首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
HK022, a temperate coliphage related to lambda, forms lysogens by inserting its DNA into the bacterial chromosome through site-specific recombination. The Escherichia coli Fis and phage Xis proteins promote excision of HK022 DNA from the bacterial chromosome. These two proteins also act during lysogenization to prevent a prophage rearrangement: lysogens formed in the absence of either Fis or Xis frequently carried a prophage that had suffered a site-specific internal DNA inversion. The inversion is a product of recombination between the phage attachment site and a secondary attachment site located within the HK022 left operon. In the absence of both Fis and Xis, the majority of lysogens carried a prophage with an inversion. Inversion occurs during lysogenization at about the same time as prophage insertion but is rare during lytic phage growth. Phages carrying the inverted segment are viable but have a defect in lysogenization, and we therefore suggest that prevention of this rearrangement is an important biological role of Xis and Fis for HK022. Although Fis and Xis are known to promote excision of lambda prophage, they had no detectable effect on lambda recombination at secondary attachment sites. HK022 cIts lysogens that were blocked in excisive recombination because of mutation in fis or xis typically produced high yields of phage after thermal induction, regardless of whether they carried an inverted prophage. The usual requirement for prophage excision was bypassed in these lysogens because they carried two or more prophages inserted in tandem at the bacterial attachment site; in such lysogens, viable phage particles can be formed by in situ packaging of unexcised chromosomes.  相似文献   

2.
Fis is a small, basic, site-specific DNA-binding protein present in Escherichia coli. A Fis-binding site (F) has been previously identified in the attP recombination site of phage lambda (J. F. Thompson, L. Moitoso de Vargas, C. Koch, R. Kahmann, and A. Landy, Cell 50:901-908, 1987). The present study demonstrates that in the absence of the phage-encoded Xis protein, the binding of Fis to F can stimulate integrative recombination and therefore increase the frequency of lambda lysogeny in vivo. Additionally, Fis exerts a stimulatory effect on both integration and lysogeny that is independent of binding to the attP F site. Maintenance of the lysogenic state also appears to be enhanced in the presence of Fis, as shown by the increased sensitivity of lambda prophages encoding temperature-sensitive repressors to partial thermoinduction in a fis mutant. In the presence of Xis, however, Fis binding to F interferes with integration by stimulating excision, the competing back-reaction. Since Fis stimulates both excision and integration, depending on the presence or absence of Xis, respectively, we conclude that Xis binding to X1 is the key determinant directing the formation of an excisive complex.  相似文献   

3.
The Escherichia coli nucleoid-associated protein Fis was previously shown to be involved in bacteriophage lambda site-specific recombination in vivo, enhancing the levels of both integrative recombination and excisive recombination. While purified Fis protein was shown to stimulate in vitro excision, Fis appeared to have no effect on in vitro integration reactions even though a 15-fold drop in lysogenization frequency had previously been observed in fis mutants. We demonstrate here that E. coli Fis protein does stimulate integrative lambda recombination in vitro but only under specific conditions which likely mimic natural in vivo recombination more closely than the standard conditions used in vitro. In the presence of suboptimal concentrations of Int protein, Fis stimulates the rate of integrative recombination significantly. In addition, Fis enhances the recombination of substrates with nonstandard topologies which may be more relevant to the process of in vivo phage lambda recombination. These data support the hypothesis that Fis may play an essential role in lambda recombination in the host cell.  相似文献   

4.
The phage-encoded Xis protein is the major determinant controlling the direction of recombination in phage lambda. Xis is a winged-helix DNA binding protein that cooperatively binds to the attR recombination site to generate a curved microfilament, which promotes assembly of the excisive intasome but inhibits formation of an integrative intasome. We find that lambda synthesizes surprisingly high levels of Xis immediately upon prophage induction when excision rates are maximal. However, because of its low sequence-specific binding activity, exemplified by a 1.9 A co-crystal structure of a non-specifically bound DNA complex, Xis is relatively ineffective at promoting excision in vivo in the absence of the host Fis protein. Fis binds to a segment in attR that almost entirely overlaps one of the Xis binding sites. Instead of sterically excluding Xis binding from this site, as has been previously believed, we show that Fis enhances binding of all three Xis protomers to generate the microfilament. A specific Fis-Xis interface is supported by the effects of mutations within each protein, and relaxed, but not completely sequence-neutral, binding by the central Xis protomer is supported by the effects of DNA mutations. We present a structural model for the 50 bp curved Fis-Xis cooperative complex that is assembled between the arm and core Int binding sites whose trajectory places constraints on models for the excisive intasome structure.  相似文献   

