have been studied under experimental conditions. In the giant goby, volume of the red blood cells increased steadily by 10.6–18.1% (p < 0.05) after reduction of the medium salinity from 15–17 to 6.0–6.8‰ and this volume increase remained during the entire experimental period (40–45 days). Lysis of red blood cells was noticed in some cases, which was indicated by a decrease of the number of red blood cells and an increase of concentration of free hemoglobin in the blood plasma. No similar reactions were observed in the euryhaline toad goby; the mean cell volume did not change statistically significantly. The volume regulation resulted in K+ efflux from red blood cells. The blood red cells of the toad goby had a high resistance to osmotic stress. The Na+,K+-ATPase activity in the red blood cell membranes of the toad goby was higher by 18.8% (p < 0.001) than in the giant goby.  相似文献   

12.
Potassium or Na+ efflux ATPases, ENA ATPases, are present in all fungi and play a central role in Na+ efflux and Na+ tolerance. Flowering plants lack ENA ATPases but two ENA ATPases have been identified in the moss Physcomitrella patens, PpENA1 and PpENA2. PpENA1 mediates Na+ efflux in Saccharomyces cerevisiae. To propose a general function of ENA ATPases in bryophytes it was necessary to demonstrate that these ATPases mediate Na+ efflux in planta and that they exist in more bryophytes than P. patens. For these demonstrations (1) we cloned a third ATPase from P. patens, PpENA3, and studied the expression pattern of the three PpENA genes; (2) we constructed and studied the single and double Δppena1 and Δppena2 mutants; and (3) we cloned two ENA ATPases from the liverwort Marchantia polymorpha, MpENA1 and MpENA2, and expressed them in S. cerevisiae. The results from the first two approaches revealed that the expression of ENA ATPases was greatly enhanced at high pH and that Na+ efflux at high pH depended on PpENA1. The ENA1 ATPase of M. polymorpha suppressed the defective growth of a S. cerevisiae mutant at high K+ or Na+ concentrations, especially at high K+.  相似文献   

13.
Potassium fluxes across the blood-brain barrier of the cockroach Periplaneta americana were measured using the scanning ion-selective microelectrode technique. In salines containing 15 mM or 25 mM K+, an efflux of K+ from the ganglia of isolated nerve cords was counterbalanced by an influx across the connectives. Metabolic inhibition with CN resulted in an increase in K+ efflux across both the ganglia and the connectives. Depletion of K+ by chilling the nerve cords in K+-free saline was associated with subsequent K+ influx across the connectives in K+-replete saline at room temperature. There were dramatic increases in K+ efflux across both ganglia and connectives when the nerve cords were exposed to the pore-forming antibiotic amphotericin B. K+ fluxes across the ventral nerve cord were also altered when paracellular leakage was augmented by transient exposure to 3 M urea. K+ efflux was reduced by the K+ channel blockers Ba2+ and tetraethylammonium or by exposure to Ca2+-free saline and K+ efflux from the ganglia was increased by addition of ouabain to the bathing saline. The results provide direct support for a model proposing that K+ is cycled through a current loop between the ganglia and the connectives and that both the Na+/K+-ATPase and K+ channels are implicated in extracellular K+ homeostasis within the central nervous system.  相似文献   

14.
We have studied regulatory volume responses of cultured bovine corneal endothelial cells (CBCEC) using light scattering. We assessed the contributions of fluoxetine (Prozac) and bumetanide-sensitive membrane ion transport pathways to such responses by determining K+ efflux and influx. Cells swollen by a 20% hypo-osmotic solution underwent a regulatory volume decrease (RVD) response, which after 6 min restored relative cell volume by 98%. Fluoxetine inhibited RVD recovery; 20 μm by 26%, and 50 μm totally. Fluoxetine had a triphasic effect on K+ efflux; from 20 to 100 μm it inhibited efflux 2-fold, whereas at higher concentrations the efflux first increased to 1.5-fold above the control value, and then decreased again. Cells shrunk by a 20% hyperosmotic solution underwent a regulatory volume increase (RVI) which also after 6 min restored the cell volume by 99%. Fluoxetine inhibited RVI; 20 μm by 25%, and 50 μm completely. Bumetanide (1 μm) inhibited RVI by 43%. In a Cl-free medium, fluoxetine (50–500 μm) progressively inhibited bumetanide-insensitive K+ influx. The inhibitions of RVI and K+ influx induced by fluoxetine 20 to 50 μm were similar to those induced by 1 μm bumetanide and by Cl-free medium. A computer simulation suggests that fluoxetine can interact with the selectivity filter of K+ channels. The data suggest that CBCEC can mediate RVD and RVI in part through increases in K+ efflux and Na-K-2Cl cotransport (NKCC) activity. Interestingly, the data also suggest that fluoxetine at 20 to 50 μm inhibits NKCC, and at 100–1000 μm inhibits the Na+ pump. One possible explanation for these findings is that fluoxetine could interact with K+-selective sites in K+ channels, the NKC cotransporter and the Na+ pump.  相似文献   

