首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The membrane potential of identified nerve (Retzius) cells and neuropil glial cells from 11 (±1) day-old embryos of the leechHirudo medicinalis was recorded using conventional intracellular microelectrodes. At this stage all ganglia of the segmental nervous system are formed. The membrane potential of Retzius cells was –68±4 mV (±SD,n=8), and showed a slope of 42 mV between 10 mM and 100 mM external K concentration. Retzius cells were able to fire action potentials which had a fast Na-dependent component, and, under appropriate conditions, also generated slow Ca (Ba) action potentials. The mean membrane potential of the neuropil glial cell at physiological K concentration (4 mM) was –83±5 mV (±SD,n=10), and showed a dependence of 56 mV for a tenfold change in the external K concentration (> 4mM). Neuropil glial cells showed no signs of voltage-activated excitability, but they repeatedly depolarized in the presence of 0.1 mM 5-HT.  相似文献   

2.
Summary Neuropile glial (NG) cells in the central nervous system of the medicinal leech, Hirudo medicinalis L., were studied by histological and intracellular electrophysiological methods. Potential profiles of single leech ganglia were mapped by advancing an electrolyte-filled microelectrode into the ganglion as far as the NG cell. A small negative potential usually appeared during or immediately after penetration of the ganglion sheath. Most of the ganglia in the chain (ganglia 1–4 and 7–21) have Retzius-cell-bodies of normal size; in these, the potential associated with the ganglion sheath was followed by a jump to a more negative potential. Superimposed action potentials were associated with entry of the electrode into a Retzius cell. When the electrode tip passed out of the cell into the center of the ganglion, another potential change was observed, namely that to the membrane potential of the anterior NG cell. This membrane potential averaged -60.2 mV and ranged from -50 to -73 mV. In ganglia 5 and 6 the Retzius-cell-bodies are particularly small, and no changes of potential associated with these cells were observed; the first potential to appear after the electrode passed through the sheath of the ganglion was the membrane potential of the NG cell. Potential profiles like those of ganglia 5 and 6 are recorded in the posterior parts of all ganglia.Potential profiles of single leech ganglia were also recorded with microelectrodes filled with the fluorescent dye Procion Yellow M4-RAN. When the presumed membrane potential of an NG cell appeared, the dye was injected into the ganglion. Subsequent histological examination with the fluorescence microscope revealed that all of the dye was contained in NG cells.Supported by a Fellowship (Heisenberg-Stipendium, Schl 169/5) and grants (Schl 169/2, 4) to W.R.S. from the Deutsche ForschungsgemeinschaftThe authors thank Gisela Geiger for excellent assistance during this work  相似文献   

3.
Pathological rates of gallbladder salt and water transport may promote the formation of cholesterol gallstones. Because prairie dogs are widely used as a model of this event, we characterized gallbladder ion transport in animals fed control chow by using electrophysiology, ion substitution, pharmacology, isotopic fluxes, impedance analysis, and molecular biology. In contrast to the electroneutral properties of rabbit and Necturus gallbladders, prairie dog gallbladders generated significant short-circuit current (I(sc); 171 +/- 21 microA/cm(2)) and lumen-negative potential difference (-10.1 +/- 1.2 mV) under basal conditions. Unidirectional radioisotopic fluxes demonstrated electroneutral NaCl absorption, whereas the residual net ion flux corresponded to I(sc). In response to 2 microM forskolin, I(sc) exceeded 270 microA/cm(2), and impedance estimates of the apical membrane resistance decreased from 200 Omega.cm(2) to 13 Omega.cm(2). The forskolin-induced I(sc) was dependent on extracellular HCO(3)(-) and was blocked by serosal 4,4'-dinitrostilben-2,2'-disulfonic acid (DNDS) and acetazolamide, whereas serosal bumetanide and Cl(-) ion substitution had little effect. Serosal trans-6-cyano-4-(N-ethylsulfonyl-N-methylamino)-3-hydroxy-2,2-dimethyl-chroman and Ba(2+) reduced I(sc), consistent with the inhibition of cAMP-dependent K(+) channels. Immunoprecipitation and confocal microscopy localized cystic fibrosis transmembrane conductance regulator protein (CFTR) to the apical membrane and subapical vesicles. Consistent with serosal DNDS sensitivity, pancreatic sodium-bicarbonate cotransporter protein pNBC1 expression was localized to the basolateral membrane. We conclude that prairie dog gallbladders secrete bicarbonate through cAMP-dependent apical CFTR anion channels. Basolateral HCO(3)(-) entry is mediated by DNDS-sensitive pNBC1, and the driving force for apical anion secretion is provided by K(+) channel activation.  相似文献   

