首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Modulation of immune response is important in cancer immunotherapy, vaccine adjuvant development and inflammatory or immune disease therapy. Here we report the development of new immunomodulators via control of shape transition among RNA triangle, square and pentagon. Changing one RNA strand in polygons automatically induced the stretching of the interior angle from 60° to 90° or 108°, resulting in self-assembly of elegant RNA triangles, squares and pentagons. When immunological adjuvants were incorporated, their immunomodulation effect for cytokine TNF-α and IL-6 induction was greatly enhanced in vitro and in animals up to 100-fold, while RNA polygon controls induced unnoticeable effect. The RNA nanoparticles were delivered to macrophages specifically. The degree of immunostimulation greatly depended on the size, shape and number of the payload per nanoparticles. Stronger immune response was observed when the number of adjuvants per polygon was increased, demonstrating the advantage of shape transition from triangle to pentagon.  相似文献   

2.
When organisms perform a single task, selection leads to phenotypes that maximize performance at that task. When organisms need to perform multiple tasks, a trade‐off arises because no phenotype can optimize all tasks. Recent work addressed this question, and assumed that the performance at each task decays with distance in trait space from the best phenotype at that task. Under this assumption, the best‐fitness solutions (termed the Pareto front) lie on simple low‐dimensional shapes in trait space: line segments, triangles and other polygons. The vertices of these polygons are specialists at a single task. Here, we generalize this finding, by considering performance functions of general form, not necessarily functions that decay monotonically with distance from their peak. We find that, except for performance functions with highly eccentric contours, simple shapes in phenotype space are still found, but with mildly curving edges instead of straight ones. In a wide range of systems, complex data on multiple quantitative traits, which might be expected to fill a high‐dimensional phenotype space, is predicted instead to collapse onto low‐dimensional shapes; phenotypes near the vertices of these shapes are predicted to be specialists, and can thus suggest which tasks may be at play.  相似文献   

3.
When organisms need to perform multiple tasks they face a fundamental tradeoff: no phenotype can be optimal at all tasks. This situation was recently analyzed using Pareto optimality, showing that tradeoffs between tasks lead to phenotypes distributed on low dimensional polygons in trait space. The vertices of these polygons are archetypes—phenotypes optimal at a single task. This theory was applied to examples from animal morphology and gene expression. Here we ask whether Pareto optimality theory can apply to life history traits, which include longevity, fecundity and mass. To comprehensively explore the geometry of life history trait space, we analyze a dataset of life history traits of 2105 endothermic species. We find that, to a first approximation, life history traits fall on a triangle in log-mass log-longevity space. The vertices of the triangle suggest three archetypal strategies, exemplified by bats, shrews and whales, with specialists near the vertices and generalists in the middle of the triangle. To a second approximation, the data lies in a tetrahedron, whose extra vertex above the mass-longevity triangle suggests a fourth strategy related to carnivory. Each animal species can thus be placed in a coordinate system according to its distance from the archetypes, which may be useful for genome-scale comparative studies of mammalian aging and other biological aspects. We further demonstrate that Pareto optimality can explain a range of previous studies which found animal and plant phenotypes which lie in triangles in trait space. This study demonstrates the applicability of multi-objective optimization principles to understand life history traits and to infer archetypal strategies that suggest why some mammalian species live much longer than others of similar mass.  相似文献   

4.
The introduction of artificial nighttime lighting due to human settlements and transport networks is increasingly altering the timing, intensity, and spectra of natural light regimes worldwide. Much of the research on the impacts of nighttime light pollution on organisms has focused on animal species. Little is known about the impacts of daylength extension due to outdoor lighting technologies on wild plant communities, despite the fact that plant growth and development are under photoperiodic control. In a five‐year field experiment, artificial ecosystems (“mesocosms”) of grassland communities both alone or in combination with invertebrate herbivores and predators were exposed to light treatments that simulated street lighting technologies (low‐pressure sodium, and light‐emitting diode [LED]‐based white lighting), at ground‐level illuminance. Most of the plant species in the mesocosms did not exhibit changes in biomass accumulation after 5 years of exposure to the light treatments. However, the white LED treatment had a significant negative effect on biomass production in the herbaceous species Lotus pedunculatus. Likewise, the interaction between the white LED treatment and the presence of herbivores significantly reduced the mean shoot/root ratio of the grass species Holcus lanatus. Artificial nighttime lighting had no effect on the foliar carbon or nitrogen in most of the grassland species. Nevertheless, the white LED treatment significantly increased the leaf nitrogen content in Lotus corniculatus in the presence of herbivores. Long‐term exposure to artificial light at night had no general effects on plant biomass responses in experimental grassland communities. However, species‐specific and negative effects of cool white LED lighting at ground‐level illuminance on biomass production and allocation in mixed plant communities are suggested by our findings. Further studies on the impacts of light pollution on biomass accumulation in plant communities are required as these effects could be mediated by different factors, including herbivory, competition, and soil nutrient availability.  相似文献   