15.
The peculiarities of osmoregulation of circulating red blood cells of the stenohaline giant gobyGobius cobitis and the euryhaline toad gobyGobius batrachocephalus have been studied under experimental conditions. In the giant goby, volume of the red blood cells increased steadily by 10.6–18.1% (p (WENA) 0.05) after reduction of the medium salinity from 15–17 to 6.0–6.8‰ and this volume increase remained during the entire experimental period (40–45 days). Lysis of red blood cells was noticed in some cases, which was indicated by a decrease of the number of red blood cells and an increase of concentration of free hemoglobin in the blood plasma. No similar reactions were observed in the euryhaline toad goby; the mean cell volume did not change statistically significantly. The volume regulation resulted in K+ efflux from red blood cells. The blood red cells of the toad goby had a high resistance to osmotic stress. The Na+,K+-ATPase activity in the red blood cell membranes of the toad goby was higher by 18.8% (p (WENA) 0.001) than in the giant goby.  相似文献   

16.
In frog red blood cells, K-Cl cotransport (i.e., the difference between ouabain-resistant K fluxes in Cl and NO3) has been shown to mediate a large fraction of the total K+ transport. In the present study, Cl-dependent and Cl-independent K+ fluxes via frog erythrocyte membranes were investigated as a function of external and internal K+ ([K+] e and [K+] i ) concentration. The dependence of ouabain-resistant Cl-dependent K+ (86Rb) influx on [K+] e over the range 0–20 mm fitted the Michaelis-Menten equation, with an apparent affinity (K m ) of 8.2 ± 1.3 mm and maximal velocity (V max ) of 10.4 ± 1.6 mmol/l cells/hr under isotonic conditions. Hypotonic stimulation of the Cl-dependent K+ influx increased both K m (12.8 ± 1.7 mm, P < 0.05) and V max (20.2 ± 2.9 mmol/l/hr, P < 0.001). Raising [K+] e above 20 mm in isotonic media significantly reduced the Cl-dependent K+ influx due to a reciprocal decrease of the external Na+ ([Na+] e ) concentration below 50 mm. Replacing [Na+] e by NMDG+ markedly decreased V max (3.2 ± 0.7 mmol/l/hr, P < 0.001) and increased K m (15.7 ± 2.1 mm, P < 0.03) of Cl-dependent K+ influx. Moreover, NMDG+ Cl substitution for NaCl in isotonic and hypotonic media containing 10 mm RbCl significantly reduced both Rb+ uptake and K+ loss from red cells. Cell swelling did not affect the Na+-dependent changes in Rb+ uptake and K+ loss. In a nominally K+(Rb+)-free medium, net K+ loss was reduced after lowering [Na+] e below 50 mm. These results indicate that over 50 mm [Na+] e is required for complete activation of the K-Cl cotransporter. In nystatin-pretreated cells with various intracellular K+, Cl-dependent K+ loss in K+-free media was a linear function of [K+] i , with a rate constant of 0.11 ± 0.01 and 0.18 ± 0.008 hr−1 (P < 0.001) in isotonic and hypotonic media, respectively. Thus K-Cl cotransport in frog erythrocytes exhibits a strong asymmetry with respect to transported K+ ions. The residual, ouabain-resistant K+ fluxes in NO3 were only 5–10% of the total and were well fitted to linear regressions. The rate constants for the residual influxes were not different from those for K+ effluxes in isotonic (∼0.014 hr−1) and hypotonic (∼0.022 hr−1) media, but cell swelling resulted in a significant increase in the rate constants. Received: 19 November 1998/Revised: 23 August 1999  相似文献   

17.
Summary In storage tissue ofBeta vulgaris L., carbonyl cyanidem-chlorophenylhydrazone or cyanide+salicylhydroxamic acid reduce cell electropotentials from about –200 to below –100 mV. The relationship between potential and cellular ATP level is examined during treatment with different concentrations of inhibitiors. At low ATP levels the potential rises sharply with increases in ATP, but above an ATP level of approximately 50% of the uninhibited level the potential changes very little with ATP concentration. A plot of membrane potentialvs.86Pb+ influx or of potentialvs. net K+ uptake indicates that as the level of inhibition is decreased, the potential tends to reach a limit while cation influx and net uptake continue to increase. Resistance measurements, although subject to difficulties of interpretation, indicate no change in conductance with potential, ion flux, or ATP level. Thus the membrane potential should directly reflect electrogenic pump activity, attributed to active uncoupled H+ efflux. K+ uptake can occur against its electrochemical gradient and is attributed to a coupled K+ influx/H+ efflux pump. The results show that the electrogenic pump activity is independent of the K+/H+ exchange rate. Thus electrogenic H+ efflux and K+/H+ exchange may represent different transport systems, or different modes of operation of a single pump with variable stoichiometry.  相似文献   

