首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacteria are sensitive to an increase in population density and respond quickly and coordinately by induction of certain sets of genes. This mode of regulation, known as quorum sensing (QS), is based on the effect of low-molecular-weight signal molecules, autoinducers (AIs). When the population density is high, AIs accumulate in the medium and interact with regulatory receptor proteins. QS systems are global regulators of bacterial gene expression and play a key role in controlling many metabolic processes in the cell, including bacterial virulence. The review considers the molecular mechanisms of QS in different taxonomic groups of bacteria and discusses QS regulation as a possible target in treating bacterial infections. This is a new, alternative strategy of antibacterial therapy, which includes the construction of drugs acting directly against bacterial pathogenicity by suppressing QS (antipathogenicity drugs). This strategy makes it possible to avoid a wide distribution of antibiotic-resistant pathogenic bacteria and the formation of biofilms, which dramatically increase drug resistance.  相似文献   

2.
Bacteria are capable to sense an increase of cell density population and to reply quickly and coordinately by the induction of special sets of genes. This type of the regulation was named Quorum Sensing (QS); it is based on the effect of low-molecular-weight signaling molecules of different nature (autoinducers) which accumulate in the culture at high density of bacterial population and interact with receptor regulatory proteins. QS systems are the global regulators of bacterial genes expression and play a key role in the control of many metabolic processes in cell including the regulation of virulence of bacteria. Here we review the molecular mechanisms of QS systems functioning in bacteria belonging to different taxonomic groups and discuss the potential of QS regulation as a new drug target for the treatment of bacterial infections. At present this approach is accounted as a new alternative strategy of antimicrobial therapy directed on the development of drugs inhibiting QS regulation and active just against pathogenicity of bacteria (antipathogenic drugs). Such a strategy allows to avoid a wide dissemination of resistant forms of pathogenic bacteria and the formation of biofilms increasing in many times the resistance of bacteria to drug preparations.  相似文献   

3.
Bacteria are able to sense an increase in population density and can respond to it by coordinated regulation of the expression of certain sets of genes in the total population of bacteria. This specific mode of regulation is known as Quorum Sensing (QS). The QS systems include low-molecular-weight signaling molecules of different chemical nature and the regulatory proteins that interact with the signaling molecules. The QS systems are global regulators of bacterial gene expression. They play an important role in controlling metabolic processes in bacteria. This review describes QS systems in members of the bacterial family Enterobacteriaceae functioning with the involvement of various signaling molecules, including N-acyl-homoserine lactones, AI-2, AI-3, peptides, and indole. The differences of the QS system in these bacteria from those in other taxonomic groups of bacteria are discussed. Data on the role of different types of QS systems in the regulation of different cellular processes in bacteria, i.e., their virulence, the synthesis of enzymes and antibiotics, biofilm formation, apoptosis, etc. are presented.  相似文献   

4.
I. A. Khmel 《Microbiology》2006,75(4):390-397
Quorum sensing (QS) is a specific type of regulation of gene expression in bacteria; it is dependent on the population density. QS systems include two obligate components: a low-molecular-weight regulator (autoinducer), readily diffusible through the cytoplasmic membrane, and a regulatory receptor protein, which interacts with the regulator. As the bacterial population reaches a critical level of density, autoinducers accumulate to a necessary threshold value and abrupt activation (induction) of certain genes and operons occurs. By means of low-molecular-weight regulators, bacteria accomplish communication between cells belonging to the same or different species, genera, and even families. QS systems have been shown to play a key role in the regulation of various metabolic processes in bacteria and to function as global regulators of the expression of bacterial genes. Data are presented on different types of QS systems present in bacteria of various taxonomic groups, on the species specificity of these systems, and on communication of bacteria by means of QS systems. The possibility is considered of using QS regulation systems as targets while combating bacterial infections; other applied aspects of QS investigation are discussed.  相似文献   

