首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Detection and characterization of a new beta-conglycinin from soybean seeds   总被引:3,自引:0,他引:3  
A new protein has been isolated from the reserve proteins of the seeds of soybean (Glycine max) which is particularly deficient in methionine and cysteine. The protein dissociated in sodium dodecyl sulfate into a single polypeptide, Mr 48,000. The amino acid composition, N-terminal leucine and mobility on gel electrophoresis of this polypeptide all were indistinguishable from the β-subunit of β-conglycinin. In its nondissociated form, the protein behaved as a trimer of Mr, 137,000 ± 4000. Its sedimentation coefficient at ionic strength 0.5 was 7.5 S and it possessed antigenic determinants in common with β-conglycinin. This protein therefore has the properties of a new isomer of β-conglycinin—a homogeneous trimer of β subunits.  相似文献   

2.
House dust mites (HDM) are the most common source of indoor allergens and are associated with allergic diseases worldwide. To benefit allergic patients, safer and non-invasive mucosal routes of oral administration are considered to be the best alternative to conventional allergen-specific immunotherapy. In this study, transgenic rice was developed expressing derivatives of the major HDM allergen Der f 2 with reduced Der f 2-specific IgE reactivity by disrupting intramolecular disulphide bonds in Der f 2. These derivatives were produced specifically as secretory proteins in the endosperm tissue of seeds under the control of the endosperm-specific glutelin GluB-1 promoter. Notably, modified Der f 2 derivatives aggregated in the endoplasmic reticulum (ER) lumen and were deposited in a unique protein body (PB)-like structure tentatively called the Der f 2 body. Der f 2 bodies were characterized by their intracellular localization and physico-chemical properties, and were distinct from ER-derived PBs (PB-Is) and protein storage vacuoles (PB-IIs). Unlike ER-derived organelles such as PB-Is, Der f 2 bodies were rapidly digested in simulated gastric fluid in a manner similar to that of PB-IIs. Oral administration in mice of transgenic rice seeds containing Der f 2 derivatives encapsulated in Der f 2 bodies suppressed Der f 2-specific IgE and IgG production compared with that in mice fed non-transgenic rice seeds, and the effect was dependent on the type of Der f 2 derivative expressed. These results suggest that engineered hypoallergenic Der f 2 derivatives expressed in the rice seed endosperm could serve as a basis for the development of viable strategies for the oral delivery of vaccines against HDM allergy.  相似文献   

3.

Key message

A platform of gene silencing by amiRNA had been established in fertile transgenic soybean. We demonstrated that knockdown of storage protein shifted the distribution of nitrogen sources in soybean seeds.

Abstract

Artificial microRNAs (amiRNAs) were designed using the precursor sequence of the endogenous soybean (Glycine max L. Merrill) miRNA gma-miR159a and expressed in transgenic soybean plants to suppress the biosynthesis of 7S globulin, which is one of the major storage proteins. Seed-specific expression of these amiRNAs (amiR-7S) resulted in a strong suppression of 7S globulin subunit genes and decreased accumulation of the 7S globulin subunits in seeds. Thus, the results demonstrate that a platform for gene silencing by amiRNA was first developed in fertile transgenic soybean plants. There was no difference in nitrogen, carbon, and lipid contents between amiR-7S and control seeds. Four protein fractions were collected from defatted mature seeds on the basis of solubility at different pH to examine the distribution of nitrogen sources and compensatory effects. In the whey and lipophilic fractions, nitrogen content was similar in amiR-7S and control seeds. Nitrogen content was significantly decreased in the major soluble protein fraction and increased in the residual fraction (okara) of the amiR-7S seeds. Amino acid analysis revealed that increased nitrogen compounds in okara were proteins or peptides rather than free amino acids. Our study indicates that the decrease in 7S globulin subunits shifts the distribution of nitrogen sources to okara in transgenic soybean seeds.  相似文献   