4.
Neutral carrier pH-sensitive double-barrelled microelectrodes were used to investigate intracellular pH (pHi) in leech neuropile glial cells and in Retzius neurones. The mean pHi of the glial cells was 6.87 +/- 0.13 (+/- SD, n = 27) in HEPES-buffered saline (pHo 7.4) and 7.18 +/- 0.19 (n = 13) in solutions buffered with 2% CO2- 11 mM HCO3-. The distribution of H+ ions in both the glia and neurones was found not to be in electrochemical equilibrium. To investigate pHi regulation, the pHi was decreased by exposure to CO2 or by adding and then removing NH4Cl. Acidification by any method was followed by a recovery to normal pHi values within minutes. The pHi recovery from acidification in neuropile glial cells in HEPES-buffered saline and CO2-HCO3- buffered saline was, however, blocked by removing external Na. In HCO3(-)-free solutions the diuretic amiloride (2 mM) reduced the rate of pHi recovery. In the presence of HCO3-, the rate of acid efflux was stimulated; the stilbene 4-acetamido-4'-isothiocyanatostilbene-2,3'-disulfonic acid (SITS; 0.5 mM) slowed pHi recovery. In HEPES buffered and CO2-HCO3- buffered solutions pHi regulation in neurones was inhibited by removing external Na. In HCO3(-)-free solutions amiloride reduced the rate of pHi recovery considerably. In the presence of HCO3-, SITS or amiloride slowed but did not completely block pHi recovery. We conclude that leech glial cells and neurones have two mechanisms of pHi regulation, one being Na+-H+ exchange and the other Na+ and HCO3- dependent.  相似文献   

5.
Glial cells are the most abundant cells in the central nervous system and play crucial roles in neural development, homeostasis, immunity, and conductivity. Over the past few decades, glial cell activity in mammals has been linked to circadian rhythms, the 24-h chronobiological clocks that regulate many physiological processes. Indeed, glial cells rhythmically express clock genes that cell-autonomously regulate glial function. In addition, recent findings in rodents have revealed that disruption of the glial molecular clock could impact the entire organism. In this review, we discuss the impact of circadian rhythms on the function of the three major glial cell types – astrocytes, microglia, and oligodendrocytes – across different locations within the central nervous system. We also review recent evidence uncovering the impact of glial cells on the body's circadian rhythm. Together, this sheds new light on the involvement of glial clock machinery in various diseases.  相似文献   

6.
Central nervous system (CNS) in leech comprises segmentally iterated progeny derived from five embryonic lineages (M, N, O, P and Q). Segmentation of the leech CNS is characterized by the formation of a series of transverse fissures that subdivide initially continuous columns of segmental founder cells in the N lineage into distinct ganglionic primordia. We have examined the relationship between the N lineage cells that separate to form the fissures and lateral ectodermal and mesodermal derivatives by differentially labeling cells with intracellular lineage tracers and antibodies. Although subsets of both lateral ectoderm and muscle fibers contact N lineage cells at or near the time of fissure formation, ablation experiments suggest that these contacts are not required for initiating fissure formation. It appears, therefore, that this aspect of segmentation occurs autonomously within the N lineage. To support this idea, we present evidence that fundamental differences exist between alternating ganglionic precursor cells (nf and ns primary blast cells) within the N lineage. Specifically, ablation of an nf primary blast cell sometimes resulted in the fusion of ipsilateral hemi-ganglia, while ablation of an ns primary blast cell often caused a 'slippage' of blast cells posterior to the lesion. Also, differences in cell behavior were observed in biochemically arrested nf and ns primary blast cells. Collectively, these results lead to a model of segmentation in the leech CNS that is based upon differences in cell adhesion and/or cell motility between the alternating nf and ns primary blast cells. We note that the segmentation processes described here occur well prior to the expression of the leech engrailed-class gene in the N lineage.  相似文献   

7.
Summary Using a monoclonal antibody for glutamate the distribution was determined of glutamate-like immunoreactive neurons in the leech central nervous system (CNS). Glutamate-like immunoreactive neurons (GINs) were found to be localized to the anterior portion of the leech CNS: in the first segmental ganglion and in the subesophageal ganglion. Exactly five pairs of GINs consistently reacted with the glutamate antibody. Two medial pairs of GINs were located in the subesophageal ganglion and shared several morphological characteristics with two medial pairs of GINs in the first segmental ganglion. An additional lateral pair of GINs was also located in segmental ganglion 1. A pair of glutamate-like immunoreactive neurons, which are potential homologs of the lateral pair of GINs in segmental ganglion 1, were occasionally observed in more posterior segmental ganglia along with a selective group of neuronal processes. Thus only a small, localized population of neurons in the leech CNS appears to use glutamate as their neurotransmitter.  相似文献   

