首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flavonoid accumulation and activities of phenylalanine ammonia-lyase (PAL), chalcone isomerase (CHI), and chitinase were followed during early colonization of alfalfa roots (Medicago sativa L. cv Gilboa) by vesicular arbuscular (VA) fungi (Glomus intraradix). Formononetin was the only flavonoid detected that showed a consistent increase in the inoculated roots. This increase depended only on the presence of the fungus in the plant rhizosphere; no colonization of the root tissue was required. CHI and chitinase activities increased in inoculated roots prior to colonization, whereas the increase in PAL activity coincided with colonization. After reaching a maximum, activities of all enzymes declined to below those of uninoculated roots. PAL inactivation was not caused by a soluble inhibitor. Our results indicate that VA fungi initiate a host defense response in alfalfa roots, which is subsequently suppressed.  相似文献   

2.
Isoflavonoids are believed to play important roles in plant-microbe interactions. During infection of alfalfa (Medicago sativa) leaves with the fungal pathogen Phoma medicaginis, rapid increases in mRNA levels and enzyme activities of isoflavone reductase, phenylalanine ammonia-lyase, chalcone synthase and other defense genes are observed within 1 to 2 hours. The phytoalexin medicarpin and its antifungal metabolite sativan increase beginning at 4 and 8 hours, respectively, along with other isoflavonoids. In contrast, during colonization of alfalfa roots by the symbiotic mycorrhizal fungus Glomus versiforme, expression of the general phenylpropanoid and flavonoid genes phenylalanine ammonia-lyase and chalcone synthase increases while mRNA levels for the phytoalexin-specific isoflavone reductase decrease. The total isoflavonoid content of colonized roots increases with time and is higher than that of uninoculated roots, but the accumulation of the antifungal medicarpin is somehow suppressed.An isoflavone reductase genomic clone has been isolated, promoter regions have been fused to the reporter gene -glucuronidase, and the promoter-reporter fusions have been transformed into tobacco and alfalfa. Using histological staining, we have studied the developmental and stress-induced expression of this phytoalexin-specific gene in whole plants at a more detailed level than other methods allow. The isoflavone reductase promoter is functional in tobacco, a plant which does not synthesize isoflavonoids. Infection of transgenic alfalfa plants by Phoma causes an increase in -glucuronidase staining, as does elicitation of transgenic alfalfa cell cultures, indicating that this promoter fusion is a good indicator of phytoalexin biosynthesis in alfalfa.Abbreviations CA4H cinnamic acid 4-hydroxylase - CHI chalcone isomerase - CHOMT chalcone O-methyltransferase - CHS chalcone synthase - 4CL 4-coumarate:CoA ligase - COMT caffeic acid O-methyltransferase - FGM malonylated glucoside of formononetin - GUS -glucuronidase - IFOH isoflavone 2-hydroxylase - IFR isoflavone reductase - IFS isoflavone synthase - IOMT isoflavone 4-O-methyltransferase - MGM medicarpin 3-O-glucoside-6-O-malonate - PAL L-phenylalanine ammonia-lyase - PTS pterocarpan synthase - VAM vesicular arbuscular mycorrhizal - X-gluc 5-bromo-4-chloro-3-indolyl--D-glucuronide  相似文献   

