首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The activities of ornithine decarboxylase and thymidine kinase were determined in tissues of young intact and hypophysectomized rats at various times after treatment with prolactin. In both types of animals, ornithine decarboxylase activity increased in liver, kidney, spleen and adrenal of prolactin treated rats. Thymidine kinase activity increased only in liver and spleen of intact rats. Increase in the kinase activity was smaller, and occurred later than the change in ornithine decarboxylase. In hypophysectomized animals, thymidine kinase activity increased in spleen, but not in liver, following prolactin treatment.  相似文献   

2.
The effects of immobilization stress and/or dexamethasone (DEX) on the adrenal ornithine decarboxylase (ODC) activities of sham-operated and adrenal-medulloectomized (enucleated) male Sprague-Dawley rats were investigated. On day 11 after surgery, rats were injected with saline or DEX (1 mg/kg), 3 h before the time of sacrifice (0600 h or 1800 h). Four groups, from sham-operated and enucleated rats (ENU) treated with saline or DEX were subjected to immobilization stress for 1 h prior to sacrifice. Groups of rats from stress-sham-DEX, non stress-sham-DEX, stress-sham, non stress-sham, stress-ENU-DEX, non stress-ENU-DEX, stress-ENU, and non stress-ENU were sacrificed at 0600 h or 1800 h on day 11 after surgery. Adrenal glands were excised and later analyzed for ODC activities. Results indicated that DEX and/or immobilization stress inhibited ODC activities (p < 0.05) in normal and regenerating adrenal glands at 1800 h and ODC activity varies diurnally, the activity being greater at 1800 h than at 0600 hours (p < 0.001).  相似文献   

3.
The activity of ornithine decarboxylase during the regenerating process of adrenal cortex was evaluated in Sprague-Dawley male rats weighing 140–180 g. In this study, 4 groups of rats were enucleated and another 4 groups were sham operated. Animals were maintained at a temperature of 23 ± 1°C and 12:12 h light:dark cycle. At 7 and 11 days post surgery, animals were sacrificed at 0600 h and 1800 h, respectively. Adrenal glands were immediately removed and assayed for ornithine decarboxylase (ODC). The enzyme activity was found to be significantly elevated in enucleated groups as compared to the sham control groups at the 7th and the 11th day of surgery. ODC activity was found to be about 2 times higher at 1800 h by the 7th day and 5 times higher at 1800 h by the 11th day of adrenal surgery when compared to the activity at 0600 h. From these results, it appears that ODC activity not only increases as the regeneration process of adrenal cortex approaches completion, but also becomes more pronounced towards the end of the light period.  相似文献   

4.
The role of cyclic AMP in the regulation of hepatic ornithine decarboxylase (ODC) activity in the rat was studied in the whole animal and in the perfused organ. Dibutyryl cyclic AMP or butyrate given to intact rats increased ODC activity; this increase was abolished by hypophysectomy 1 h prior to administering ether compound. Administration of 1 mg 1-methyl-3-isobutylxanthine (MIX) to intact rats increased ODC activity within 4 hours whereas hypophysectomy 1 h before treatment prevented this increase. No change in hepatic cyclic AMP content was seen in either intact or hypophysectomized rats following MIX. Perfusion with 0.5 mM dibutyryl cyclic AMP decreased ODC activity in isolated livers whereas perfusion with 0.5 mM 8-bromocyclic GMP produced a small increase in ODC activity. These data suggest that the effect of dibutyryl cyclic AMP in intact animals may be a property of the butyrate and that this action as well as the action of MIX may be mediated through the permissive effect of pituitary and/or adrenal hormones. The normal hepatocyte does not increase its ornithine decarboxylase activity after direct exposure to dibutyryl cyclic AMP.  相似文献   