5.
Phage lambda controls its integration and excision by differential catalysis of the forward and reverse reactions. The lambda Int protein is required for both directions, but Xis for excision only. To investigate the substrate requirements for directional control, we have characterized two mutations of the phage attachment site that are defective in integrative but not excisive recombination. Both of these mutations produce the same base change in the P'3 binding site for Int protein 79 base-pairs from the center of the crossover region for site-specific recombination. We infer that differential utilization of this distant binding site is crucial for directional control of recombination.  相似文献   

6.
We show, using gel retardation, that crude Escherichia coli cell extracts contain a protein which binds specifically to DNA fragments carrying either end of the phage Mu genome. We have identified this protein as Fis, a factor involved in several site-specific recombinational switches. Furthermore, we show that induction of a Mucts62 prophage in a fis lysogen occurs at a lower temperature than that of a wild-type strain, and that spontaneous induction of Mucts62 is increased in the fis mutant. DNasel footprinting using either crude extracts or purified Fis indicate that binding on the left end of Mu occurs at a site which overlaps a weak transposase binding site. Thus, Fis may modulate Mu growth by influencing the binding of transposase, or other proteins, to the transposase binding site(s), in a way similar to its influence on Xis binding in phage lambda.  相似文献   

7.
R Osuna  S E Finkel    R C Johnson 《The EMBO journal》1991,10(6):1593-1603
The Fis protein of E. coli binds to a recombinational enhancer sequence that is required to stimulate Hin-mediated DNA inversion. Fis is also required for efficient lambda prophase excision in vivo. The properties of mutant Fis proteins were examined in vivo and in vitro with respect to their stimulatory effects on these two different site-specific DNA recombination reactions. Both recombination reactions are dramatically affected by mutations altering a helix-turn-helix DNA binding motif located near the Fis C-terminus (residues 74-93). These mutations invariably decrease DNA binding affinity and some cause reduced DNA bending. Mutations in the Fis N-terminal region reduce or abolish the stimulation of Hin-mediated DNA recombination by Fis, but have little or no effect on DNA binding or lambda excision. We conclude that there are at least two functionally distinct domains in Fis: a C-terminal DNA binding region that is required for promoting both DNA recombination reactions and an N-terminal region that is uniquely required for Hin-mediated inversion.  相似文献   

8.
Fis is a nucleoid-associated protein that interacts with poorly related DNA sequences with a high degree of specificity. A difference of more than 3 orders of magnitude in apparent Kd values was observed between specific (Kd, approximately 1 to 4 nM) and nonspecific (Kd, approximately 4 microM) DNA binding. To examine the contributions of Fis residues to the high-affinity binding at different DNA sequences, 13 alanine substitutions were generated in or near the Fis helix-turn-helix DNA binding motif, and the resulting proteins were purified. In vitro binding assays at three different Fis sites (fis P II, hin distal, and lambda attR) revealed that R85, T87, R89, K90, and K91 played major roles in high-affinity DNA binding and that R85, T87, and K90 were consistently vital for binding to all three sites. Other residues made variable contributions to binding, depending on the binding site. N84 was required only for binding to the lambda attR Fis site, and the role of R89 was dramatically altered by the lambda attR DNA flanking sequence. The effects of Fis mutations on fis P II or hin distal site binding in vitro generally correlated with their abilities to mediate fis P repression or DNA inversion in vivo, demonstrating that the in vitro DNA-binding effects are relevant in vivo. The results suggest that while Fis is able to recognize a minimal common set of DNA sequence determinants at different binding sites, it is also equipped with a number of residues that contribute to the binding strength, some of which play variable roles.  相似文献   

9.
The integration of bacteriophage lambda into the Escherichia coli chromosome depends on the phage-encoded Int protein; prophage excision depends on Int and a second phage function, Xis. Limited excisive recombination has been observed in vivo with certain xis mutants, suggesting that Int may be able to carry out excision without Xis.We report here that purified Int protein carries out lambda site-specific excisive recombination in vitro in the absence of Xis. This reaction requires host factors derived from a non-lysogenic E. coli strain and is influenced strongly by ionic strength. Excision in the absence of Xis occurs slowly at low salt concentrations (40 mm-NaCl) and very little excision occurs at high salt concentrations (100 mm-NaCl). In the presence of Xis, excisive recombination proceeds rapidly at both low and high ionic strengths. These observations are consistent with previous experiments that suggested the partial dispensability of Xis for excision.  相似文献   