3.
4.
5.
6.
7.
Maize (Zea mays L. cv. Great Lakes 586) plants were either inoculated with the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus intraradices Schenck and Smith, or grown in the presence of the isoflavone formononetin or were provided with both G. intraradices and formononetin. All plants were grown in soil containing one of five levels of inorganic P (between 8 and 110 µg g?1 soil). By 3 weeks there were significant differences in a number of enzyme activities and in the pattern of isoenzymes in roots colonized by the VAM fungus or treated with formononetin. One NAD-malate dehydrogenase (MDH) isozyme was expressed only in mycorrhizal roots, whether treated or not with formononetin. Despite differences in the soil P level, the expression of this isozyme was not observed in non-mycorrhizal roots, indicating specific expression in the mycorrhizae. We suggest that MDH isozyme could serve as a specific, early indicator of the Zea-Glomus symbiosis. Differences in the esterase (EST) isozyme pattern were not detectable between VAM and non-VAM roots, suggesting that this enzyme system is not a good parameter for the evaluation of mycorrhizal colonization. As available P in the soil increased, total EST activity appeared to increase as well. Interestingly, total peroxidase (POX) activity increased along with P suggesting that as plant P nutrition improved, both cell wall ramification and the quantity of defense peroxidases increased as well. Total POX activity from mycorrhizal roots was inversely correlated with root colonization, indicating that there was suppression of POX activity by the host under low soil P. Most interestingly, formononetin further decreased POX activity regardless of the level of P or mycorrhizal status. This may suggest one mechanism by which formononetin enhances root VAM colonization. The presence of this isoflavone suppressed POX activity in mycorrhizal roots allowing a rapid penetration and spread of the fungus in the root cortex. The interplay between host root, soil P levels, secondary metabolites and endogenous host enzyme activities and a particular VAM fungus has a profound effect on the efficiency, duration and functioning of an endomycorrhizal symbiosis.  相似文献   

8.
9.
Phosphorus effect on phosphatase activity in endomycorrhizal maize   总被引:3,自引:0,他引:3  
Success of a mycorrhizal symbiosis is influenced by the availability of phosphorus (P) in the soil. Maize ( Zea mays L. cv. Great Lakes 586) plants were grown under five different levels of soil P, either in the presence or absence of formononetin or the vesicular‐arbuscular mycorrhizal (VAM) fungus Glomus intraradices Schenck and Smith. We detected physiological differences in mycorrhizal roots very early in the development of symbiosis, before the onset of nutrient‐dependent responses. Under low P levels, VAM roots accumulated a greater shoot dry weight (13%), root P concentration (15%) and protein concentration (30%) than non-VAM roots, although root growth was not statistically significantly different. At higher P levels, mycorrhizal roots weighed less than non-VAM roots (10%) without a concomitant host alteration of growth or root P concentration. Mycorrhizal colonization decreased as soil P increased. Formononetin-treatment enhanced colonization of the root by G. intraradices and partially overcame inhibition of VAM colonization by high soil P concentrations. This is the first report that formononetin improves root colonization under high levels of soil P. Acid phosphatase (ACP) and alkaline phosphatase (ALP) activities were closely related to the level of fungal colonization in corn roots. ACP activity in corn roots responded more to soil P availability than did ALP activity (38% more). These results suggest that ACP was involved in the increased uptake of P from the soil, while ALP may be linked to active phosphate assimilation or transport in mycorrhizal roots. Thus, soil P directly affected a number of enzymes essential in host-endophyte interplay, while formononetin enhanced fungal colonization.  相似文献   

10.
11.
Two cvs of alfalfa ( Medicago sativa L.), Gilboa and Moapa 69, were inoculated in glasshouse pots with three arbuscular mycorrhizal (AM) fungi to investigate the efficacy of mycorrhizas with respect to the extent of colonization and sporulation. Paspalum notatum Flugge also was inoculated to describe fungal parameters on a routine pot culture host. Percentage root length of P. notatum colonized by Glomus mosseae (Nicol. & Gerd.) Gerdemann & Trappe, Glomus intraradices Schenck & Smith, and Gigaspora margarita Becker & Hall increased from 10 to 21 wk, and all fungi sporulated during that period. In alfalfa, only colonization by G. intraradices increased over that time period, and it was the only fungus to sporulate in association with alfalfa at 10 wk. Glomus mosseae did not sporulate after 16–21 wk despite having colonized 30–35% of the root length of both alfalfa cvs. In vitro experiments in which Ri T-DNA-transformed roots of alfalfa were inoculated with AM fungi showed normal mycorrhizal formation by G. intraradices and a hypersensitivity-like response to Gi. margarita . Colonized cells became necrotic, and HPLC analysis indicated increased concentrations of phenolics and isoflavonoids in these root segments. These data strongly support the existence of a degree of specificity between AM fungi and host that might rely on specific biochemical regulatory processes initiated in the host as a result of the attempts at colonization by the fungus.  相似文献   

