首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Habitat associations of birds were quantified through fixed-radius timed bird counts at Mara Naboisho Conservancy within the Greater Mara Region, Kenya. We conducted 73 timed counts in four distinct habitats (riparian, woodland, rocky outcrop and plains) in both dry and wet seasons. During this survey, we observed 188 species of birds of which 140 were recorded during the timed counts. The riparian zone had the highest species richness, more than three times that of the plains. The woodlands and rocky outcrops had similar species richness. The mean number of species seen per count was higher in the riparian zone compared with the other three habitats. Bird species composition in the riparian zone and the plains were distinct from each other and from the woodlands and rocky outcrops, although they overlapped significantly in the last two mentioned habitats. The possible conservation implication of an increasing and/or immigrant elephant population and its likely effect on the vegetation is discussed in relation to bird community composition.  相似文献   

2.
1. Flow dynamics is a major determinant of riparian plant communities. Therefore, flow regulation may heavily affect riparian ecosystems. Despite the large number of dams worldwide, little specific information is available on the longitudinal impacts of dams on vegetation, for example how far downstream and at what degree of regulation a dam on a river can influence riparian woodlands. 2. We quantified the long‐term responses of riparian trees and shrubs to flow regulation by identifying their lateral distribution and habitat conditions along a boreal river in northern Sweden that has been regulated by a single dam since 1948. The regulation has reduced annual flow fluctuations, this effect being largest at the dam, downstream from which it progressively decreases following the entrance of free‐flowing tributaries. 3. We related changes in the distribution patterns, composition, abundance and richness of tree and shrub species to the degree of regulation along the river downstream from the dam. Regulation has triggered establishment of trees and shrubs closer to the channel, making it possible to measure ecological impacts of flow regulation as differences in vegetation attributes relative to the positions of tree and shrub communities established before and after regulation. 4. Trees and shrubs had migrated towards the mid‐channel along the entire study reach, but the changes were largest immediately downstream of the dam. Shrubs were most impacted by flow regulation in terms of lateral movement, but the effect on trees extended furthest downstream. 5. The species composition of trees progressively returned to its pre‐regulation state with distance downstream, but entrance of free‐flowing tributaries and variation in channel morphology and substratum caused local deviations. Species richness after regulation increased for trees but decreased for shrubs. The changes in species composition and richness of trees and shrubs showed no clear downstream patterns, suggesting that other factors than the degree of regulation were more important in governing life form.  相似文献   

3.
In the present study, we investigated the species richness and species composition in relation to light and management regime in remnants of wooded meadows within the riparian forests along the middle Drava River in Slovenia. 41 plots of still managed and, at different time periods (<5 yrs, 5–15 yrs, >15 yrs), abandoned riparian wooded meadows (RWM) were sampled. In addition to vegetation relevés, light intensity (PAR) was also measured in plots. Within the still-managed RWM, two floristically distinct types were recognized using TWINSPAN analysis: meadow-like and forest-like. Light intensity differed significantly between types. The CCA of active RWM showed a significant relation between species composition and light conditions. The number of species per relevé on active RWM was negatively correlated with light intensity – in contrast to North European wooded grasslands. This could be explained by the influence of species-rich riparian hornbeam forests that contribute many understorey species, in contrast to naturally mesotrophic meadows. CCA of both active and abandoned RWM demonstrated that light was a good predictor of RWM species composition and that abandonment caused profound changes in floristic composition. The species turnover during succession was more pronounced in less shaded meadow-like RWM where more light-requiring (grassland) species occurred. Species richness was the highest in active forest-like RWM. There were no significant differences in species richness between active meadow-like RWM and groups of abandoned RWM. The remains of riparian forests stretching along the flood plains of Central and Eastern Europe are considered one of the most natural ecosystems in the prevailing agricultural landscape. But naturalness could be in many cases only the consequence of abandonment of ancient land-use practices, like grazing of livestock, cutting between the trees, litter collecting, etc. Examination of the middle Drava River in Slovenia suggests the need to recognize the remains of ancient cultural landscape.  相似文献   