4.
5.
Characterization of the subunits of beta-conglycinin   总被引:4,自引:0,他引:4  
Four subunits of beta-conglycinin were purified from soybean cultivar CX 635-1-1-1, and were designated alpha, alpha', beta, and beta' in accordance with nomenclature proposed by Thanh and Shibasaki [(1977) Biochim. Biophys. Acta 490, 370-384]. Of these subunits, beta' has not previously been reported or characterized. Consistent with the low levels of methionine in these proteins, cyanogen bromide cleavage of alpha', alpha, and beta' subunits produced only a few fragments. The beta subunit contains no methionine and was not cleaved by cyanogen bromide. The NH2-terminal amino acid sequences of the alpha and alpha' subunits are homologous, and each has valine at its amino terminus. The beta subunit has a very different NH2-terminal sequence from those of the alpha and alpha' subunits, and has leucine at its amino terminus. The NH2-terminal sequence of the beta' subunit could not be determined, as it appeared to be blocked to Edman degradation. Although alpha and alpha' subunits have similar NH2-terminal sequences, they differ in the number of methionine residues and so yielded different numbers of cyanogen bromide fragments. Two cyanogen bromide fragments (CB-1 and CB-2) were purified from the alpha subunit. CB-1 originated from the NH2-terminal end of the subunit. The amino acid sequence of CB-2 was identical to that predicted from the nucleotide sequence of cDNA clone pB36. The insert in pB36 encoded 216 amino acids from the COOH-terminal end of the alpha subunit and contained a 138-bp trailer sequence which was followed by a poly-(A) tail. Maps showing the relative positions of methionine residues and carbohydrate moieties in the alpha and alpha' subunits were drawn, based on primary sequence data, and the size and carbohydrate content of the CNBr fragments derived from the subunits.  相似文献   

6.
7.
8.
Zeins, the major seed storage proteins of maize, are of four distinct types: alpha, beta, delta, and gamma. They are synthesized on the rough endoplasmic reticulum (ER) in a sequential manner and deposited in ER-derived protein bodies. We investigated the potential for producing sulfur-rich beta-zein and delta-zein proteins in leaf and seed tissues by expressing the corresponding genes in a constitutive manner in transgenic tobacco. The delta-zein and beta-zein, when synthesized individually, were stable in the vegetative tissues and were deposited in unique, zein-specific ER-derived protein bodies. Coexpression of delta-zein and beta-zein genes, however, showed that delta-zein was colocalized in beta-zein-containing protein bodies and that the level of delta-zein was fivefold higher in delta-/beta-zein plants than in delta-zein plants. We conclude that delta-zein interacts with beta-zein and that the interaction has a stabilizing effect on delta-zein.  相似文献   

9.
Heterotrimeric G proteins relay signals from G protein-coupled receptors (GPCRs) to the interior of the cell. The signaling cascades induced by G protein activation control a wide range of cellular processes. The α subunit is believed to determine which G protein couples to each GPCR, and is the primary determinant of the type of signal transmitted. Several members of the Gα family have been expressed in active form in Escherichia coli. However, production levels of these proteins are limited: in most cases only 10% of total Gα protein expressed is active; the rest accumulates in inclusion bodies. Although G has been readily expressed in soluble form (to 10 mg/L), other α subunits are minimally soluble, and many are exclusively expressed to inclusion bodies. Previous efforts to solubilize and refold Gα from inclusion bodies have not been successful. Here we did a thorough study of the characteristics of Gα subunits (human Giα(1), human Gsα(short), human G11α and human Gtα(cone)), solubilized and purified from inclusion bodies. We find that we can obtain soluble protein both by on-column and rapid-dilution techniques. Comparison to native, soluble G expressed from E. coli showed that although the refolded Gα subunits were soluble and retained partial α-helicity characteristic of the native, folded Gα subunit, they did not bind GDP or GTP as effectively as native protein. We conclude that the refolded G protein has a native-like secondary structure, but is predominately in a molten globular state.  相似文献   