5.
A rapid layer‐specific annealing on perovskite active layer enabled by ultraviolet (UV) light‐emitting diode (LED) is demonstrated and efficiency close to 19% is achieved in a simple planar inverted structure ITO/PEDOT:PSS/MAPbI3/PC71BM/Al without any device engineering. These results demonstrate that if the UV dosage is well managed, UV light is capable of annealing perovskite into high‐quality film rather than simply damaging it. Different in principle from other photonic treatment techniques that can heat up and damage underlying films, the UV‐LED‐annealing method enables layer‐specific annealing because LED light source is able to provide a specific UV wavelength for maximum light absorption of target film. Moreover, the layer‐specific photonic treatment allows accurate estimation of the crystallization energy required to form perovskite film at device quality level.  相似文献   

6.
We demonstrate the design and application of an add-on device for improving the diagnostic and research capabilities of CellScope—a low-cost, smartphone-based point-of-care microscope. We replace the single LED illumination of the original CellScope with a programmable domed LED array. By leveraging recent advances in computational illumination, this new device enables simultaneous multi-contrast imaging with brightfield, darkfield, and phase imaging modes. Further, we scan through illumination angles to capture lightfield datasets, which can be used to recover 3D intensity and phase images without any hardware changes. This digital refocusing procedure can be used for either 3D imaging or software-only focus correction, reducing the need for precise mechanical focusing during field experiments. All acquisition and processing is performed on the mobile phone and controlled through a smartphone application, making the computational microscope compact and portable. Using multiple samples and different objective magnifications, we demonstrate that the performance of our device is comparable to that of a commercial microscope. This unique device platform extends the field imaging capabilities of CellScope, opening up new clinical and research possibilities.  相似文献   

7.
BACKGROUND AND PURPOSE: A novel light-emitting diode (LED) light source for use in animal-habitat lighting was evaluated. METHODS: The LED was evaluated by comparing its effectiveness with that of cool white fluorescent light (CWF) in suppressing pineal gland melatonin content and maintaining normal retinal physiology, as evaluated by use of electroretinography (ERG), and morphology. RESULTS: Pineal melatonin concentration was equally suppressed by LED and CWF light at five light illuminances (100, 40, 10, 1, and 0.1 lux). There were no significant differences in melatonin suppression between LED and CWF light, compared with values for unexposed controls. There were no differences in ERG a-wave implicit times and amplitudes or b-wave implicit times and amplitudes between 100-lux LED-exposed rats and 100-lux CWF-exposed rats. Results of retinal histologic examination indicated no differences in retinal thickness, rod outer segment length, and number of rod nuclei between rats exposed to 100-lux LED and 100-lux CWF for 14 days. Furthermore, in all eyes, the retinal pigmented epithelium was intact and not vacuolated, whereas rod outer segments were of normal thickness. CONCLUSION: LED light does not cause retinal damage and can suppress pineal melatonin content at intensities similar to CWF light intensities.  相似文献   