12.
13.
In split-root systems of alfalfa (Medicago sativa L.), already existing nodules or arbuscular mycorrhizal roots suppress further establishment of symbiosis in other root parts, a phenomenon named autoregulation. Roots treated with rhizobial nodulation signals (Nod factors) induce a similar systemic suppression of symbiosis.In order to test the hypothesis that flavonoids play a role in this systemic suppression, split-root systems of alfalfa plants were inoculated on one side of the split-root system with Sinorhizobium meliloti or Glomus mosseae or were treated with Nod factor. HPLC-analysis of alfalfa root extracts from both sides of the split-root system revealed a persistent local and systemic accumulation pattern of some flavonoids associated with the different treatments. The two flavonoids, formononetin and ononin, could be identified to be similarily altered after rhizobial or mycorrhizal inoculation or when treated with Nod factor.Exogenous application of formononetin and ononin partially restored nodulation and mycorrhization pointing towards the involvement of these two secondary compounds in the autoregulation of both symbioses.  相似文献   

14.
The differential regulation of the activities and amounts of mRNAs for two enzymes involved in isoflavonoid phytoalexin biosynthesis in soybean was studied during the early stages after inoculation of primary roots with zoospores from either race 1 (incompatible, host resistant) or race 3 (compatible, host susceptible) of Phytophthora megasperma f.sp. glycinea, the causal fungus of root rot disease. In the incompatible interaction, cloned cDNAs were used to demonstrate that the amounts of phenylalanine ammonia-lyase and chalcone synthase mRNAs increased rapidly at the time of penetration of fungal germ tubes into epidermal cell layers (1–2 h after inoculation) concomitant with the onset of phytoalxxin accumulation; highest levels were reached after about 7 h. In the compatible interaction, only a slight early enhancement of mRNA levels was found and no further increase occurred until about 9 h after inoculation. The time course for changes in the activity of chalcone synthase mRNA also showed major differences between the incompatible and compatible interaction. The observed kinetics for the stimulation of mRNA expression related to phytoalexin synthesis in soybean roots lends further support to the hypothesis that phytoalexin production is an early defense response in the incompatible plant-fungus interaction. The kinetics for the enhancement of mRNA expression after treatment of soybean cell suspension cultures with a glucan elicitor derived from P. megasperma cell walls was similar to that measured during the early stages of the resistant response of soybean roots.Abbreviations cDNA copy DNA - CHS chalcone synthase - PAL phenylalanine ammonia-lyase  相似文献   

15.
植食性昆虫取食会给植物造成机械损伤并激活植物的防御反应,而与有益微生物共生是否可以增强植物对机械损伤的响应对植物抗虫有重要意义.本研究在番茄根系被丛枝菌根真菌摩西管柄囊霉侵染后,研究机械损伤对番茄防御反应的影响.结果表明: 预先接种菌根真菌的番茄叶片受到机械损伤处理(FD)后,叶片苯丙氨酸解氨酶(PAL)、超氧化物歧化酶(SOD)、过氧化物酶(POD)、多酚氧化酶(PPO)和过氧化氢酶(CAT)活性,以及叶片和根系苯丙氨酸解氨酶基因(PAL)和β-1,3-葡聚糖酶基因(PR2)的转录水平均显著高于只进行机械损伤的处理(D)、只接种摩西管柄囊霉的处理(F),以及既未接种菌根菌也未进行机械损伤的健康番茄植株(CK).虽然D和 F处理也可诱导部分酶活性及基因转录水平升高,但FD处理诱导的防御反应更迅速和强烈.表明丛枝菌根真菌侵染可以警备(prime)番茄对机械损伤做出更快速和强烈的响应.  相似文献   

16.
本研究系统分析了大豆(品种:‘鲁豆4’)接种AM真菌Glomus fasciculatum和胞囊线虫(SCN,Heterodera glycines)4号生理小种后各处理菌根和线虫侵染率、几丁质酶和苯丙氨酸解氨酶(PAL)活性及几丁质酶基因Chib1和苯丙氨酸解氨酶基因PAL5转录物的动态变化。结果表明,接种SCN对AM真菌的侵染率没有产生显著影响,但先接种AM真菌后接种SCN的大豆根内线虫侵染率明显低于只接种SCN的处理。另外,先接种AM真菌后接种SCN的大豆根内几丁质酶和PAL活性显著提高,活性高峰出现在接种线虫后的第3天。值得注意的是,先接种AM真菌后接种SCN的大豆根内两种基因Chib1和PAL5转录物高峰也出现在接种SCN后的第3天,即AM真菌侵染率快速上升而SCN侵染率快速下降时期。所以Chib1和PAL5基因的表达可能是AM真菌诱导的抗大豆胞囊线虫病害防御反应的一种表现。因此推测Chib1和PAL5直接参与了AM真菌诱导大豆抗胞囊线虫病害的防御反应。  相似文献   