10.
Poly(A)-rich RNA was isolated from developing soybean seeds (Glycine max (L.) Merr.) and fractionated on linear log sucrose gradients. Two major fractions sedimenting at 18 S and 20 S were separated and then purified by further sucrose gradient fractionation. Both fractions were active as messengers when added to a rabbit reticulocyte lysate protein synthesis system. The 18 S fraction caused proteins migrating primarily to the 60,000-dalton region of a sodium dodecyl sulfate gel to be produced, while translation of the 20 S fraction preferentially directed the synthesis of polypeptides similar in size to the alpha and alpha' subunits of beta-conglycinin. Evidence that many of the 60,000-dalton polypeptides were related to glycinin and the high molecular weight 20 S translation products were related to beta-conglycinin was obtained by immunoprecipitation using monospecific antibodies against glycinin and beta-conglycinin, respectively. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the immunoprecipitated products revealed that the glycinin precursor region contained at least three different size components and that the family of glycinin precursors had larger apparent molecular weight (58,000-63,000) than the disulfide-linked complexes between acidic and basic glycinin subunits (57,000). Unlike the disulfide-linked glycinin complexes which were cleaved by disulfide reduction, glycinin precursors were insensitive to reducing agents. The alpha and alpha' subunits synthesized in vitro also had slightly larger apparent molecular weights than purified alpha and alpha' standards.  相似文献   

11.
A vacuolar cysteine proteinase, designated SH-EP, is expressed in the cotyledon of germinated Vigna mungo seeds and is responsible for the degradation of storage proteins. SH-EP is a characteristic vacuolar proteinase possessing a COOH-terminal endoplasmic reticulum (ER) retention sequence, KDEL. In this work, immunocytochemical analysis of the cotyledon cells of germinated V. mungo seeds was performed using seven kinds of antibodies to identify the intracellular transport pathway of SH-EP from ER to protein storage vacuoles. A proform of SH-EP synthesized in ER accumulated at the edge or middle region of ER where the transport vesicle was formed. The vesicle containing a large amount of proSH-EP, termed KV, budded off from ER, bypassed the Golgi complex, and was sorted to protein storage vacuoles. This massive transport of SH-EP via KV was thought to mediate dynamic protein mobilization in the cotyledon cells of germinated seeds. We discuss the possibilities that the KDEL sequence of KDEL-tailed vacuolar cysteine proteinases function as an accumulation signal at ER, and that the mass transport of the proteinases by ER-derived KV-like vesicle is involved in the protein mobilization of plants.  相似文献   

12.
Intracellular trafficking and subcellular deposition are critical factors influencing the accumulation and posttranslational modifications of proteins. In seeds, these processes are not yet fully understood. In this study, we set out to investigate the intracellular transport, final destination, N-glycosylation status, and stability of the fusion of recombinant single-chain variable fragments to the crystallizing fragment of an antibody (scFv-Fc) of two antiviral monoclonal antibodies (2G12 and HA78). The scFv-Fcs were expressed in Arabidopsis (Arabidopsis thaliana) seeds and leaves both as secretory molecules and tagged with an endoplasmic reticulum (ER) retention signal. We demonstrate differential proteolytic degradation of scFv-Fcs in leaves versus seeds, with higher degradation in the latter organ. In seeds, we show that secretory versions of HA78 scFv-Fcs are targeted to the extracellular space but are deposited in newly formed ER-derived vesicles upon KDEL tagging. These results are in accordance with the obtained N-glycosylation profiles: complex-type and ER-typical oligomannosidic N-glycans, respectively. HA78 scFv-Fcs, expressed in seeds of an Arabidopsis glycosylation mutant lacking plant-specific N-glycans, exhibit custom-made human-type N-glycosylation. In contrast, 2G12 scFv-Fcs carry exclusively ER-typical oligomannosidic N-glycans and were deposited in newly formed ER-derived vesicles irrespective of the targeting signals. HA78 scFv-Fcs exhibited efficient virus neutralization activity, while 2G12 scFv-Fcs were inactive. We demonstrate the efficient generation of scFv-Fcs with a controlled N-glycosylation pattern. However, our results also reveal aberrant subcellular deposition and, as a consequence, unexpected N-glycosylation profiles. Our attempts to elucidate intracellular protein transport in seeds contributes to a better understanding of this basic cell biological mechanism and is a step toward the versatile use of Arabidopsis seeds as an alternative expression platform for pharmaceutically relevant proteins.  相似文献   