8.
This study was conducted at the Kraichtal, southern Germany. Through the measurements of the relative illuminance under canopy and the coverage of many undergrowing species in 13 plots of forest communities, the correlation between the relative illuminance and the coverage of the species was calculated. The adaptation of 12 undergrowing species to light condition was determined based on the above calculation. Combining the indicator values of the species to ecological factors like light, humidity, temperature, acidity and nitrogen content in the soil with the constancy values of species in communities, the ranking order of undergrowing species in the communities was also examined. The results show: 1) In determining the light distribution in a forest community, scattered light condition is preferable because the interference from the drifting of light spots under the tree canopy can be reduced, and thus relatively stable distribution of light radiation can be obtained. 2) The distribution of 9 species, out of 12 species studied, was linearly correlated with the light condition under the canopy. For 7 of the 9 species, the correlation between the coverage of species and the relative illuminance was positive, and negative for 2 of them. For the other 3 species under the canopy the coverage was not correlated with the relative illuminance. 3) Compared with the light indicator values of species, the quantitative analysis of the relationships between species coverage and relative illuminance is more effective to reflect the adaptation of the species to light conditions under canopy and to reveal the ecological range of illuminance level of the species. 4) The relative adaptability of different species to light conditions directly affects the inter-specific relationships of the undergrowing species and may determine their ranking order in a community. The species with euphotic ecological range of illuminance level were easier to adapt to different light conditions under tree canopy and thus were able to exist in most forest community types with high constancy values.  相似文献   

9.
通过在13个样地中测定林下相对照度和多个植物物种的盖度指标,建立了林下相对照度与林下植盖度变化的相关关系,对德国南部落阔叶林下12种植物的光适应性进行了分析。结合植物的生态因子指示值和种在群落中的恒有度等生态指标,探讨了林下植物群落地位的形成原因。结果表明:1)在散射光条件下进行森林群落中的光照分布特征测定,能够降低光斑造成的干扰,获得相对稳定的光分布;2)在被研究的12个物种中,有9种植物在林下的分布与光照条件相关显,其中7种植物的盖度与相对照度之间具有正相关关系;2种植物具有负相关关系。其科3种植物的盖度与相对照度之间无显的线性相关;3)与光指示值相比,盖度与照度之间关系的定量分析能够更清楚地反映林下植被的光适应性,揭示植物的光生态幅特征;4)光适应性直接影响着林下植物的种间关系,也影响着物种的群落地位和作用。光生态幅广的植物,在群落中具有较强的适应能力,因此能够在多种群落类型中出现,表现出较高的恒有度值。  相似文献   

10.
In light-emitting diode (LED) illumination (e.g., LED maritime lighting for ships), creating a uniform light environment for optical systems is an important challenge. In this study, we present a high-power collimating system based on Fresnel lenses, which allows high-brightness LED illumination in the earlier-mentioned remote distance. The work presented in this article focuses on improving the power, compacting the optical structure, and promoting the brightness of the spot. To prove the claims, the system with a total power of 1 kW is designed. The system consists of a 27 W LED array, a freeform surface lens array, and a confocal Fresnel lens array. In comparison with the traditional optical system, the optical structure shortens from 390 to 120 mm, and the divergent angle decreases from 3° to 2 . Meanwhile, the illuminance of the system is obtained as high as 230 lx at the near field of 200 m and 3.0 lx at the far field of 1.5 nautical miles. This new method provides a practical and effective way to solve the problem of low power, insufficient illuminance, and long optical structure for LED array illumination, which is suitable for remote illumination and guidance of ships.  相似文献   

11.
The purpose of the present study was to elucidate the existence of individual differences of pupil response to light stimulation, and to confirm the reproducibility of this phenomenon. Furthermore, the relationship between the individual differences in nocturnal melatonin suppression induced by lighting and the individual differences of pupillary light response (PLR) was examined. The pupil diameter and salivary melatonin content of 20 male students were measured at the same period of time (00:00-02:30 hr) on different days, accordingly. Illumination (530 nm) produced by a monochromatic light-emitting diode (LED) was employed as the light stimulation: pupil diameter was measured with 4 different levels of illuminance of 1, 3, 30 and 600 lux and melatonin levels were measured at 30 and 600 lux (respective controls were taken at 0 lux). Oral temperature, blood pressure and subjective index of sleepiness were taken in experiments where melatonin levels were measured. Changes of the pupil diameter in response to light were expressed as PLR and light-induced melatonin suppression was expressed as a control-adjusted melatonin suppression score (control-adjusted MSS), which was compared to the melatonin level measured at 0 lux. In the PLR, the coefficients of variation obtained at 30 lux or less were large (51.5, 45.0, 28.4 and 6.2% at 1, 3, 30 and 600 lux, respectively). Correlations of illuminance of any combination at 30 lux or less were statistically significant at less than 1% level (1 vs. 3 lux: r=0.68; 1 vs. 30 lux: r=0.64; 3 vs. 30 lux: r=0.73), which showed the reproducibility of individual differences. The control-adjusted MSS at 600 lux (-1.14+/-1.16) was significantly (p<0.05) lower than that registered at 30 lux (-0.22+/-2.12). PLR values measured at 30 and 600 lux were then correlated with control-adjusted MSS; neither indicated a significant linear relationship. However, the control-adjusted MSS showed around 0 under any of the illuminance conditions in subjects with high PLR. In control-adjusted MSS of low values (i.e., melatonin secretions were easily suppressed), subjects indicated typically low PLR. In subjects with low control-adjusted MSS (n=3), characteristic changes in the autonomic nervous system, such as body temperature and blood pressure, were noted in subjects exposed to low illuminance of 30 lux. The fact that the relationship between PLR and control-adjusted MSS portray a similar pattern even under different luminance conditions suggests that MSS may not be affected in those with high PLR at low illuminance, regardless of the illuminance condition.  相似文献   