5.
Khmel' IA 《Mikrobiologiia》2006,75(4):457-464
Quorum sensing (QS) is a specific type of regulation of gene expression in bacteria; it is dependent on the population density. QS systems include two obligate components: a low-molecular-weight regulator (autoinducer), readily diffusible through the cytoplasmic membrane, and a regulatory receptor protein, which interacts with the regulator. As the bacterial population reaches a critical level of density, autoinducers accumulate to a necessary threshold value and abrupt activation (induction) of certain genes and operons occurs. By means of low-molecular-weight regulators, bacteria accomplish communication between cells belonging to the same or different species, genera, and even families. QS systems have been shown to play a key role in the regulation of various metabolic processes in bacteria and to function as global regulators of the expression of bacterial genes. Data are presented on different types of QS systems present in bacteria of various taxonomic groups, on the species specificity of these systems, and on communication of bacteria by means of QS systems. The possibility is considered of using QS regulation systems as targets while combating bacterial infections; other applied aspects of QS investigation are discussed.  相似文献   

6.
7.
Bacteria respond to cell density by expressing genes whose products are beneficial to the population as a whole. This response is brought about through the release into the medium of signaling molecules of the class N-acyl homoserine lactones, the concentration of which determines the level of gene expression. This form of communication between cells has been termed “quorum sensing,” and has been found to operate in the control of many functions in a variety of gram-negative bacteria. As with all signaling between individuals, if fitness costs are associated with the release of and response to the signal, the inclusive fitness of alleles responsible for the phenomenon depends upon genetic relatedness between signaler and responder. The situation is considered in explicit models for bacterial population genetics, in which the critical parameter determining the success of quorum sensing is the mean number of cells founding a population sharing a patch of resource. It is found that extensive polymorphism for the presence or absence of quorum sensing is expected for a wide range of parameter space. If local communities of bacteria contain diverse species, community stability may be the consequence of these interactions rather than polymorphism.  相似文献   

8.
Bacterial quorum sensing (QS) systems are cell density—dependent regulatory networks that coordinate bacterial behavioural changes from single cellular organisms at low cell densities to multicellular types when their population density reaches a threshold level. At this stage, bacteria produce and perceive small diffusible signal molecules, termed autoinducers in order to mediate gene expression. This often results in phenotypic shifts, like planktonic to biofilm or non-virulent to virulent. In this way, they regulate varied physiological processes by adjusting gene expression in concert with their population size. In this review we give a synopsis of QS mediated cell–cell communication in bacteria. The first part focuses on QS circuits of some Gram-negative and Gram-positive bacteria. Thereafter, attention is drawn on the recent applications of QS in development of synthetic biology modules, for studying the principles of pattern formation, engineering bi-directional communication system and building artificial communication networks. Further, the role of QS in solving the problem of biofouling is also discussed.  相似文献   

9.
群体感应是细菌根据细胞密度变化进行基因表达调控的一种生理行为。当细菌密度达到临界阈值时能释放一些特定的自诱导信号分子,从而调节本种群或同环境中其他种群的群体行为。细菌群体感应参与包括人类、动植物、病原菌在内的多种生物的生物学功能调节,如生物膜的形成、毒力因子的产生、病原菌的耐药性等。深入研究病原菌群体感应系统的调控机制,将提高对病原菌发病机制的认识,有利于以群体感应作为防治疾病策略的研究。系统阐述了群体感应系统的组成类型、群体感应与病原菌致病性的关系,及其在抑制病原菌致病方面的应用。  相似文献   

10.
密度感应系统:对细菌致病力的自行调控   总被引:1,自引:1,他引:0  
细菌通过密度感应系统感受环境中的信号分子,进而调控菌群一系列生物学性状。研究发现密度感应系统能够调控细菌生物被膜形成、毒力基因表达及噬菌体感染等功能,其中基于密度感应系统调控细菌抵御噬菌体感染更是新发现,预期也将是未来数年的研究热点,其调控机制的阐明将为有效应用噬菌体开展耐药菌的防控展现广阔前景。本文将重点综述细菌密度感应系统对细菌致病相关功能的调控机制,旨在为病原菌的防控提供新思路。  相似文献   