10.
The manner in which integration host factor (IHF) regulates lambda site-specific recombination has been analyzed by examining the behavior of both wild-type and mutant DNAs in integrative and excisive recombination as well as in protein binding. While integrative recombination of an attP with two base changes in the H1 site required 8-fold more IHF than did wild type, binding to this site was lowered at least 500-fold, suggestive of cooperative interactions. A mutant attP with nine base changes did not integrate at all in vitro, with the defect being less severe in vivo. IHF inhibition of excisive recombination was relieved by both mutations in vitro and in vivo. These results imply that occupancy of the H1 site is critical for determining the direction of recombination. It is proposed that IHF inhibition of excision provides a monitor of the strength of the induction stimulus and the nutritional state of the cell; this would allow the prophage to excise selectively in conditions which favor successful completion of the lytic cycle.  相似文献   

11.
We have performed a mutational analysis of the xis gene of bacteriophage lambda. The Xis protein is 72 amino acids in length and required for excisive recombination. Twenty-six mutants of Xis were isolated that were impaired or deficient in lambda excision. Mutant proteins that contained amino acid substitutions in the N-terminal 49 amino acids of Xis were defective in excisive recombination and were unable to bind DNA. In contrast, one mutant protein containing a leucine to proline substitution at position 60 and two truncated proteins containing either the N-terminal 53 or 64 amino acids continued to bind lambda DNA, interact cooperatively with FIS and promote excision. However, these three mutants were unable to bind DNA cooperatively with Int. Cooperativity between wild-type Xis and Int required the presence of FIS, but not the Int core-type binding sites. This study shows that Xis has at least two functional domains and also demonstrates the importance of the cooperativity in DNA binding of FIS, Xis and Int in lambda excision.  相似文献   

12.
When bacteriophage T1 was grown on bacteriophage lambda-lysogenic cells, phenotypically mixed particles were formed which had the serum sensitivity, host range, and density of T1 but which gave rise to lambda phage. T1 packaged lambda genomes more efficiently both when the length of the prophage was less than that of wild-type lambda and when the host cell was polylysogenic. Expression of the red genes of lambda or the recE system of Escherichia coli during T1 growth enhanced pickup of lambda by T1, whereas packaging was reduced in recB cells. If donors were singly lysogenic, the expression of transduced lambda genomes as a PFU required lambda-specified excisive recombination, whereas lambda genomes transduced from polylysogens required only lambda- or E. coli-specified general recombination to give a productive infection.  相似文献   

13.
We have studied the excision reaction of bacteriophage lambda, both in vivo and in vitro, using as a substrate a λatt2(L × R) phage carrying both the right and left-hand prophage attachment sites. Int and Xis are provided by induction of the heat-inducible defective prophage, λc1857 ΔH1. After a brief induction (5 min) of these cells, excisive recombination is blocked in the presence of the DNA gyrase inhibitor, coumermycin. However, after a longer induction (greater than 30 min) excisive recombination occurs efficiently under conditions where λ integrative recombination is inhibited by coumermycin. In such extensively induced coumermycin-treated cells, infecting λatt2(L × R) DNA is not supercoiled, and recombinants are found among the relaxed covalently closed circular DNA.In vitro, starting with a hydrogen-bonded λatt2 DNA substrate, excision is insensitive to high concentrations of coumermycin and novobiocin. To study the DNA substrate requirements for excisive recombination in more detail, we have developed a restriction fragment assay for excisive recombination. With this assay, we demonstrate that supercoiled, hydrogen-bonded, and linear λatt2 DNA molecules are all efficient substrates in the in vitro excision reaction. Spermidine is required but ATP and Mg2+ are not. We conclude that supercoiling is not an absolute requirement for site-specific recombination of λ.  相似文献   