12.
This study was performed in order to evaluate a new LED‐based 2D‐fluorescence spectrometer for in‐line bioprocess monitoring of Chinese hamster ovary (CHO) cell culture processes. The new spectrometer used selected excitation wavelengths of 280, 365, and 455 nm to collect spectral data from six 10‐L fed‐batch processes. The technique provides data on various fluorescent compounds from the cultivation medium as well as from cell metabolism. In addition, scattered light offers information about the cultivation status. Multivariate data analysis tools were applied to analyze the large data sets of the collected fluorescence spectra. First, principal component analysis was used to accomplish an overview of all spectral data from all six CHO cultivations. Partial least square regression models were developed to correlate 2D‐fluorescence spectral data with selected critical process variables as offline reference values. A separate independent fed‐batch process was used for model validation and prediction. An almost continuous in‐line bioprocess monitoring was realized because 2D‐fluorescence spectra were collected every 10 min during the whole cultivation. The new 2D‐fluorescence device demonstrates the significant potential for accurate prediction of the total cell count, viable cell count, and the cell viability. The results strongly indicated that the technique is particularly capable to distinguish between different cell statuses inside the bioreactor. In addition, spectral data provided information about the lactate metabolism shift and cellular respiration during the cultivation process. Overall, the 2D‐fluorescence device is a highly sensitive tool for process analytical technology applications in mammalian cell cultures.  相似文献   

13.
Photosynthetic microbial fuel cells (PMFCs) are devices that convert chemical energy into the form of electricity through the catalytic activity of photosynthetic microorganisms. Power densities produced by the photosynthetic microalgae are greatly dependant on light sources and light intensities because these two factors can affect the chlorophyll formation, photosynthesis processes and stomata opening in the microalgae cells. In the present study, Chlamydomonas reinhardtii transformation F5 was used as biocatalyst in photo microbial fuel cells (PMFCs) and were illuminated with monochromatic blue and red LED lights at various light intensities (100, 300, 600 and 900 lx), respectively. The kinetic analysis was successfully employed to describe the intracellular and extracellular electron transfer mechanism of the cells. The results demonstrate that the performance of PMFCs increased in terms of maximum power density and exchange current density (io) with the tendency of decreasing in internal resistance (Rint) and over potential (η) values as increasing monochromatic blue and red LED light intensities. However the PMFCs performed better under red LED light as compared to operating under blue LED light. The maximum power density can reach 12.947 mW m−2, which could be a potential micro-power supply.  相似文献   

14.
Polygonal networks, "geodomes", in cultured hepatocytes of adult rats were examined by both light and electron microscopy. On light microscopical examinations of specimens stained with Coomassie blue after the treatment with Triton X-100, the networks were detected 5 days after culture, which consisted of triangles arranged mainly in hexagonal patterns. They surrounded main cell body, looking like a headband, or were occasionally situated over nuclei, looking like a geodesic dome. Scanning electron microscopical observations after Triton treatment revealed that these structures were located underneath surface membrane. Transmission electron microscopical investigations revealed that the connecting fibers of networks consisted of microfilaments which radiated in a compact bundle from electron-dense vertices.  相似文献   