8.
It is known that nitric oxide (NO) is produced by injured tissues of the mammalian central nervous system (CNS) within days of injury. The aim of the present experiments was to determine the cellular synthesis of NO in the CNS immediately after injury, using the CNS of the leech which is capable of synapse regeneration, as a step towards understanding the role of NO in nerve repair. We report that within minutes after crushing the nerve cord of the leech, the region of damage stained histochemically for NADPH diaphorase, which is indicative of nitric oxide synthase (NOS) activity, and was immunoreactive for endothelial NOS (eNOS). On immunoblots of leech CNS extract, the same antibody detected a band with a relative molecular mass of 140,000, which is approximately the size of vertebrate eNOS. Cells expressing eNOS immunoreactivity as a result of injury were identified after freezing nerve cords, a procedure that produced less tissue distortion than mechanical crushing. Immunoreactive cells included connective glia and some microglia. Calmodulin was necessary for the eNOS immunoreactivity: it was blocked by calmodulin antagonist W7 (25 microM), but not by similar concentrations of the less potent calmodulin antagonist W12. Thus in the leech CNS, in which axon and synapse regeneration is successful, an increase in NOS activity at lesions appears to be among the earliest responses to injury and may be important for repair of axons.  相似文献   

9.
We localized the enzyme carbonic anhydrase (CA) in frozen sections of the leech (Hirudo medicinalis) central nervous system by two histochemical techniques and the indirect immunofluorescence technique. Hansson's cobalt precipitation method and the use of 1-dimethylamino-naphthalene-5-sulfonamide (DNSA) to build a fluorescent enzyme-substrate complex showed that glial cells are the sites of CA activity in the leech. Neuropil and connective glial cells surrounding the axons had strong CA activity, whereas packet glial cells, which surround neuron cell bodies, and neurons themselves remained unstained. Glial cells reacted markedly with FITC-coupled antibodies against CA isoenzyme II, but experiments with antibodies against CA isoenzyme I showed no reaction.  相似文献   

10.
Using a monoclonal antibody for glutamate the distribution was determined of glutamate-like immunoreactive neurons in the leech central nervous system (CNS). Glutamate-like immunoreactive neurons (GINs) were found to be localized to the anterior portion of the leech CNS: in the first segmental ganglion and in the subesophageal ganglion. Exactly five pairs of GINs consistently reacted with the glutamate antibody. Two medial pairs of GINs were located in the subesophageal ganglion and shared several morphological characteristics with two medial pairs of GINs in the first segmental ganglion. An additional lateral pair of GINs was also located in segmental ganglion 1. A pair of glutamate-like immunoreactive neurons, which are potential homologs of the lateral pair of GINs in segmental ganglion 1, were occasionally observed in more posterior segmental ganglia along with a selective group of neuronal processes. Thus only a small, localized population of neurons in the leech CNS appears to use glutamate as their neurotransmitter.  相似文献   

11.
12.
13.
14.
Using monoclonal antibodies, we have identified two novel intermediate filament (IF) proteins, Gliarin and Macrolin, which are specifically expressed in the central nervous system of an invertebrate. The two proteins both contain the coiled‐coil rod domain typical of the superfamily of IF proteins flanked by unique N‐ and C‐terminal domains. Gliarin was found in all glial cells including macro‐ and microglial cells, whereas Macrolin was expressed in only a single pair of giant connective glial cells. The identification of Macrolin and Gliarin together with the characterization of the strictly neuronal IF protein Filarin in leech central nervous system demonstrate that multiple neuron‐ and glial‐specific IFs are not unique to the vertebrate nervous system but are also found in invertebrates. Interestingly, phylogenetic analysis based on maximum parsimony indicated that the presence of neuron‐ and glial cell–specific IFs in coelomate protostomes as well as in vertebrates is not of monophyletic origin, but rather represents convergent evolution and appears to have arisen independently. © 1999 John Wiley & Sons, Inc. J Neurobiol 40: 244–253, 1999  相似文献   