5.
In a previous study (1) we demonstrated that lithium administration (1.0 mmol/kg b.wt., per day for 4 weeks) in intact vizcacha (Lagostomus maximus maximus) leads to significant histological alterations in the kidneys, ovarie and testicles, while these three tissues were not damaged in rats. Male vizcachas died within 4 days when administered LiCl 3 mmol/kg b.wt., while females were not affected. The lithium renal clearance presented no changes in either males or females. The 1.0 mmol/kg b.wt. dose was used in the experiments (2). In this study we examined the distribution of lithium in various tissues of male and female vizcacha (Lagostomus maximus maximus) administered LiCl by injection (1 mmol/kg b.wt.) for one day (Group I) and thirty days (Group II). Blood sample was obtained after 24 hours (Group I) and 30 days (Group II). The tissues investigated were: pituitary, hypothalamus, cerebral cortex, cerebellum, corpus callous, small and large intestine, kidney and suprarenal. The concentration of lithium in tissues and serum was determined by atomic absortion spectrometry (3,4). In Group I a significant lithium concentration increment (mumol/g of tissue) was observed in all the tissues of male vizcachas as compared to female vizcacha. A similar distribution was obtained in animals treated for 30 days. In the pituitary, however this difference between males and females was not significant. The male lithium serum levels were significantly higher than those of female animals. In conclusion, we suggest that the particular structure of the cell membrane (e.g., number and characteristic of sodium channels) of each tissue and/or the intracellular mechanisms of transport, elimination and metabolism might explain the unequal lithium distribution and the difference recovery from the damage produced. The results suggest that the vizcacha could be a useful model for the study of lithium toxicity.  相似文献   

6.
Lithium chloride at a dose of 200 micrograms/100 g body weight/day given for 21 days caused a significant increase in adrenal weight, adrenal 5-ene-3 beta-hydroxysteroid dehydrogenase (5-ene-3 beta-HSD) activity along with elevation in serum level of corticosterone on the 22nd day in the rat. Administration of testosterone for the last 14 days to lithium treated rats caused a significant decrease in adrenal weight, adrenal 5-ene-3 beta-HSD activity and serum level of corticosterone in comparison to lithium treated animals.  相似文献   

7.
The major cholinergic innervation of the rat cerebral cortex arises from the nucleus basalis in the basal forebrain. Introduction of the excitotoxins kainate or ibotenate into the nucleus basalis by stereotaxic injection results in degeneration of the cholinergic cells. We have investigated the effect of this excitotoxic action on ornithine decarboxylase (ODC) activity and cholinergic responsiveness in the cerebral cortex. A massive and rapid induction of ODC activity was seen in ipsilateral cortex after injection of excitotoxin. A maximal increase in ODC activity of 268 times the control value was seen in ipsilateral cerebral cortex 8 h after lesioning. Thereafter, ODC activity declined but remained significantly greater than control levels for 32 h. Pretreatment of animals with the irreversible ODC inhibitor difluoromethylornithine prevented the induction of ODC by kainate. Tissue content of the ODC product putrescine showed a marked increase in cerebral cortex ipsilateral to the lesion, increasing sevenfold at 24 h, the maximal concentration reached. After 24 h, the level of putrescine decreased but remained significantly elevated above control values for 5 days. Levels of the polyamines spermidine and spermine were unaffected by lesioning. Increases on ODC activity of much smaller magnitude were also seen in brain regions not directly innervated from the ipsilateral nucleus basalis. However, the response in ipsilateral cortex was found to be dependent on an intact projection from nucleus basalis to cortex. The induction of ODC was shown to be prevented by treatment of rats with MK-801, a result indicating the involvement of N-methyl-D-aspartate (NMDA) receptors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Abstract: In this work we have studied the mechanism for the increase of adrenal ODC (ornithine decarboxylase, EC 4.1.1.17) activity provoked by oxotremorine, a muscarinic agonist. 1. Oxotremorine increased medullary ODC activity maximally at 2 h. Cortical enzyme responded much more slowly. 2. Blockade of peripheral muscarinic receptors with methylatropine partially reduced the response to oxotremorine in the medulla, but not cortex. 3. Hy-pophysectomy abolished the cortical, but not the medullary, responses to oxotremorine. Methylatropine reduced the effect of oxotremorine on medullary ODC in hypophysectomized rats. 4. In unilaterally splanchnicotomized rats oxotremorine caused an increase of ODC activity of the denervated adrenal gland relative to control value; activities in both medulla and cortex were significantly lower than those observed in the innervated gland. Evidence was obtained for a compensatory increase of ODC activity of the adrenal cortex (but not medulla) on the intact side of unilaterally operated rats. 5. Surgical intervention, in the form of a sham operation for transection of the spinal cord, leads to an increase of ODC activity in both parts of the adrenal gland. Transection of the cord attenuates these increases. 6. The additional increase of medullary ODC activity owing to the administration of oxotremorine to sham-operated rats is partially reduced in the adrenal medulla by muscarinic blockade, and completely in the cortex. This effect of methylatropine in regard to cortical ODC activity was not apparent in the other experiments with intact or unilaterally splanchnicotomized (unoperated side) rats. The results with unilaterally splanchnicotomized rats and those with transected spinal cord suggest that oxotremorine-induced modifications of adrenal ODC activity are centrally mediated, above the level of origin of the splanchnic nerves in the spinal cord (T8–10). Experiments with hypophysectomized rats show that the response of the adrenal cortex to oxotremorine is entirely mediated by the hypophysis.  相似文献   