4.
In disturbance-prone ecosystems, organisms often persist in spatial refugia during stressful periods. A clear example is the colonization of abandoned river channels by pioneer riparian trees. Here, we examine the prominence of this establishment pathway for a foundation tree species (Fremont cottonwood, Populus fremontii) within the riparian corridor of a large river, the Sacramento River in central California. We quantified the total proportion of forest that initiated as a result of channel abandonment for a 160-km reach, analyzed concurrent patterns of tree establishment with floodplain accretion and sedimentation history, and developed a conceptual model of biogeomorphic evolution of abandoned channels. Historical air photo analysis indicated that stands associated with abandoned channels comprised more than 50% of the total extant cottonwood forest area. Tree-ring evidence showed that cottonwood stands commonly developed immediately following abandonment, and the recruitment window ranged from 4 to 40 years, but was less than 10 years at most sites. Rates of floodplain rise and fine sediment accumulation were high in young sites and decreased logarithmically over time. Together, these results suggest that abandoned channels are an important refuge for cottonwood recruitment, that the greatest opportunity for colonization occurs within a short period after the cutoff event, and that sedimentation processes influence the duration of the colonization window. On rivers where tree recruitment along the active channel is severely limited by hydrologic regulation and/or land management, abandoned channel refugia may play an even more important role in sustaining an ecologically functional riparian corridor. Preserving bank erosion, active meander corridors and forest regeneration zones created by cutoff events are therefore key conservation measures on shifting rivers.  相似文献   

5.
This study examined the activity, species richness, and species composition of the arbuscular mycorrhizal fungal (AMF) community of Populus-Salix stands on the Verde River (Arizona, USA), quantified patterns of AMF richness and colonization along complex floodplain gradients, and identified environmental variables responsible for structuring the AMF community. Samples from 61 Populus-Salix stands were analyzed for AMF and herbaceous composition, AMF colonization, gravimetric soil moisture, soil texture, per cent organic matter, pH, and concentrations of nitrate, bicarbonate phosphorus and exchangeable potassium. AMF species richness declined with stand age and distance from and elevation above the channel and was positively related to perennial species cover and richness and gravimetric soil moisture. Distance from and elevation above the active channel, forest age, annual species cover, perennial species richness, and exchangeable potassium concentration all played a role in structuring the AMF community in this riparian area. Most AMF species were found across a wide range of soil conditions, but a subset of species tended to occur more often in hydric areas. This group of riparian affiliate AMF species includes several not previously encountered in the surrounding Sonoran desert.  相似文献   

6.
Abandoning hybrid poplar plantations may be an alternative strategy for enlarging natural riparian corridors along regulated rivers where forest regeneration no longer takes place. Despite the generally high local diversity of plants in poplar plantations, their capacity to converge towards riparian forests following abandonment remains largely untested and uncertain, because maintenance‐related disturbance of plantations favors ruderal, not strictly riparian specialists. We assessed the spontaneous recolonization of vegetation in abandoned hybrid poplar plantations following two management strategies: harvesting or simple abandonment of standing trees. The floristic composition in four chronosequences of 10 active (1–15 years), 17 harvested (1–15 years), and 10 abandoned (8–20 years) hybrid poplar plantations, as well as 10 riparian sites established at gravel bars that appeared following the cessation of in‐channel gravel mining (8–25 years) along the highly regulated Garonne River (SW France) was assessed in the framework of ecological disturbance theory. Both harvested and abandoned sites still resembled active plantations more than riparian forests. When poplar resprouting was low after harvesting, sites were dominated by light‐demanding, nitrophilous herbs, sub‐shrubs, and vines showing both competitive and ruderal traits, and vegetation composition remained stable over time. Abandoned and harvested sites with high poplar resprouting developed forest communities in which competitive species that tolerate and generate shade dominated, and tree species recruitment was higher. Riparian sites hosted the highest number of indicator species, mainly wetland and exotic. Simple passive restoration strategies like abandonment of plantations can help create valuable ecosystems, although ones that diverge from riparian forests colonizing new fluvial landforms.  相似文献   