14.
KplE1 is one of the 10 prophage regions of Escherichia coli K12, located at 2464 kb on the chromosome. KplE1 is defective for lysis, but it is fully competent for excisive recombination. In this study, we have mapped the binding sites of the recombination proteins, namely IntS, TorI, and IHF on attL and attR, and the organization of these sites suggests that the intasome is architecturally different from the lambda canonical form. We also measured the relative contribution of these proteins to both excisive and integrative recombination by using a quantitative in vitro assay. These experiments show a requirement of the TorI excisionase for excisive recombination and of the IntS integrase for both integration and excision. Moreover, we observed a strong influence of the supercoiled state of the substrates. The KplE1 recombination module, composed of the integrase and excisionase genes together with the attL and attR DNA regions, is highly similar to that of several phages infecting various E. coli strains as well as Shigella flexneri and Shigella sonnei. The in vitro recombination data reveal that HK620 and KplE1 att sequences are exchangeable. This study thus defines a new site-specific recombination module, and implications for the mechanism and regulation of recombination are discussed.  相似文献   

15.
Bacteriophage lambda integrase (Int) is a versatile site-specific recombinase. In concert with other proteins, it mediates phage integration into and excision out of the bacterial chromosome. Int recombines intramolecular sites in inverse or direct orientation or sites on separate DNA molecules. This wide spectrum of Int-mediated reactions has, however, hindered our understanding of the topology of Int recombination. By systematically analyzing the topology of Int reaction products and using a mathematical method called tangles, we deduce a unified model for Int recombination. We find that, even in the absence of (-) supercoiling, all Int reactions are chiral, producing one of two possible enantiomers of each product. We propose that this chirality reflects a right-handed DNA crossing within or between recombination sites in the synaptic complex that favors formation of right-handed Holliday junction intermediates. We demonstrate that the change in linking number associated with excisive inversion with relaxed DNA is equally +2 and -2, reflecting two different substrates with different topology but the same chirality. Additionally, we deduce that integrative Int recombination differs from excisive recombination only by additional plectonemic (-) DNA crossings in the synaptic complex: two with supercoiled substrates and one with relaxed substrates. The generality of our results is indicated by our finding that two other members of the integrase superfamily of recombinases, Flp of yeast and Cre of phage P1, show the same intrinsic chirality as lambda Int.  相似文献   

16.
Excisionase (Xis) is an accessory protein that is required for the excision of the related prophages lambda and HK022. Xis binds to two tandemly arranged binding sites (X1 and X2) on the P arm of the recombination sites attP and attR. Gel-retardation analyses and site-specific recombination assays were conducted on derivatives bearing site-directed mutations in the X1 and X2 sites of phage HK022. The results confirm the cooperative binding of Xis to its sites, showing that binding to X1 stimulates further binding to X2. The results also show that mutants affected in a single site are inactive in excision, whereas mutants affected in both sites, which show a complete absence of Xis binding, display significant excision activity. This restored activity is attributed to the interaction of Xis with Integrase, the protein that catalyzes the site-specific recombination reaction.  相似文献   

17.
18.
19.
The frequency of excisive homologous recombination has been measured at various positions along the Escherichia coli chromosome. The reporter system makes use of a lambda cI857 prophage integrated by homologous recombination within Tn5 or Tn10 transposons already installed at known positions in the E. coli chromosome. The excision frequency per cell and per generation was determined by monitoring the evolution of the relative number of temperature-resistant (cured) bacteria is a function of the age of the cultures. Excisions, due to RecA-dependent homologous exchanges, appeared to occur more frequently in the preferential termination zone for chromosome replication. The highest frequency of excision observed is compatible with a recombination event at each replication cycle in this region. On the basis of these data, we propose a model involving homologous recombination in the final steps of bacterial chromosome replication and separation.  相似文献   

20.
B Franz  A Landy 《The EMBO journal》1995,14(2):397-406
In lambda site-specific recombination, the integrative and excisive reactions proceed via two different Holliday junction intermediates, both of which are generated and resolved by a pair of sequentially ordered single strand exchanges. Factors affecting the directionality and efficiency of the second pair of strand exchanges were examined using artificial Holliday junctions (chi-forms). The integrative and excisive recombination intermediates respond differently to the accessory DNA bending proteins integration host factor and excisionase (Xis). These differences between the two recombination intermediates result from a different interaction pattern between proteins binding to the left (P arm) and right (P' arm) of the crossover region. The effect of Xis protein on the directionality of resolution, i.e. the choice of which strands are exchanged, is consistent with a role in promoting the second strand exchange during excision. Proteins binding to the left of the crossover region (P arm) primarily influence the directionality of resolution, while proteins binding to the right (P' arm) have a greater effect on the overall efficiency of resolution. Together, the effect of proteins binding to sites in the P and P' arms is to greatly enhance resolution of the two different Holliday intermediates and to favor resolution in the 'forward' direction for both integrative and excisive recombination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号