15.
Exracellular nucleotides like ATP and its derivatives are possible chemical messengers in vertebrate nervous systems. In invertebrate nervous systems, however, little is known about their role in neurotransmission. We have studied the reponse of identified neurones of the leech Hirudo medicinalis to the purinoceptor agonist ATP, ADP, AMP, and adenosine using conventional intracellular microelectrodes and whole-cell patch-clamp recording. Bath application of the agoinsts depolarized the different neurons, but not neuropil glial cells. The most effective responses (up to 10 mV) were observed with ATP (100 μM) or ADP (100 μM) in the noxious and touch cells. In most neurons the nonhydrolyzable ATP derivative ATP-γ-S (5 μM) induced larger depolarizations that 100 μM ATP, indicating that most of the potency of ATP is lost presumably due to its degradation by ectonucleotidases. In medial noxios cells, ATP (100 μM) induced an inward current of 1.7 ± 1.1 nA at a holding potential of ?60 mV. The ATP-induced current-voltage relationship showed an inward rectification and a reversal potential close to 0 m V. In a Na+-free extracellular solution, the ATP-induced inward current decreased and in a Na+- and Ca2+-free saline only a small residual current persisted. The possible P2 purinoceptor antagonist suramin did not antagonize the ATP-induced current, but itself evoked an inward current and a conductance increase. We conclude that ATP activates nonselective cation channels in medial noxious cells of the leech with the order of potency of purinoceptor agonists ATP ≥ ADP > AMP. The results suggest that these cells express purinoceptors of the P2 type. 1994 John Wiley & Sons, Inc.  相似文献   

16.
It has previously been shown that cephalic, segmental, and caudal ganglia from the medicinal leech show differences in their protein composition. Here we studied whether the neuronal reorganization that occurs in cultured segmental ganglia from the medicinal leech is accompanied by detectable changes in the protein expression pattern. Using silver-stained two-dimensional gels we showed that after 5 and 12 days in culture changes in the protein patterns can be detected in isolated ganglia. The changes observed in the two-dimensional gels occurred concomitantly with a sprouting of serotoninergic neurites and a decreased transmitter content of dopaminergic neurites as shown by using the glyoxylic acid condensation reaction. In addition, we present evidence that Retzius cells, which can be identified by their characteristic morphology and action potential waveform, exhibit biochemically unique properties with respect to their protein expression pattern.  相似文献   

17.
Using monoclonal antibodies, we have identified two novel intermediate filament (IF) proteins, Gliarin and Macrolin, which are specifically expressed in the central nervous system of an invertebrate. The two proteins both contain the coiled-coil rod domain typical of the superfamily of IF proteins flanked by unique N- and C-terminal domains. Gliarin was found in all glial cells including macro- and microglial cells, whereas Macrolin was expressed in only a single pair of giant connective glial cells. The identification of Macrolin and Gliarin together with the characterization of the strictly neuronal IF protein Filarin in leech central nervous system demonstrate that multiple neuron- and glial-specific IFs are not unique to the vertebrate nervous system but are also found in invertebrates. Interestingly, phylogenetic analysis based on maximum parsimony indicated that the presence of neuron- and glial cell-specific IFs in coelomate protostomes as well as in vertebrates is not of monophyletic origin, but rather represents convergent evolution and appears to have arisen independently.  相似文献   

18.
19.
20.
Summary We have recently shown that stimulation of electrogenic HCO 3 secretion is accompanied by a simultaneous increase in short-circuit current (I sc, equivalent to HCO 3 secretion rate under these conditions), apical membrane capacitance (C a , proportional to membrane area), and apical membrane conductance (G a , proportional to membrane ionic permeability). The current experiments were undertaken to explore the ionic basis for the increase inG a and the possibility that the rate of electrogenic HCO 3 secretion is regulated by changes inG a . Membrane electrical parameters were measured using impedance-analysis techniques before and after stimulation of electrogenic HCO 3 secretion with cAMP in three solutions which contained different chloride concentrations. In another series of experiments, the effects of an anion channel blocker, anthracene-9-carboxylic acid (9-AA), were measured after stimulation of electrogenic HCO 3 secretion with cAMP. The major conclusions are: (i) a measurable apical Cl conductance exists in control hemibladders; (ii) the transport-associated increase inG a includes a Cl-conductive component; (iii)G a also appears to reflect a HCO 3 conductance; (iv) the relative magnitudes of the apical membrane conductances to Cl and HCO 3 are similar; (v) 9-AA reducesG a andI sc appear cAMP-stimulated hemibladders; and (vi) alterations inI sc appear to be mediated by changes inG a .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号