9.
REPORTS of the behavioural effects of lithium salts on animals mainly seem to have dealt with depressant effects on spontaneous activities or with toxic symptoms (weight loss, polyuria, polydipsia, diarrhoea and so on). After prolonged lithium treatment, changes in brain 5-hydroxytryptamine (5HT) metabolism have been found to occur; 5HT turnover is decreased either in the whole brain1 or in specific areas such as brainstem and hypothalamus1, 2, where the levels are also decreased2. When levels of 5HT are reduced in the whole brain of rats either by lesions3 or by parachlorophenylalanine (PCPA)4, an inhibitor of 5HT synthesis, motor responsiveness of rats to electrical stimulation of the feet has been found to increase. We have observed that rats treated with lithium for a few days struggle more than controls when the skin is punctured in the course of injections and after 2 weeks of treatment with lithium chloride (LiCl), foot shock “jump response” thresholds are reduced by about 10 and 25% with doses of 1 and 2 mequiv./kg respectively. With larger doses, sensitivity to foot shock is not increased further, but may even decline as toxic effects appear; after 2 weeks of administration of 3 mequiv/kg LiCl, toxic effects appeared in nearly all our rats and about 10% of animals died. Sheard5 has found that treatment for 5 days with a high dose of LiCl (5 mequiv/kg) had no effect on motor responsiveness to foot shock, although shock-induced aggressive behaviour decreased; no toxic effects were reported.  相似文献   

10.
The effect of 3-isobutyl-1-methylxanthine (IBMX), an inhibitor of cyclic nucleotide phosphodiesterase, was tested on several actions of prolactin in cultured mouse mammary tissues. At concentrations of 0.5 mM and above, IBMX abolished the actions of prolactin on RNA and casein synthesis. IBMX by itself, stimulated ornithine decarboxylase (ODC) activity in a dose-response fashion; but the IBMX at concentrations up to 1 mM had no effect on the magnitude of the prolactin-stimulated ODC activity. IBMX inhibited in a dose-response fashion the rate of [14C]-acetate incorporation into lipids; however, prolactin stimulated lipid biosynthesis in the presence of IBMX concentrations of up to 1 mM.  相似文献   

11.
We previously showed that Cd2+ is able to induce hepatic and renal ornithine decarboxylase (ODC). In addition to Cd2+, the administration of Co2+ and other metal ions such as Se2+, Zn2+ and Cr2+ produced a significant increase of hepatic and/or renal ODC activity. Of the metal ions used in this study, Co2+ produced the greatest increase of ODC activity. The maximum increases in hepatic and renal ODC activity, to respectively 70 and 14 times the control values in male rats, were observed 6 h after the administration of Co2+. A similar response was seen in the liver, but not in the kidney, of female rats. Thereafter, ODC activity gradually returned to control values in the liver, but it was profoundly decreased to 7% of the control value at 24 h in the kidney. The pretreatment of animals with either actinomycin D or cycloheximide almost completely blocked the Co2+-mediated increase of ODC activity. Co2+ complexed with either cysteine or glutathione (GSH) failed to induce ODC. Depletion of hepatic GSH content by treatment of rats with diethyl maleate greatly enhanced the inducing effect of Co2+ on ODC. The inhibitors of ODC, 1,3-diaminopropane and alpha-difluoromethylornithine, were able to inhibit the induction of the enzyme, without affecting the induction of haem oxygenase by Co2+. Methylglyoxal bis(guanylhydrazone), an inhibitor of S-adenosylmethionine decarboxylase, significantly inhibited the Co2+-mediated induction of both ODC and haem oxygenase. It is suggested that the inducing effects of Co2+ on ODC and haem oxygenase are brought about in a similar manner.  相似文献   