18.
Summary We have investigated the effect of a purified preparation of Charybdotoxin (CTX) on the Ca-activated K+ (Ca–K) channel of human red cells (RBC). Cytosolic Ca2+ was increased either by ATP depletion or by the Ca ionophore A23187 and incubation in Na+ media containing CaCl2. The Ca–K efflux activated by metabolic depletion was partially (77%) inhibited from 15.8±2.4 mmol/liter cell · hr, to 3.7±1.0 mmol/liter cell · hr by 6nm CTX (n=3). The kinetic of Ca–K efflux was studied by increasing cell ionized Ca2+ using A23187 (60 mol/liter cell), and buffering with EGTA or citrate; initial rates of net K+ efflux (90 mmol/liter cell K+) into Na+ medium containing glucose, ouabain, bumetanide at pH 7.4 were measured. Ca–K efflux increased in a sigmoidal fashion (n of Hill 1.8) when Ca2+ was raised, with aK m of 0.37 m and saturating between 2 and 10 m Ca2+. Ca–K efflux was partially blocked (71±7.8%, mean ±sd,n=17) by CTX with high affinity (IC500.8nm), a finding suggesting that is a high affinity ligand of Ca–K channels. CTX also blocked 72% of the Ca-activated K+ efflux into 75mm K+ medium, which counteracted membrane hyperpolarization, cell acidification and cell shrinkage produced by opening of the K+ channel in Na+ media. CTX did not block Valinomycin-activated K+ efflux into Na+ or K+ medium and therefore it does not inhibit K+ movement coupled to anion conductive permeability.TheV max, but not theK m–Ca of Ca–K efflux showed large individual differences varying between 4.8 and 15.8 mmol/liter cell · min (FU). In red cells with Hb A,V max was 9.36±3.0 FU (mean ±sd,n=17). TheV max of the CTX-sensitive, Ca–K efflux was 6.27±2.5 FU (range 3.4 to 16.4 FU) in Hb A red cells and it was not significantly different in Hb S (6.75±3.2 FU,n=8). Since there is larger fraction of reticulocytes in Hb S red cells, this finding indicates that cell age might not be an important determinant of theV max of Ca–K+ efflux.Estimation of the number of CTX-sensitive Ca-activated K+ channels per cell indicate that there are 1 to 3 channels/per cell either in Hb A or Hb S red cells. The CTX-insensitive K+ efflux (2.7±0.9 FU) may reflect the activity of a different channel, nonspecific changes in permeability or coupling to an anion conductive pathway.  相似文献   

19.
In a previous study, evidence was presented for an external Na+-dependent, ouabain-insensitive component of Na+ efflux and an external K+-dependent component of K+ efflux in the Ehrlich ascites tumor cell. Evidence is now presented that these components are inhibited by the diuretic furosemide and that under conditions of normal extracellular Na+ and K+ they represent Na+-for-Na+ and K-+for-K+ exchange mechanisms. Using 86Rb to monitor K+ movements, furosemide is shown to inhibit an ouabain-insensitive component of Rb+ influx and a component of Rb+ efflux, both representing approx. 30% of the total fux. Inhibition of Rb+ efflux is greatly reduced by removal of extracellular K+. Furosemide does not alter steady-state levels of intracellular K+ and it does not prevent cells depleted of K+ by incubation in the cold from regaining K+ upon warming. Using 22Na to monitor Na+ movements, furosemide is shown to inhibit an ouabain-insensitive component of unidirectional Na+ efflux which represents approx. 22% of total Na+ efflux. Furosemide does not alter steady-state levels of intracellular Na+ and does not prevent removal of intracellular Na+ upon warming from cells loaded with Na+ by preincubation in the cold. The ability of furosemide to affect unidirectional Na+ and K+ fluxes but not net fluxes is consistent with the conclusion that these components of cation movement across the cell membrane represent one-for-one exchange mechanisms. Data are also presented which demonstrate that the uptake of α-aminoisobutyrate is not affected by furosemide. This indicates that these components of cation flux are not directly involved in the Na+-dependent amino acid transport system A.  相似文献   

20.
A K+/H+ antiport system was detected for the first time in right-side-out membrane vesicles prepared from alkaliphilic Bacillus sp. no. 66 (JCM 9763). An outwardly directed K+ gradient (intravesicular K+ concentration, Kin, 100 mM; extravesicular K+ concentration, Kout, 0.25 mM) stimulated uphill H+ influx into right-side-out vesicles and created the inside-acidic pH gradient (ΔpH). This H+ influx was pH-dependent and increased as the pH increased from 6.8 to 8.4. Addition of 100 μM quinine inhibited the H+ influx by 75%. This exchange process was electroneutral, and the H+ influx was not stimulated by the imposition of the membrane potential (interior negative). Addition of K+ at the point of maximum ΔpH caused a rapid K+-dependent H+ eflux consistent with the inward exchange of external K+ for internal H+ by a K+/H+ antiporter. Rb+ and Cs+ could replace K+ but Na+ and Li+ could not. The H+ efflux rate was a hyperbolic function of K+ and increased with increasing extravesicular pH (pHout) from 7.5 to 8.5. These findings were consistent with the presence of K+/H+ antiport activity in these membrane vesicles. Received: March 20, 1997 / Accepted: May 22, 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号