首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
Human isoforms A and B of nm23/nucleoside diphosphate (NDP) kinase, functionally important in development and cancer, have been reported to bind to DNA, and in particular isoform A to the PDGF-A promoter and isoform B to the c-myc promoter and to telomeric repeats. However, no direct proof of the binding in vivo has yet been obtained. To demonstrate this interaction, human erythroleukemic K562 cells were incubated with two different cross-linking reagents, formaldehyde or cis-diammine dichloro platinum II. The DNA-protein covalent complexes were isolated and analyzed by Western blotting. The positive immunochemical staining showed that in both conditions NDP kinase isoforms A and B were efficiently cross-linked to DNA in vivo. NDP kinase-linked DNA fragments obtained by immunoprecipitation, subjected to hybridization with different probes, showed a definite enrichment in the nuclease-hypersensitive silencer element of the PDGF-A promoter. No conclusive evidence was found by this technique of preferential hybridization with a nuclease-hypersensitive element of the c-myc promoter and with the telomeric TTAGGG repeats. The immunoprecipitated NDP kinase-DNA complexes are a promising material for the detection of other specific DNA sequences interacting with NDP kinase.  相似文献   

2.
Nm23–NDPKs besides contributing to the maintenance of the cellular nucleoside triphosphate pool, exert regulatory properties in a variety of cellular events including proliferation, invasiveness, development, differentiation, and gene regulation. This review focuses on recently discovered protein–protein interactions involving the Nm23 proteins. The findings herein summarized provide new and intriguing suggestions for a more extensive understanding of the biological functions of the Nm23 proteins.  相似文献   

3.
Recent studies from multiple laboratories, including our own, provided fresh insights into the contributory roles for GTP-binding proteins (G-proteins) in glucose-stimulated insulin secretion (GSIS) from the islet β cell. However, the precise mechanisms underlying the activation of this class of signaling proteins by insulin secretagogues remain only partially understood. We recently proposed that nm23/nucleoside diphosphate kinase (NDPK) catalyzes an alternate, non-receptor-dependent activation of islet endogenous G-proteins. In further support of this proposal, we report, herein, that overexpression of wild type (WT) nm23-H1 mutant in INS cells markedly potentiated GSIS. However, an inactive mutant of nm23-H1(H118F), which is deficient in histidine kinase and NDPK activities, was considerably less effective in potentiating GSIS from these cells, suggesting that both of these activities may be relevant for the potentiating effects of nm23-H1. Potential significance of these findings in relation to contributory roles for nm23/NDPK-like enzymes in the stimulus-secretion coupling of GSIS is discussed.  相似文献   

4.
5.
Nm23 is a family of genes encoding the nucleoside diphosphate (NDP) kinase, which functions in a wide variety of biological processes, including growth, development, differentiation and tumor metastasis. In this study, a novel nm23 gene, designated as Mrnm23, was identified from the freshwater giant prawn Macrobrachium rosenbergii. The full-length cDNA was 776 bp in length, encoding for a protein of 176 amino acids with one typical NDP kinase domain that harbored all the crucial residues for nucleotide binding and enzymatic activity. Like human novel nm23-H1B, the putative protein contained a unique 21-amino-acid NH2-terminal extension as compared to human nm23 (nm23-H1) homologs. Further, 3 extra amino acid residues prolonged the COOH-terminus. The Mrnm23 was ubiquitously expressed in all tissues examined, including androgenic gland, gill, heart, liver, muscle, ovary, and testis. In situ hybridization to gonad sections indicated that the Mrnm23 mRNA was localized in the cytoplasm of cup-base of differentiating spermatids, in the spike of the umbrella-shaped spermatozoa and in the cytoplasm of the early previtellogenic oocytes, suggesting that the Mrnm23 has potential roles in spermiogenesis and early differentiation of oocyte.  相似文献   

6.
The point mutation S120G in human nucleoside diphosphate kinase A, identified in patients with neuroblastoma, causes a protein folding defect. The urea-unfolded protein cannot refold in vitro, and accumulates as a molten globule folding intermediate. We show here that the trimethylamine-N-oxide (TMAO) corrects the folding defect and stimulated subunit association. TMAO also substantially increased the stability to denaturation by urea of both wild-type and S120G mutant. A non-native folding intermediate accumulated in the presence of 4.5-7 M urea and of 2 M TMAO. It was inactive, monomeric, contained some secondary structure but no tertiary structure and displayed a remarkable stability to denaturation.  相似文献   

7.
MUPP-1 (multi-PDZ domain protein-1) and PATJ (PALS-1-associated tight junction protein) proteins are closely related scaffold proteins and bind to many common interactors including PALS-1 (protein associated with Lin seven) a member of the Crumbs complex. Our goal is to understand how MUPP-1 and PATJ and their interaction with PALS-1 are regulated in the same cells. We have shown that in MCF10A cells there are at least two different and co-existing complexes, PALS-1/MUPP-1 and PALS-1/PATJ. Surprisingly, MUPP-1 levels inversely correlated with PATJ protein levels by acting on the stabilization of the PATJ/PALS-1 complex. Upon MUPP-1 depletion, the increased amounts of PATJ are in part localized at the migrating front of MCF10A cells and are able to recruit more PAR3 (partition defective 3). All together these data indicate that a precise balance between MUPP-1 and PATJ is achieved in epithelial cells by regulating their association with PALS-1.  相似文献   

8.
Due to its antiapoptotic action, derivatives of the lipid mediator lysophosphatidic acid (LPA) provide potential therapeutic utility in diseases associated with programmed cell death. Apoptosis is one of the major pathophysiological processes elicited by radiation injury to the organism. Consequently, therapeutic explorations applying compounds that mimic the antiapoptotic action of LPA have begun. Here we present a brief account of our decade-long drug discovery effort aimed at developing LPA mimics with a special focus on specific agonists of the LPA2 receptor subtype, which was found to be highly effective in protecting cells from apoptosis. We describe new evidence that 2-((3-(1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)propyl)thio)benzoic acid (GRI977143), a prototypic nonlipid agonist specific to the LPA2 receptor subtype, rescues apoptotically condemned cells in vitro and in vivo from injury caused by high-dose γ-irradiation. GRI977143 shows the features of a radiomitigator because it is effective in rescuing the lives of mice from deadly levels of radiation when administered 24 h after radiation exposure. Our findings suggest that by specifically activating LPA2 receptors GRI977143 activates the ERK1/2 prosurvival pathway, effectively reduces Bax translocation to the mitochondrion, attenuates the activation of initiator and effector caspases, reduces DNA fragmentation, and inhibits PARP-1 cleavage associated with γ-irradiation-induced apoptosis. GRI977143 also inhibits bystander apoptosis elicited by soluble proapoptotic mediators produced by irradiated cells. Thus, GRI977143 can serve as a prototype scaffold for lead optimization paving the way to more potent analogs amenable for therapeutic exploration. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号