11.
Bacteria are able to sense their population's density through a cell–cell communication system, termed ‘quorum sensing’ (QS). This system regulates gene expression in response to cell density through the constant production and detection of signalling molecules. These molecules commonly act as auto‐inducers through the up‐regulation of their own synthesis. Many pathogenic bacteria, including those of plants, rely on this communication system for infection of their hosts. The finding that the countering of QS‐disrupting mechanisms exists in many prokaryotic and eukaryotic organisms offers a promising novel method to fight disease. During the last decade, several approaches have been proposed to disrupt QS pathways of phytopathogens, and hence to reduce their virulence. Such studies have had varied success in vivo, but most lend promising support to the idea that QS manipulation could be a potentially effective method to reduce bacterial‐mediated plant disease. This review discusses the various QS‐disrupting mechanisms found in both bacteria and plants, as well as the different approaches applied artificially to interfere with QS pathways and thus protect plant health.  相似文献   

12.
群体感应(Quorum sensing,QS)是一种细菌细胞与细胞间的通讯系统,即细菌通过分泌扩散性小分子信号感知细菌群体的密度,从而引起一组特定基因在转录水平协调表达。大量研究已表明,群体感应系统控制细菌多种生理行为和过程,以及与真核宿主(寄主)的互作。参与群体感应调控的信号分子多种多样,QS系统所调控的功能也具有多样性,甚至菌株专化性。通过聚焦同一细菌中由多个QS系统组成的信号网络,综合评述了不同QS系统之间如何相互作用全局调控基因表达,以及QS系统如何通过与其它全局调控系统整合精细调节细菌的社会行为以及环境适应性及其应用前景。  相似文献   

13.
Bacterial communication via quorum sensing has been extensively investigated in recent years. Bacteria communicate in a complex manner through the production, release, and reception of diffusible low molecular weight chemical signaling molecules. Much work has focused on understanding the basic mechanisms of quorum sensing. As more and more bacteria grow resistant to conventional antibiotics, the development of drugs that do not kill bacteria but instead interrupt their communication is of increasing interest. This study presents a method for analyzing bacterial communication by investigating single cell responses. Most conventional analysis methods for bacterial communication are based on the averaged response from many bacteria, masking how individual cells respond to their immediate environment. We applied a fiber-optic microarray to record cellular communication from single cells. Single cell quorum sensing systems have previously been employed, but the highly ordered array reported here is an improvement because it allows us to simultaneously investigate cellular communication in many different environments with known cellular densities and configurations. We employed this method to detect how genes under quorum regulation are induced or repressed over time on the single cell level and to determine whether cellular density and configuration are indicative of the single cell temporal patterns of gene expression.  相似文献   

14.
15.
群体感应(QS)广泛存在于细菌中,是细菌根据细胞密度变化调控基因表达的一种机制。许多植物病原菌依赖QS调控致病基因和毒性因子的表达,导致植物发病,因此通过抑制QS效应就为控制细菌病害提供了一种有效的方法。目前发现许多途径可以干扰细菌的QS,如:产生可使信号分子降解的酶,产生病原菌信号分子的类似物与信号分子受体蛋白竞争结合来阻断病原菌的群体感应,利用QS中信号分子来诱发寄主抗性。系统阐述了细菌QS及其干扰策略。  相似文献   

16.
Bacteria sense and respond to environmental cues to control important developmental processes. Two widely conserved and important strategies that bacteria employ to sense changes in population density and local environmental conditions are quorum sensing (QS) and cyclic di-GMP (c-di-GMP) signaling, respectively. The importance of these pathways in controlling a broad variety of functions, including virulence, biofilm formation, and motility, has been recognized in many species. Recent research has shown that these pathways are intricately intertwined. Here we review the regulatory connections between QS and c-di-GMP signaling. We propose that the integration of QS with c-di-GMP allows bacteria to assimilate information about the local bacterial population density with other physicochemical environmental signals within the broader c-di-GMP signaling network.  相似文献   