13.
A short interdomain sequence between the N- and C-terminal domains of beta-conglycinin, the major 7S seed storage protein of soybean, was selected as a target for insertion of amino acid residues specifically cleaved by an asparaginyl endopeptidase that processes globulins into acidic and basic chains. Modified beta-conglycinin subunits containing the proteolytic cleavage site self-assembled into trimers in vitro at an efficiency similar to that of the unmodified subunit. In contrast to the absence of cleavage of the unmodified subunits, however, the modified beta-conglycinin trimers were processed by purified soybean asparaginyl endopeptidase into two polypeptides, each the size expected for the beta-conglycinin N- and C-terminal domains, respectively. The cleavage did not alter the assembly of mutant beta-conglycinins and the cleaved mutant trimers remained stable to further proteolytic attack. To examine the possibility of coassembly between the cleaved 11S and 7S subunits, in vitro processed mutant beta-conglycinin subunits were mixed with native dissociated 11S globulin preparations. Reassembly at a high ionic condition did not induce the 7S subunits to interact with 11S subunits to form hexameric complexes. Thus, cleavage of 7S globulin subunits into acidic and basic domains may not be sufficient for hexamer assembly to occur. Biotechnological implications of the engineered proteins are discussed.  相似文献   

14.
We produced human growth hormone (hGH), a protein that stimulates growth and cell reproduction, in genetically engineered soybean [Glycine max (L.) Merrill] seeds. Utilising the alpha prime (α') subunit of β-conglycinin tissue-specific promoter from soybean and the α-Coixin signal peptide from Coix lacryma-jobi, we obtained transgenic soybean lines that expressed the mature form of hGH in their seeds. Expression levels of bioactive hGH up to 2.9% of the total soluble seed protein content (corresponding to approximately 9?g?kg(-1)) were measured in mature dry soybean seeds. The results of ultrastructural immunocytochemistry assays indicated that the recombinant hGH in seed cotyledonary cells was efficiently directed to protein storage vacuoles. Specific bioassays demonstrated that the hGH expressed in the soybean seeds was fully active. The recombinant hGH protein sequence was confirmed by mass spectrometry characterisation. These results demonstrate that the utilisation of tissue-specific regulatory sequences is an attractive and viable option for achieving high-yield production of recombinant proteins in stable transgenic soybean seeds.  相似文献   

15.
Protein bodies isolated from lentil (Lens culinaris, Medik) cotyledons exhibit autolytic activity which increases during seed germination. Such autolytic capacity is active across a broad pH range and shows a maximum at pH 6.5. Excision of the embryonic axis reduces autolytic capacity and application during incubation of the seeds without axis of both 6-benzylaminopurine and kinetin is able to replace it. On the other hand, the proteolytic activity in the protein body membrane, is located towards the proteinaceous matrix and is obviously partially responsible for this autolytic activity.  相似文献   

16.
Two genomic clones, encoding isoforms A and B of the 24 kDa soybean oleosin and containing 5 kbp and 1 kbp, respectively, of promoter sequence, were inserted separately into rapeseed plants. T2 seeds from five independent transgenic lines, three expressing isoform A and two expressing isoform B, each containing one or two copies of the transgene, were analysed in detail. In all five lines, the soybean transgenes exhibited the same patterns of mRNA and protein accumulation as the resident rapeseed oleosins, i.e. their expression was absolutely seed-specific and peaked at the mid-late stages of cotyledon development. The 24 kDa soybean oleosin was targeted to and stably integrated into oil bodies, despite the absence of a soybean partner isoform. The soybean protein accumulated in young embryos mainly as a 23 kDa polypeptide, whereas a 24 kDa protein predominated later in development. The ratio of rapeseed:soybean oleosin in the transgenic plants was about 5:1 to 6:1, as determined by SDS-PAGE and densitometry. Accumulation of these relatively high levels of soybean oleosin protein did not affect the amount of endogenous rapeseed oleosin. Immunoblotting studies showed that about 95% of the recombinant soybean 24 kDa oleosin (and the endogenous 19 kDa rapeseed oleosin) was targeted to oil bodies, with the remainder associated with the microsomal fraction. Sucrose density-gradient centrifugation showed that the oleosins were associated with a membrane fraction of buoyant density 1.10–1.14 g ml?1, which partially overlapped with several endoplasmic reticulum (ER) markers. Unlike oleosins associated with oil bodies, none of the membrane-associated oleosins could be immunoprecipitated in the presence of protein A-Sepharose, indicating a possible conformational difference between the two pools of oleosin. Complementary electron microscopy-immunocytochemical studies of transgenic rapeseed revealed that all oil bodies examined could be labelled with both the soybean or rapeseed anti-oleosin antibodies, indicating that each oil body contained a mixed population of soybean and rapeseed oleosins. A small but significant proportion of both soybean and rapeseed oleosins was located on ER membranes in the vicinity of oil bodies, but none were detected on the bulk ER cisternae. This is the first report of apparent targeting of oleosins via ER to oil bodies in vivo and of possible associated conformational/ processing changes in the protein. Although oil-body formation per se can occur independently of oleosins, it is proposed that the relative net amounts of oleosin and oil accumulated during the course of seed development are a major determinant of oil-body size in desiccation-tolerant seeds.  相似文献   