15.
Aim To examine the trends of 1982–2003 satellite‐derived normalized difference vegetation index (NDVI) values at several spatial scales within tundra and boreal forest areas of Alaska. Location Arctic and subarctic Alaska. Methods Annual maximum NDVI data from the twice monthly Global Inventory Modelling and Mapping Studies (GIMMS) NDVI 1982–2003 data set with 64‐km2 pixels were extracted from a spatial hierarchy including three large regions: ecoregion polygons within regions, ecozone polygons within boreal ecoregions and 100‐km climate station buffers. The 1982–2003 trends of mean annual maximum NDVI values within each area, and within individual pixels, were computed using simple linear regression. The relationship between NDVI and temperature and precipitation was investigated within climate station buffers. Results At the largest spatial scale of polar, boreal and maritime regions, the strongest trend was a negative trend in NDVI within the boreal region. At a finer scale of ecoregion polygons, there was a strong positive NDVI trend in cold arctic tundra areas, and a strong negative trend in interior boreal forest areas. Within boreal ecozone polygons, the weakest negative trends were from areas with a maritime climate or colder mountainous ecozones, while the strongest negative trends were from warmer basin ecozones. The trends from climate station buffers were similar to ecoregion trends, with no significant trends from Bering tundra buffers, significant increasing trends among arctic tundra buffers and significant decreasing trends among interior boreal forest buffers. The interannual variability of NDVI among the arctic tundra buffers was related to the previous summer warmth index. The spatial pattern of increasing tundra NDVI at the pixel level was related to the west‐to‐east spatial pattern in changing climate across arctic Alaska. There was no significant relationship between interannual NDVI and precipitation or temperature among the boreal forest buffers. The decreasing NDVI trend in interior boreal forests may be due to several factors including increased insect/disease infestations, reduced photosynthesis and a change in root/leaf carbon allocation in response to warmer and drier growing season climate. Main conclusions There was a contrast in trends of 1982–2003 annual maximum NDVI, with cold arctic tundra significantly increasing in NDVI and relatively warm and dry interior boreal forest areas consistently decreasing in NDVI. The annual maximum NDVI from arctic tundra areas was strongly related to a summer warmth index, while there were no significant relationships in boreal areas between annual maximum NDVI and precipitation or temperature. Annual maximum NDVI was not related to spring NDVI in either arctic tundra or boreal buffers.  相似文献   

16.
Artificial light at night is a pervasive anthropogenic stressor for biodiversity. Many fast‐flying insectivorous bat species feed on insects that are attracted to light‐emitting ultraviolet radiation (10–400 nm). Several countries are currently focused on replacing mercury vapour lamps, which emit ultraviolet light, with more cost‐efficient light‐emitting diode (LED) lights, which emit less ultraviolet radiation. This reduction in ultraviolet light may cause declines in insect densities in cities, predatory fast‐flying bats, and some edge‐foraging and slow‐flying bats. Capitalising on a scheme to update streetlights from high ultraviolet mercury vapour to low ultraviolet LED in Sydney, Australia, we measured the activity of individual bat species, the activity of different functional groups and the bat and insect communities, before and after the change in technology. We also surveyed sites with already LED lights, sites with mercury vapour lights and unlit bushland remnants. Species adapted to foraging in cluttered vegetation, and some edge‐space foraging species, were more active in unlit bushland sites than in all lit sites and decreased in activity at lit sites after the change to LED lights. The change to LED streetlights caused a decrease in the fast‐flying Chalinolobus gouldii but not Miniopterus schreibersii oceanensis, the latter being more influenced by seasonal and environmental variables. Insect biomass was not affected by changing light types, but instead was negatively correlated with the moon's percentage illuminance. Changing streetlights to LEDs could result in a decline in some insectivorous bats in cities. This study confirms that unlit urban bushland remnants are important refuges for high bat diversity, particularly for more clutter‐adapted species and some edge‐space foraging species. Preventing light penetration into unlit bushland patches and corridors remains essential to protect the urban bat community.  相似文献   