7.
Molinero  Jon 《Hydrobiologia》2019,838(1):29-43

This work studies benthic CPOM in two streams of Ecuador: the Atacames stream, located in a developed watershed, and the Súa stream, located in a rural watershed and used as a reference. It is tested whether the amount, composition and timing of benthic CPOM will differ between them as a function of watershed and riparian land uses. Benthic CPOM was collected at five study sites on each stream with a Surber net and classified into four categories: leaves, twigs and bark, flowers and fruits and debris. Leaves were further identified to genus or species. There were no significant differences in the amount, composition and timing of benthic CPOM between the streams. CPOM storage showed strong seasonality linked to seasonal rainfall and a weak relation with land uses, channel width and stream order. Diversity of the benthic CPOM was high and 30 species contributed to the benthic leaf pool. Presence or absence of Ficus species with heavy leaves that are easily retained in the streambed explained the spatial distribution of benthic CPOM, so spatial differences in the composition of the riparian vegetation in these tropical streams seem to be more important to explain CPOM distribution than in their temperate counterparts.

  相似文献   

8.
1. Naturally variable river flows are considered to be important for structuring riparian vegetation. However, while the importance of floods for the ecology of riparian vegetation is well recognised, much less is known about the importance of small fluctuations in river flows. 2. We investigated the effect of water supply diversion weirs on the riparian vegetation of upland streams. These weirs remove within‐channel fluctuations in flow but do not prevent large floods downstream. We surveyed the in‐channel and banktop vegetation of five streams, three of which were regulated by weirs and two of which acted as controls. 3. Unexpectedly, we observed greater species richness within the channel downstream of the weirs. This was because of increased numbers of exotic and terrestrial (‘dry’) plant species. Grass cover was also greater downstream of the weirs. There were no significant differences in the banktop vegetation between the upstream and downstream sites of the regulated streams. 4. Our results highlight the role of within‐channel flow variability in maintaining the composition of vegetation within the stream channel. We suggest that greater species richness does not necessarily indicate a less‐disturbed environment. Rather, a greater number of ‘dry’ species is indicative of the impacts of flow regulation. 5. Small fluctuations in river flows are probably necessary to protect the ecosystem structure and function of regulated streams. It is recommended that variable within‐channel flows be provided in regulated streams.  相似文献   

9.
1. Riparian vegetation in dry regions is influenced by low‐flow and high‐flow components of the surface and groundwater flow regimes. The duration of no‐flow periods in the surface stream controls vegetation structure along the low‐flow channel, while depth, magnitude and rate of groundwater decline influence phreatophytic vegetation in the floodplain. Flood flows influence vegetation along channels and floodplains by increasing water availability and by creating ecosystem disturbance. 2. On reference rivers in Arizona's Sonoran Desert region, the combination of perennial stream flows, shallow groundwater in the riparian (stream) aquifer, and frequent flooding results in high plant species diversity and landscape heterogeneity and an abundance of pioneer wetland plant species in the floodplain. Vegetation changes on hydrologically altered river reaches are varied, given the great extent of flow regime changes ranging from stream and aquifer dewatering on reaches affected by stream diversion and groundwater pumping to altered timing, frequency, and magnitude of flood flows on reaches downstream of flow‐regulating dams. 3. As stream flows become more intermittent, diversity and cover of herbaceous species along the low‐flow channel decline. As groundwater deepens, diversity of riparian plant species (particularly perennial species) and landscape patches are reduced and species composition in the floodplain shifts from wetland pioneer trees (Populus, Salix) to more drought‐tolerant shrub species including Tamarix (introduced) and Bebbia. 4. On impounded rivers, changes in flood timing can simplify landscape patch structure and shift species composition from mixed forests composed of Populus and Salix, which have narrow regeneration windows, to the more reproductively opportunistic Tamarix. If flows are not diverted, suppression of flooding can result in increased density of riparian vegetation, leading in some cases to very high abundance of Tamarix patches. Coarsening of sediments in river reaches below dams, associated with sediment retention in reservoirs, contributes to reduced cover and richness of herbaceous vegetation by reducing water and nutrient‐holding capacity of soils. 5. These changes have implications for river restoration. They suggest that patch diversity, riparian plant species diversity, and abundance of flood‐dependent wetland tree species such as Populus and Salix can be increased by restoring fluvial dynamics on flood‐suppressed rivers and by increasing water availability in rivers subject to water diversion or withdrawal. On impounded rivers, restoration of plant species diversity also may hinge on restoration of sediment transport. 6. Determining the causes of vegetation change is critical for determining riparian restoration strategies. Of the many riparian restoration efforts underway in south‐western United States, some focus on re‐establishing hydrogeomorphic processes by restoring appropriate flows of surface water, groundwater and sediment, while many others focus on manipulating vegetation structure by planting trees (e.g. Populus) or removing trees (e.g. Tamarix). The latter approaches, in and of themselves, may not yield desired restoration outcomes if the tree species are indicators, rather than prime causes, of underlying changes in the physical environment.  相似文献   