17.
Improvement of protein quality in transgenic soybean plants   总被引:2,自引:0,他引:2  
Glycinin is one of the abundant storage proteins in soybean seeds. A modified Gy1 (A1aB1b) proglycinin gene with a synthetic DNA encoding four continuous methionines (V3-1) was connected between the hpt gene and the modified green fluorescent protein sGFP(S65T) gene, and a resultant plasmid was introduced into soybean by particle bombardment in order to improve nutritional value of its seeds. After the selection with hygromycin, the efficiency of gene introduction was evaluated. More than 60 % of the regenerated plants tolerant to hygromycin yielded the hpt and V3-1 fragment by polymerase chain reaction (PCR) analysis, and the expression of sGFP was detected in about 50 % of putative transgenic soybeans. Southern hybridization confirmed the presence of transgenes in T0 plants and the transgenic soybeans hybridized with the hpt and V3-1 genes were analyzed showed different banding patterns. Most of the transgenic plants were growing, flowering normally and produced seeds. Analysis of seed obtained from transgenic soybean plants expressing hpt and V3-1 genes showed higher accumulation of glycinin compared with non-transgenic plants. In addition, protein expression in transgenic soybean plants was observed by using 2D-electrophoresis.  相似文献   

18.
19.
In recalcitrant seeds of horse chestnut (Aesculus hippocastanum L.), the bulk of protein in axial organs and cotyledons is accounted for by water-soluble proteins (albumins). In the cells of embryo, proteins are predominantly located in the cytosol, whereas the fraction of cell structures precipitate in the range from 1000 to 20000 g, accounting for only an insignificant part of total protein. Among the proteins of this fraction, there were no major components that could play a role of storage proteins. The aim of this work was to study deposition of protein in the vacuoles of cells of recalcitrant seeds of horse chestnut. Light microscopy and specific staining of protein and phytin did not detect protein bodies in the vacuoles of axial organs and cotyledons. Electron microscopy revealed traces of phytin in the vacuoles, but there were no formed globoids or considerable amount of protein therein. It is possible that precisely the absence of typical storage proteins and genetically determined desiccation in the course of maturation of recalcitrant seeds of horse chestnut stipulated preservation of the vacuoles that in mature recalcitrant seeds were not transformed into protein bodies.  相似文献   

20.
Plant viruses encode movement proteins that are essential for systemic infection of their host but dispensable for replication and encapsidation. BL1, one of the two movement proteins encoded by the bipartite geminivirus squash leaf curl virus, was immunolocalized to unique approximately 40-nm tubules that extended up to and across the walls of procambial cells in systemically infected pumpkin leaves. These tubules were not found in procambial cells from pumpkin seedlings inoculated with BL1 mutants that are defective in movement. The tubules also specifically stained with antisera to binding protein (BiP), indicating that they were derived from the endoplasmic reticulum. Independent confirmation of this endoplasmic reticulum association was obtained by subcellular fractionation studies in which BL1 was localized to fractions that contained both endoplasmic reticulum membranes and BiP. Thus, squash leaf curl virus appears to recruit the endoplasmic reticulum as a conduit for cell-to-cell movement of the viral genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号