17.
Expression of many bacterial genes is regulated in a cell density-dependent manner via small signal molecules known as autoinducers; this type of regulation is termed quorum sensing (QS). The QS systems that employ N-acyl-homoserine lactones (HSLs) are best un derstood in Gram-negative bacteria. QS regulates expression of various genes, including the genes responsible for the production of virulence factors, synthesis of exoenzymes and antibiotics, antagonistic properties of bacteria, etc. The QS systems of the genus Pseudomonas are linked to other global regulatory networks of the cell, and their functions are controlled by numerous additional regulatory factors. Such regulators and the QS systems together form an intricate multifactorial cascade regulatory network. The review considers the QS systems of several Pseudomonas species, their interaction with other regulatory systems, and their roles in the regulation of cell processes.  相似文献   

18.
Applications of quorum sensing in biotechnology   总被引:2,自引:0,他引:2  
Many unicellular microorganisms use small signaling molecules to determine their local concentration. The processes involved in the production and recognition of these signals are collectively known as quorum sensing (QS). This form of cell–cell communication is used by unicellular microorganisms to co-ordinate their activities, which allows them to function as multi-cellular systems. Recently, several groups have demonstrated artificial intra-species and inter-species communication through synthetic circuits which incorporate components of bacterial QS systems. Engineered QS-based circuits have a wide range of applications such as production of biochemicals, tissue engineering, and mixed-species fermentations. They are also highly useful in designing microbial biosensors to identify bacterial species present in the environment and within living organisms. In this review, we first provide an overview of bacterial QS systems and the mechanisms developed by bacteria and higher organisms to obstruct QS communications. Next, we describe the different ways in which researchers have designed QS-based circuits and their applications in biotechnology. Finally, disruption of quorum sensing is discussed as a viable strategy for preventing the formation of harmful biofilms in membrane bioreactors and marine transportation.  相似文献   

19.
群体感应(Quorum Sensing,QS)是微生物群体在生长过程中,随着群体密度的增加,其分泌的"信号分子"的浓度达到一定阈值后与微生物体内特定受体结合,从而影响微生物特定基因表达,导致其生理和生化特性的变化,表现出少量菌体或单个菌体所不具备的特征。1994年Fuqua提出群体感应概念后就成为微生物领域的研究热点。然而,群体感应的研究主要集中在细菌中,但近年来群体感应在噬菌体、真菌中也不断被发现,尤其自2017年Erez在多种枯草芽孢杆菌噬菌体中发现群体感应现象,并且揭示噬菌体群体感应主要调控其溶源-裂解途径的转换。近年来的研究又陆续在其他噬菌体中发现了群体感应。本文综述了噬菌体群体感应系统最新研究进展及其相关的基因功能和分子机理。  相似文献   

20.

It is well established that bacteria communicate between each other by using different mechanisms; among which, quorum sensing (QS) is the best known one. Indeed, intra- and intercellular communications of microorganisms, as well as the regulation of metabolism and reaction to the surrounding environmental conditions, are carried out by using different signaling molecules. N-Acyl homoserine lactones control the QS in Gram-negative bacteria, while Gram-positive bacteria use communicating peptides. These compounds, by diffusing through the bacterial membrane cell from the extracellular medium, directly or indirectly control the expression of specific genes that induce bacteria to react to their surrounding environment and stressing agents. In the case of lactic acid bacteria and bifidobacteria which are widely used in the dairy industry, QS is of extreme importance for their survival and the extent of their activity in the dairy matrix. Moreover, it is also via QS that these bacteria synthesize various antimicrobial agents such as bacteriocins. The aim of this review is to highlight the quorum sensing circuits involved in the communicating mechanisms of bacteria with emphasis on current applications of QS in lactic acid bacteria. More particularly, the implication of QS in the biosynthesis of bacteriocins by lactic acid bacteria will be detailed.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号