17.
Throughout the plant kingdom expression of the flavonoid biosynthetic pathway is precisely regulated in response to developmental signals, nutrient status, and environmental stimuli such as light, heat and pathogen attack. Previously we showed that, in developing Arabidopsis seedlings, flavonoid genes are transiently expressed during germination in a light-dependent manner, with maximal mRNA levels occurring in 3-day-old seedlings. Here we describe the relationship between developmental and environmental regulation of flavonoid biosynthesis by examining phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), chalcone isomerase (CHI), and dihydroflavonol reductase (DFR) mRNA levels in germinating Arabidopsis seedlings as a function of light, developmental stage and temperature. We show that seedlings exhibit a transient potential for induction of these four genes, which is distinct from that observed for chlorophyll a/b-binding protein (CAB). The potential for flavonoid gene induction was similar in seedlings grown in darkness and red light, indicating that induction potential is not linked to cotyledon expansion or the development of photosynthetic capacity. The evidence for metabolic regulation of flavonoid genes during seedling development is discussed.  相似文献   

18.
Modest increases in the concentration of medicarpin, 6-fold in leaves and 4-fold in roots, were observed in alfalfa (Medicago sativa L.) seedlings treated with 1 mM metal salts for 72 h. However, medicarpin-3-O-glucoside-6"-O-malonate (MGM) and formononetin-7-O-glucoside-6"-O-malonate (FGM) levels were up to 50-fold lower in metal-treated compared to control roots. Approximately 10% of the "missing" conjugates could be accounted for in the root treatment solution, where FGM and MGM transiently accumulated prior to their hydrolysis. Time-course studies revealed that total isoflavonoid content (roots plus solution) increased slightly after CuCl2 treatment, whereas the levels of FGM and MGM increased rapidly in alfalfa roots immersed in water. This increase was reduced by aeration. The phenylalanine ammonia-lyase inhibitor L-[alpha]-aminooxy-[beta]-phenylpropionic acid was used to show that immersion of the roots reduced conjugate rates of degradation, which explains their accumulation. In contrast, conjugate rates of degradation were elevated in CuCl2-treated roots, with 50% of the increase being due to hydrolysis. Up to 90% of formononetin and medicarpin produced in response to CuCl2 treatment arose via conjugate hydrolysis. Our results demonstrate that both immersion/anaerobiosis and abiotic elicitation modify isoflavonoid metabolism in alfalfa, and that metal-stimulated accumulation of phytoalexins may arise through the release from preformed stores rather than de novo synthesis.  相似文献   

19.
Many higher plants, including Arabidopsis, transiently display purple anthocyanin pigments just after seed germination. We observed that steady state levels of mRNAs encoded by four flavonoid biosynthetic genes, PAL1 (encoding phenylalanine ammonia-lyase 1), CHS (encoding chalcone synthase), CHI (encoding chalcone isomerase), and DFR (encoding dihydroflavonol reductase), were temporally regulated, peaking in 3-day-old seedlings grown in continuous white light. Except for the case of PAL1 mRNA, mRNA levels for these flavonoid genes were very low in seedlings grown in darkness. Light induction studies using seedlings grown in darkness showed that PAL1 mRNA began to accumulate before CHS and CHI mRNAs, which, in turn, began to accumulate before DFR mRNA. This order of induction is the same as the order of the biosynthetic steps in flavonoid biosynthesis. Our results suggest that the flavonoid biosynthetic pathway is coordinately regulated by a developmental timing mechanism during germination. Blue light and UVB light induction experiments using red light- and dark-grown seedlings showed that the flavonoid biosynthetic genes are induced most effectively by UVB light and that blue light induction is mediated by a specific blue light receptor.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号