12.
Twenty hours following the subcutaneous administration of 5 mEq/kg doses of 6LiCl and 7LiCl to two groups of rats, the cerebral cortex molar ratio of 6Li+/7Li+ is 1.5. The effects of the lithium isotopes on cortex myo-inositol and myo-inositol-l-phosphate levels are the same as we have reported earlier: a Li+ concentration-dependent lowering of myo-inositol and increase in myo-inositol-1-phosphate. Thus 6LiCl, when administered at the same dose as 7LiCl, produces the larger effect on inositol metabolism. When the 6LiCl and 7LiCl doses were adjusted to 5 mEq/kg and 7 mEq/kg, respectively, the cortical lithium myo-inositol and myo-inositol-1-phosphate levels of each group of animals became approximately equal, suggesting that the isotope effect occurs at the level of tissue uptake, but not on inositol phosphate metabolism. The inhibition of myo-inositol-1-phosphatase by the two lithium isotopes in vitro showed no differential effect. The isotope effect on cerebral cortex uptake of lithium is in the same direction as that reported by others for erythrocytes and for the CSF/plasma ratio, but of larger magnitude.  相似文献   

13.
The aim of the current study was to investigate lithium action on adrenomedullary and adrenocortical functions and on serum ionic balance in rats. Three age-groups of male rats (juvenile: 30 days, adult: 100 days and aged: 3 years) were used. Each age-group of animal was exposed to short- (10 days) and long-term (25 days) treatments with lithium. Each age-group of rat received lithium at a dose 2mEq/kg body weight daily for 10 and 25 days. Each daily dose (2mEq) was divided equally into half (1 mEq) and each half was injected intraperitoneally twice (at 9 am and 9 pm) for both the durations of experiments. Control animals received physiological saline for similar duration of experiments. Thirty animals were used for each age-group and they were divided equally into 6 groups with 5 each. After termination of all the experiments rats were sacrificed and, adrenal glands were quickly dissected out and processed for epinephrine, norepinephrine and corticosterone estimations and, 3 beta-hydroxysteroid dehydrogenase (3 beta-HSDH) activity of the adrenal gland. Blood was drawn from the heart of each rat and, serum was collected and stored at -20 degrees C until assayed for lithium, calcium, sodium, potassium and corticosterone concentrations. The findings revealed that lithium in both short- and long-term treatments was maintained well within the therapeutic range (0.3-0.8 mEq/l) in all the age-groups of rats. This alkali metal caused depletions of both epinephrine and norepinephrine concentrations from adrenal glands, and elevations of corticosterone in both adrenal and blood serum of each age-group of rat (juvenile, adult and aged). Additionally adrenal 3beta-HSDH activity was also increased in all the age-groups of rats irrespective of duration of the treatments. Short-term treatment of lithium elevated only serum K+ level in juvenile and adult rats and, Ca+ level only in adult animals. Significant elevations of serum K+ and Ca+ levels were observed following long-term treatments of lithium in all the age group of rats. No significant change in serum Na+ level was recorded after lithium treatment, irrespective of duration of treatments, in any age-group of rats. The findings suggest that lithium action, in respect of adrenomedullary and adrenocortical functions and, serum ionic balance, may not be largely related to the age-group of rats and that, lithium acts on adrenomedullary activity probably by stimulating the release mechanism of epinephrine and norepinephrine from the adrenal gland of rats, but stimulates adrenocortical activity by stimulating both synthesis (including 3 beta-HSDH activity) and release of corticorterone. Simultaneously, lithium disturbs normal ionic balance by elevating K+ and Ca+ levels in all the age-group of rats. Thus, the antimanic drug certainly disturbs both adrenomedullary and adrenocortical functions and, serum ionic balance in all the age-group of rats.  相似文献   