10.
11.
Ephemeral reaches are common along desert rivers but are less well studied than those with perennial stream flow. This study contrasted riparian plant species richness and composition (extant vegetation and soil seed bank) between stream reaches with different low-flow conditions (perennial vs. ephemeral flow) but similar flood patterns and similar watershed-derived species pools. Data were collected at Cienega Creek (Arizona, USA) over a 2 year period spanning drought conditions and wetter conditions. Consistent with expectations relating to water limitation effects on diversity, species richness in the riparian zone was lower at ephemeral-flow sites during a season with minimal precipitation and no overbank flooding; under these conditions, the more permanent water sources of the perennial-flow sites sustain the larger number of species. During seasons with greater precipitation and elevated stream flows, in contrast, species richness at ephemeral-flow sites increased to levels at or slightly above those of perennial-flow sites. For values pooled across two wet seasons of a calendar year, year-round richness was greater at the two ephemeral-flow sites (total of 92 vascular plant species) than at the two perennial-flow sites (68 species). This greater year-round richness was a combination of multiple factors: greater light, space, and bare ground, a diverse soil seed bank (with the seed banks equally species-rich among hydrologic types), and moderately abundant precipitation and flooding sufficient to stimulate establishment of opportunistic species (mainly annuals) during the bimodal wet seasons. These results indicate that long-term patterns of site water availability, by influencing woody plant cover, mediate the diversity response to episodic water pulses in dryland rivers. The results also have implications for riparian conservation efforts, which to date have focused primarily on perennial stream reaches: ephemeral reaches of spatially intermittent rivers harbor many riparian plant species, and warrant conservation efforts, as well.  相似文献   

12.
1. Differing responses in riparian species richness and composition to disturbance have been reported as a possible explanation for the differences along and between rivers. This paper explores the role of physical disturbance in shaping landscape‐scale patterns of species distribution in riparian vegetation along a free‐flowing river in northern Sweden. 2. To test whether sensitivity to disturbance varies across large landscapes, we experimentally disturbed riparian vegetation along an entire, free‐flowing river by scouring the soil and the vegetation turf, cutting vegetation, applying waterborne plant litter, and after a period of recovery we measured vegetation responses. The experiment was repeated for two consecutive years. 3. We found no significant effect of disturbance on species composition, but all three forms of disturbance significantly reduced species richness. There was no downstream variation in community responses to disturbance but morphological groups of species responded differently to different kinds of disturbance. Graminoids were most resistant, suppressed only by litter burial. All forms of disturbance except cutting reduced the density of herbaceous species, and species density of trees + shrubs and dwarf shrubs was negatively affected by both scouring and cutting. We also evaluated the effects of disturbance in relation to varying levels of species richness. In nearly all cases, responses were significantly negatively correlated with control plot species richness, and relative responses indicated that species‐rich plots were less resistant to scouring and cutting. 4. Our results suggest that although all disturbance treatments had an effect on species richness, variation in sensitivity to disturbance is not the most important factor shaping landscape‐scale patterns of riparian plant species richness along rivers.  相似文献   