17.
This paper unveils a platform to develop a compact, simple, reusable and disposable, and cost effective hand-held urinalysis device for home-health-care and doctor's office uses. A polymeric optical waveguide and colorimetric absorption were used as an optical sensor and sensing mode, respectively. The results of the tests show that the device was able to deliver quantitative results with the detection limits better than 0.1g/L, 0.2g/L, 0.025 g/L, and 0.1g/L for glucose, creatinine, albumin and total protein, respectively. There are some superiorities of this device as compared to the dip-stick counterpart, that are, better sensitivity, ability to deliver quantitative results and reusability. The device is being further miniaturized to use a LED and photodiode as a light source and detector, respectively. It is believed the device has potential for early diagnostic and wellness monitoring tool.  相似文献   

18.
We wish to postulate a mechanism by which flat hexagonal lattices of clathrin trimers transform into coated pits. Using an established model for packing trimers into lattices, we explored the assembly process by single addition of trimers to form polygons. Subject to favorable conditions, removal of a single trimer from a hexagon could lead to the formation of a pentagon. Elimination of trimers from polygonal sheets can occur either at the center of the network or at the edges. Removal of a trimer from the center of these adjacent polygons, "hub transformation," is possible in very few instances, whereas removal from the edges of a polygonal sheet, "fringe transformation," is possible in a host of cases. These hypothetical constructs can be used effectively to explain intermediate structures actually observed in flat hexagonal lattices. The geometry of a purely hexagonal lattice seems to dictate that the first step in transformation must be a "fringe transformation," which then will allow subsequent "hub transformation" to take place leading to the introduction of pentagons into the center of the lattice and ultimately to the curvature of the clathrin lattice.  相似文献   

19.
Many demersal fish species undergo vertical shifts in habitats during ontogeny especially after larval metamorphosis. The visual spectral sensitivity shifts with the habitat, indicating a change in colour vision. Colour vision depends on sufficient ambient light and becomes ineffective at a particular low light intensity. It is not known how fishes see colour in dim light. By means of a behavioural experiment on larval African catfish Clarias gariepinus in the laboratory, we determined colour vision and colour discrimination in dim light. Light-adapted larvae were subjected to classical conditioning to associate a reward feed with a green or a red stimulus placed among 7 shades of grey. The larvae learned this visual task after 70 and 90 trials. A different batch of larvae were trained to discriminate between green and red and then tested for the ability to discriminate between these colours, as the light intensity was reduced. The larvae learned this visual task after 110 trials in bright light and were able to discriminate colours, as light was dimmed until 0.01 lx, the minimal illuminance measurable in this study, and similar to starlight. The retinae of the larvae were found to be light adapted at 0.01 lx; thus indicating cone-based colour vision at this illuminance. For comparison, three human subjects were tested under similar conditions and showed a colour vision threshold at between 1.5 and 0.1 lx. For the larvae of C. gariepinus, the ability of colour discrimination in dim light is probably due to its retinal tapetum, which could increase the sensitivity of cones.  相似文献   

20.
Cost-effective and accurate methods are critical in monitoring grassland phenology. Smartphones have great potential for tracking phenological changes owing to their easy operation and flexible sampling, especially for experimental treatments on grassland phenology at local scale. However, it remains an open question for an accurate and robust measure in tracking plant phenology under various light conditions when using smartphones. To fill this gap, we compared green chromatic coordinate (GCC) and fractional coverage (FC) produced by three widely-used smartphone types across varying light conditions. We also explored the effects of experimental warming and N addition on grassland spring phenology using smartphone photography. We found that light conditions affected GCC values derived from various smartphones. The percentile method did not reduce the influence of various light conditions on GCC calculation. When using one type of smartphone, other techniques (e.g., shading strong sunlight) were required to minimize the effect of light on mean GCC during photography, but they did not work for FC. Based on this method, three smartphone types generated similar phenological metrics (i.e., start, peak and end of growing season) detected from GCC or FC. GCC and FC produced synchronous seasonal trajectories and similar phenological metrics throughout the growing season. We also found that experimental warming advanced spring phenology in the relatively wet year of 2018, but delayed it in the dry year of 2019. In contrast, N addition had little influence on spring phenology. Our results revealed that overlooking the influence of ambient light and smartphone types on GCC might lead to uncertainties in phenological measurement. Robust FC metrics extracted from smartphone photography detected grassland phenology differences in response to warming and N deposition. These findings provide evidence that FC is a robust indicator to accurately monitor grassland phenology using smartphone photography. Their utility resonates with those monitoring many experimental plots or sites with various light conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号