14.
Ornithine decarboxylase (ODC), S-adenosylmethionine decarboxylase (SAMDC), and thymidine kinase (TK) activities and polyamine concentrations on the kidneys of male castrated rats were studied following sc injection of estradiol. Estradiol caused an 11-fold increase in ODC activity 24 hours after administration. SAMDC activity doubled but TK activity decreased by two-thirds 2 days after estradiol treatment. The concentrations of polyamines, especially putrescine, showed sharp elevations 2 days following estradiol treatment, 1 day after the peak of ODC activity. The increase in ODC activity was suppressed by cycloheximide and by actinomycin D. Estradiol and diethylstilbestrol (DES), but not progesterone increased ODC activity. Estradiol suppressed ODC activities of liver, thymus, adrenal glands, testes and prostate. A specific estradiol-binding protein was demonstrated in the rat kidney. The dissociation constant (Kd) was 1.64 × 10?10 M and numbers of binding sites were 31 fmoles/mg protein. Correlation between the binding of estradiol to the cytosol protein and elevation of ODC by estradiol was observed.  相似文献   

15.
Ornithine decarboxylase (ODC) activity of rat tissues was measured by the standard 14CO2 trapping method after frozen storage (-60 or -70 degrees C) of the tissues or their 105,000g supernatants. True ODC activity was determined by two methods: (a) addition of the inhibitors alpha-difluoromethylornithine (DFMO), a specific irreversible inhibitor of ODC, or aminooxyacetate (AOA), an inhibitor that blocks the decarboxylation of ornithine by mitochondrial enzymes; and (b) chromatographic analysis of the reaction products. In the frozen supernatants of liver and spleen, ODC activity changed only slightly after 1 day but increased 29 and 14%, respectively, by 30 days; activity in kidney supernatant decreased 17% after 1 day and remained near that level at 30 days. Kidney and spleen ODC activity was inhibited 90-100% by DFMO, but apparent liver ODC activity was inhibited only 60-75%. In the supernatant prepared from tissue stored frozen for 1 day, apparent ODC activity in liver increased 500% over that activity in the freshly prepared supernatant; at 23 days, apparent activity increased 755% for liver and 121% for kidney. After 23 days, DFMO did not inhibit apparent ODC activity in supernatants from frozen liver and inhibited ODC in frozen kidney by only 49%. With AOA, the ODC activities of the fresh and frozen supernatants were similar, indicating that the large increase in apparent ODC activity in frozen tissue was due to artifacts from the metabolism of ornithine via the mitochondrial pathway. HPLC analysis of the reaction products resulting from the incubation of uniformly labeled [14C]ornithine with the fresh and frozen preparations indicated no increase in putrescine with the frozen preparation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Effect of prolactin on DNA methylation in the liver and kidney of rat   总被引:2,自引:0,他引:2  
Prolactin is an important growth modulatory hormone in fetal and adult tissues. It stimulates DNA synthesis and enzymatic markers of the G1 phase of cell cycle in rat liver and other tissues. In this study the effects of prolactin on 5-methyl cytosine content in liver and kidney of rats was studied using HPLC. Prolactin treatment caused hypomethylation of DNA in the liver and kidney of immature rats at 48 h after treatment and the effect remained even at 72 h. Prolactin also caused hypomethylation of DNA in the kidney and liver of adult rats at 48 h after treatment. These results indicate that prolactin probably regulates DNA methylation in the liver and kidney of immature and adult rats.  相似文献   

17.
The effects of various concentrations of prolactin and growth hormone on the rates of [3H]-uridine incorporation into RNA, [3H]-leucine incorporation into casein, and ornithine decarboxylase (ODC) activity were determined in mouse mammary gland explants. The lowest concentrations of prolactin which produced significant responses were between 5 and 25 ng/ml. Growth hormone, in contrast, produced significant response at concentrations between 250 and 1,000 ng/ml. The prolactin actions on RNA and casein synthesis were essentially all-or-none type responses, i.e. the magnitude of the responses were maximal at about 10 ng/ml prolactin. The action of prolactin on ODC activity was quite different; a concentration-response relationship was observed with prolactin at concentrations from 10 t 250 ng/ml. It is apparent from these studies that different concentrations of prolactin are required to produce optimal actions on different biochemical parameters in cultured mammary tissues.  相似文献   