13.
Carbon and nitrogen transfer from a desert stream to riparian predators   总被引:4,自引:0,他引:4  
Adult aquatic insects emerging from streams may be a significant source of energy for terrestrial predators inhabiting riparian zones. In this study, we use natural abundance delta(13)C and delta(15)N values and an isotopic (15)N tracer addition to quantify the flow of carbon and nitrogen from aquatic to terrestrial food webs via emerging aquatic insects. We continuously dripped labeled (15)N-NH(4) for 6 weeks into Sycamore Creek, a Sonoran desert stream in the Tonto National Forest (central Arizona) and traced the flow of tracer (15)N from the stream into spiders living in the riparian zone. After correcting for natural abundance delta(15)N, we used isotopic mixing models to calculate the proportion of (15)N from emerging aquatic insects incorporated into spider biomass. Natural abundance delta(13)C values indicate that orb-web weaving spiders inhabiting riparian vegetation along the stream channel obtain almost 100% of their carbon from instream sources, whereas ground-dwelling hunting spiders obtain on average 68% of their carbon from instream sources. During the 6-week period of the (15)N tracer addition, orb-web weaving spiders obtained on average 39% of their nitrogen from emerging aquatic insects, whereas spider species hunting on the ground obtained on average 25% of their nitrogen from emerging aquatic insects. To determine if stream subsidies might be influencing the spatial distribution of terrestrial predators, we measured the biomass, abundance and diversity of spiders along a gradient from the active stream channel to a distance of 50 m into the upland using pitfall traps and timed sweep net samples. Spider abundance, biomass and richness were highest within the active stream channel but decreased more than three-fold 25 m from the wetted stream margin. Changes in structural complexity of vegetation, ground cover or terrestrial prey abundance could not account for patterns in spider distributions, however nutrient and energy subsidies from the stream could explain elevated spider numbers and richness within the active stream channel and riparian zone of Sycamore Creek.  相似文献   

14.
Land use changes have resulted in large environmental impacts, and in agricultural landscapes sometimes only forest fragments remain. Riparian forest remnants can positively influence stream water quality, and serve as refuges for aquatic species. We evaluated whether the presence of a riparian forest remnant influenced the structure and composition of macroinvertebrate communities in a rural stream in southeastern Brazil. We sampled three reaches upstream (within abandoned sugarcane cultivation) and nine downstream the remnant edge, until 600 m inside the forested area, using leaf litter bags. The abundances of Elmidae, Chironomidae, and total macroinvertebrates increased along the forest remnant, whereas the abundance of Baetidae, proportion of Ephemeroptera, Plecoptera, and Trichoptera (EPT), rarefied taxonomic richness, and diversity decreased. Taxon richness and EPT abundance did not vary along the forest remnant. Increases in Chironomidae and total abundance within the forest remnant can be related to moderate increases in nutrient concentrations, or to the availability of high quality leaf litter patches. Forest remnants can influence macroinvertebrate communities, although variation both in temperate and tropical studies can be related to local agricultural practices and land use at the watershed scale. Forest remnants are important in maintaining stream water quality in rural landscapes, and deserve attention in watershed management projects.  相似文献   