18.
L Y Wing 《Life sciences》1990,47(14):1261-1267
Many hormones are known to induce the activity of ornithine decarboxylase (ODC), the first and rate-limiting enzyme for polyamine biosynthesis, in their target tissues. Using ovariectomized rats, we have compared the effects of sex hormones on ODC activity in the uterus and the kidney which contain estrogen and androgen receptors. The results show that 1) both estrogen and androgen stimulate renal ODC activity, 2) estrogen but not androgen effectively increases ODC activity in the uterus, 3) estrogen at higher dosage can stimulate renal ODC activity to an extent similar to that in the uterus, 4) daily treatment with estradiol for 5 days results in the desensitization of uterine ODC activity, but not that of renal ODC activity to the hormonal stimuli. Although both uterus and kidney are targets of sex hormones, our results indicate that estrogen and androgen have differential influences on the ODC activity in these two organs.  相似文献   

19.
Ornithine decarboxylase (ODC), a regulatory enzyme of polyamine biosynthesis, is involved in cell growth and differentiation. Lack of information about the exact cellular and subcellular localization of ODC is one of the main obstacles to precise interpretation of the biological roles of the ODC/polyamine system. Here we describe the development and optimization of an immunocytochemical method to detect ODC in cells and tissues. For this purpose a monoclonal antibody (MP16-2) against a defined epitope of ODC protein was developed. Specificity of the antibody for ODC was substantiated by Western blotting and ELISA analysis using cell and tissue homogenates. In cultured cells, optimal staining results were obtained after fixation with crosslinking fixatives followed by permeabilization with methanol. In rat tissues, ODC immunoreactivity was best preserved in paraffin sections fixed with Bouin's fixative. Antigen retrieval using SDS and citrate buffer substantially increased ODC immunostaining and decreased background staining. Localization studies of ODC in different cell lines showed that strongest staining for ODC was found in the nucleoplasm of mitotic cells, whereas confluent cells showed moderate perinuclear staining. Immunocytochemical studies of various rat tissues showed high cytoplasmic immunostaining of ODC in epithelial cells of kidney, prostate, and adrenal medulla of testosterone-treated rats, in glandular epithelium of small intestine, and in pancreas of neonatal and adult rats. (J Histochem Cytochem 47:1395-1404, 1999)  相似文献   

20.
Incubation of isolated hepatocytes from fasted rats with 20 mM LiCl for 1 h decreased glucose production from lactate, pyruvate, and alanine. In addition, phosphoenolpyruvate carboxykinase (PEPCK) gene expression in FTO-2B rat hepatoma cells was inhibited by treatment with LiCl. Lithium was also able to counteract the increased PEPCK mRNA levels caused by both Bt2cAMP and dexamethasone, in a concentration-dependent manner. A chimeric gene containing the PEPCK promoter (-550 to +73) linked to the amino-3-glycosyl phosphotransferase (neo) structural gene was transduced into FTO-2B cells using a Moloney murine leukemia virus-based retrovirus. In these infected cells, 20 mM LiCl decreased both the concentration of neo mRNA transcribed from the PEPCK-neo chimeric gene and mRNA from the endogenous PEPCK gene. Lithium also inhibited the stimulatory effect of Bt2cAMP and dexamethasone on both genes. The stability of neo mRNA was not altered by lithium, since in cells infected with retrovirus containing only the neo gene transcribed via the retroviral 5'-LTR and treated with 20 mM LiCl, no change in neo mRNA levels was observed. The intraperitoneal administration of LiCl to rats caused a decrease in hepatic PEPCK mRNA, indicating that lithium could also modify gene expression in vivo. The effects of lithium were not due to an increase in the concentration of insulin in the blood but were correlated with an increase in hepatic glycogen and fructose 2,6-bisphosphate levels. These results indicate that lithium ions, at concentrations normally used therapeutically for depression in humans, can inhibit glucose synthesis in the liver by a mechanism which can selectively modify the expression of hepatic phosphoenolpyruvate carboxykinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号