15.
The distribution of water across landscapes affects the diversity and composition of ecological communities, as demonstrated by studies on variation in vascular plant communities along river networks and in relation to groundwater. However, non-vascular plants have been neglected in this regard. Bryophytes are dominant components of boreal flora, performing many ecosystem functions and affecting ecosystem processes, but how their diversity and species composition vary across catchments is poorly known. We asked how terrestrial assemblages of mosses and liverworts respond to variation in (i) catchment size, going from upland-forest to riparian settings along increasingly large streams and (ii) groundwater discharge conditions. We compared the patterns found for liverworts and mosses to vascular plants in the same set of study plots. Species richness of vascular plants and mosses increased with catchment size, whereas liverworts peaked along streams of intermediate size. All three taxonomic groups responded to groundwater discharge in riparian zones by maintaining high species richness further from the stream channel. Groundwater discharge thus provided riparian-like habitat further away from the streams and also in upland-forest sites compared to the non-discharge counterparts. In addition, soil chemistry (C:N ratio, pH) and light availability were important predictors of vascular plant species richness. Mosses and liverworts responded to the availability of specific substrates (stones and topographic hollows), but were also affected by soil C:N. Overall, assemblages of mosses and vascular plants exhibited many similarities in how they responded to hydrological gradients, whereas the patterns of liverworts differed from the other two groups.  相似文献   

16.
Invasive alien organisms can impact adversely on indigenous biodiversity, while riparian invasive alien trees (IATs), through shading of the habitat, can be a key threat to stream invertebrates. We ask here whether stream fauna can recover when the key threat of riparian IATs is removed. Specifically, we address whether IAT invasion, and subsequent IAT removal, changes benthic macroinvertebrate and adult dragonfly assemblages, for the worse or for the better respectively. Natural riparian zones were controls. There were statistically significant differences between stream reaches with natural, IAT-infested and IAT-cleared riparian vegetation types, based on several metrics: immature macroinvertebrate taxon richness, average score per macroinvertebrate taxon (ASPT), a macroinvertebrate subset (Ephemeroptera, Plecoptera, Trichoptera and Odonata larvae; EPTO), and adult dragonfly species richness. Reaches with natural vegetation, or cleared of IATs, supported greater relative diversity of macroinvertebrates than reaches shaded by dense IATs. Greatest macroinvertebrate ASPT and EPTO were in reaches bordered by natural vegetation and those bordered by vegetation cleared of IATs, and the lowest where the riparian corridor was IATs. Highest number of adult dragonflies species was along streams cleared of dense IATs. Overall, results showed that removal of a highly invasive, dense canopy of alien trees enables recovery of aquatic biodiversity. As benthic macroinvertebrate scores and adult dragonfly species richness are correlated and additive, their combined use is recommended for river condition assessments.  相似文献   

17.
This study analyses the role of riparian woodland in the conservation of five common carnivore species as compared with other non-riparian habitats according to woodland cover on the landscape scale (>60, 20–35 and <15% on 20 × 20-km surface area). I hypothesised that the importance of riparian woodlands in carnivore conservation on the regional scale would be greater in landscapes with low forest cover than in those with intermediate or high forest cover. To test this hypothesis, in each landscape type I sampled five riparian forests and 10–15 non-riparian habitats and recorded species richness and frequency of occurrence (number of sampled sites with species presence/total sampled sites) in both habitat types. The presence of (or use by) species at each particular sampling site was recorded using sign-surveys (search for scats and badger dens). The relative importance of riparian and non-riparian habitats in each landscape type was analysed by comparing species richness and frequency of occurrence for each species. Comparison of species richness and frequency of occurrence between landscape types indicate that riparian woodlands are important habitats in all landscape contexts. However, in accordance with the initial hypothesis, riparian woodlands are essential for carnivore conservation in the most deforested areas. Any agricultural or development policy should take into account the need to maintain and preserve riparian woodlands in landscapes, especially in intensively cultivated landscapes.  相似文献   

18.
The river domain: why are there more species halfway up the river?   总被引:2,自引:0,他引:2  
Biologists have long noted higher levels of species diversity in the longitudinal middle‐courses of river systems and have proposed many explanations. As a new explanation for this widespread pattern, we suggest that many middle‐course peaks in richness may be, at least in part, a consequence of geometric constraints on the location of species’ ranges along river courses, considering river headwaters and mouths as boundaries for the taxa considered. We demonstrate this extension of the mid‐domain effect (MDE) to river systems for riparian plants along two rivers in Sweden, where a previous study found a middle‐course peak in richness of natural (non‐ruderal) species. We compare patterns of empirical richness of these species to null model predictions of species richness along the two river systems and to spatial patterns for six environmental variables (channel width, substrate fineness, substrate heterogeneity, ice scour, bank height, and bank area). In addition, we examine the independent prediction of mid‐domain effects models that species with large ranges, because the location of their ranges is more constrained, are more likely to produce a mid‐domain peak in richness than are species with small ranges. Species richness patterns of riparian plants were best predicted by models including both null model predictions and environmental variables. When species were divided into large‐ranged and small‐ranged groups, the mid‐domain effect was more prominent and the null model predictions were a better fit to the empirical richness patterns of large‐ranged species than those of small‐ranged species. Our results suggest that the peak in riparian plant species richness in the middle courses of the rivers studied can be explained by an underlying mid‐domain effect (driven by geometric constraints on large‐ranged species), together with environmental effects on richness patterns (particularly on small‐ranged species). We suggest that the mid‐domain effect may help to explain similar middle‐course richness peaks along other rivers.  相似文献   

19.
1. Restoration of riparian forests has been promoted as a means of mitigating urban impacts on stream ecosystems. However, conventional urban stormwater drainage may diminish the beneficial effect of riparian forests.
2. The relative effects of riparian deforestation and catchment urbanisation on stream ecosystems have rarely been discriminated because urban land use and riparian degradation usually covary. However, land use at three scales (channel canopy cover along a 100-m site, riparian forest cover within 200 m of the channel for 1 km upstream, and catchment imperviousness) covaried only weakly along the lowland Yarra River, Victoria, Australia.
3. We tested the extent to which each land use measure explained macroinvertebrate assemblage composition on woody debris and in the sediments of pools or runs in the mainstem Yarra River in autumn and spring 1998.
4. Assemblage composition in both habitats and in both seasons was most strongly correlated with proportion of catchment covered by impervious surfaces. Sites with higher imperviousness had fewer sensitive taxa (those having a strong positive influence on indicators of biological integrity) and more taxa typical of degraded urban streams. Sensitive taxa rarely occurred in sites with >4% total imperviousness. However, within sites of similar imperviousness, those with more riparian forest cover had more dipteran taxa. Channel canopy cover did not explain assemblage composition strongly.
5. Riparian forest cover may influence richness of some macroinvertebrate taxa, but catchment urbanisation probably has a stronger effect on sensitive taxa. In catchments with even a small amount of conventionally drained urban land, riparian revegetation is unlikely to have an effect on indicators of stream biological integrity. Reducing the impacts of catchment urbanisation through dispersed, low-impact drainage schemes is likely to be more effective.  相似文献   

20.
Riparian revegetation, such as planting woody seedlings or live stakes, is a nearly ubiquitous component of stream restoration projects in the United States. Though evaluations of restoration success usually focus on in‐stream ecosystems, in order to understand the full impacts of restoration the effects on riparian ecosystems themselves must be considered. We examined the effects of stream restoration revegetation measures on riparian ecosystems of headwater mountain streams in forested watersheds by comparing riparian vegetation structure and composition at reference, restored, and degraded sites on nine streams. According to mixed model analysis of variance (ANOVA), there was a significant effect of site treatment on riparian species richness, basal area, and canopy cover, but no effect on stem density. Vegetation characteristics at restored sites differed from those of reference sites according to all metrics (i.e. basal area, canopy cover, and species composition) except species richness and stem density. Restored and degraded sites were structurally similar, with some overlap in species composition. Restored sites were dominated by Salix sericea and Cornus amomum (species commonly planted for revegetation) and a suite of disturbance‐adapted species also dominant at degraded sites. Differences between reference and restored sites might be due to the young age of restored sites (average 4 years since restoration), to reassembly of degraded site species composition at restored sites, or to the creation of a novel anthropogenic ecosystem on these headwater streams. Additional research is needed to determine if this anthropogenic riparian community type persists as a resilient novel ecosystem and provides valued riparian functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号