首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
While investigating endonucleases potentially involved in apoptosis, an antisera was raised to bovine deoxyribonuclease II, but it recognized a smaller protein of 26 kDa protein in a variety of cell lines. The 26 kDa protein underwent proteolytic cleavage to 22 kDa concomitantly with DNA digestion in cells induced to undergo apoptosis. Sequencing of the 26 kDa protein identified it as the Rho GDP-dissociation inhibitor D4-GDI. Zinc, okadaic acid, calyculin A, cantharidin, and the caspase inhibitor z-VAD-fmk, all prevented the cleavage of D4-GDI, DNA digestion, and apoptosis. The 26 kDa protein resided in the cytoplasm of undamaged cells, whereas following cleavage, the 22 kDa form translocated to the nucleus. Human D4-GDI, and D4-GDI mutated at the caspase 1 or caspase 3 sites, were expressed in Chinese hamster ovary cells which show no detectable endogenous D4-GDI. Mutation at the caspase 3 site prevented D4-GDI cleavage but did not inhibit apoptosis induced by staurosporine. The cleavage of D4-GDI could lead to activation of Jun N-terminal kinase which has been implicated as an upstream regulator of apoptosis in some systems. However, the results show that the cleavage of D4-GDI and translocation to the nucleus do not impact on the demise of the cell.  相似文献   

2.
3.
Cleavage and Inactivation of ATM during Apoptosis   总被引:10,自引:0,他引:10       下载免费PDF全文
The activation of the cysteine proteases with aspartate specificity, termed caspases, is of fundamental importance for the execution of programmed cell death. These proteases are highly specific in their action and activate or inhibit a variety of key protein molecules in the cell. Here, we study the effect of apoptosis on the integrity of two proteins that have critical roles in DNA damage signalling, cell cycle checkpoint controls, and genome maintenance-the product of the gene defective in ataxia telangiectasia, ATM, and the related protein ATR. We find that ATM but not ATR is specifically cleaved in cells induced to undergo apoptosis by a variety of stimuli. We establish that ATM cleavage in vivo is dependent on caspases, reveal that ATM is an efficient substrate for caspase 3 but not caspase 6 in vitro, and show that the in vitro caspase 3 cleavage pattern mirrors that in cells undergoing apoptosis. Strikingly, apoptotic cleavage of ATM in vivo abrogates its protein kinase activity against p53 but has no apparent effect on the DNA binding properties of ATM. These data suggest that the cleavage of ATM during apoptosis generates a kinase-inactive protein that acts, through its DNA binding ability, in a trans-dominant-negative fashion to prevent DNA repair and DNA damage signalling.  相似文献   

4.
We report here that the Rad51 recombinase is cleaved in mammalian cells during the induction of apoptosis by ionizing radiation (IR) exposure. The results demonstrate that IR induces Rad51 cleavage by a caspase-dependent mechanism. Further support for involvement of caspases is provided by the finding that IR-induced proteolysis of Rad51 is inhibited by Ac-DEVD-CHO. In vitro studies show that Rad51 is cleaved by caspase 3 at a DVLD/N site. Stable expression of a Rad51 mutant in which the aspartic acid residues were mutated to alanines (AVLA/N) confirmed that the DVLD/N site is responsible for the cleavage of Rad51 in IR-induced apoptosis. The functional significance of Rad51 proteolysis is supported by the finding that, unlike intact Rad51, the N- and C-terminal cleavage products fail to exhibit recombinase activity. In cells, overexpression of the Rad51(D-A) mutant had no effect on activation of caspase 3 but did abrogate in part the apoptotic response to IR exposure. We conclude that proteolytic inactivation of Rad51 by a caspase-mediated mechanism contributes to the cell death response induced by DNA damage.  相似文献   

5.
Mitochondrial outer membrane permeabilization and cytochrome c release promote caspase activation and execution of apoptosis through cleavage of specific caspase substrates in the cell. Among the first targets of activated caspases are the permeabilized mitochondria themselves, leading to disruption of electron transport, loss of mitochondrial transmembrane potential (DeltaPsim), decline in ATP levels, production of reactive oxygen species (ROS), and loss of mitochondrial structural integrity. Here, we identify NDUFS1, the 75 kDa subunit of respiratory complex I, as a critical caspase substrate in the mitochondria. Cells expressing a noncleavable mutant of p75 sustain DeltaPsim and ATP levels during apoptosis, and ROS production in response to apoptotic stimuli is dampened. While cytochrome c release and DNA fragmentation are unaffected by the noncleavable p75 mutant, mitochondrial morphology of dying cells is maintained, and loss of plasma membrane integrity is delayed. Therefore, caspase cleavage of NDUFS1 is required for several mitochondrial changes associated with apoptosis.  相似文献   

6.
Apoptosis in human monocytic THP.1 tumour cells, induced by diverse stimuli, was accompanied by proteolytic cleavage of the adenomatous polyposis coli gene product (APC) and by sequential cleavage of the retinoblastoma susceptibility gene product (Rb). Cleavage of poly(ADP-ribose) polymerase (PARP), APC and the initial cleavage of Rb at the carboxy terminal region all occurred at a similar time, early in the apoptotic process. Subsequently, Rb underwent a secondary cleavage to 43 kDa and 30 kDa protein fragments. Two caspase inhibitors, benzyloxycarbonyl-Val-Ala-Asp (OMe) fluoromethyl ketone (Z-VAD.FMK) and acetyl-Tyr-Val-Ala-Asp chloromethyl ketone (YVAD.CMK), had markedly different effects on the induction of apoptosis. Z-VAD.FMK inhibited the primary and secondary cleavage of Rb, cleavage of APC and PARP, and apoptosis assessed by flow cytometry. In marked contrast, YVAD.CMK inhibited cleavage of APC and the secondary cleavage of Rb to the 43 kDa and 30 kDa protein fragments but did not inhibit the primary carboxy terminal cleavage of Rb, PARP proteolysis or apoptosis assessed by flow cytometry. These results suggest that different caspases are responsible for the cleavage of different substrates at different stages during the apoptotic process and that a caspase may either cleave APC directly or may be involved in the pathway leading to APC proteolysis. This is the first report suggesting that a cytoplasmic tumour suppressor gene (APC) may be cleaved by a caspase during apoptosis.  相似文献   

7.
Initiator caspases are the first caspases that are activated following an apoptotic stimulus, and are responsible for cleaving and activating downstream effector caspases, which directly cause apoptosis. We have cloned a cDNA encoding an ortholog of the initiator caspase Dronc in the lepidopteran insect Spodoptera frugiperda. The SfDronc cDNA encodes a predicted protein of 447 amino acids with a molecular weight of 51 kDa. Overexpression of SfDronc induced apoptosis in Sf9 cells, while partial silencing of SfDronc expression in Sf9 cells reduced apoptosis induced by baculovirus infection or by treatment with UV or actinomycin D. Recombinant SfDronc exhibited several expected biochemical characteristics of an apoptotic initiator caspase: 1) SfDronc efficiently cleaved synthetic initiator caspase substrates, but had very little activity against effector caspase substrates; 2) mutation of a predicted cleavage site at position D340 blocked autoprocessing of recombinant SfDronc and reduced enzyme activity by approximately 10-fold; 3) SfDronc cleaved the effector caspase Sf-caspase-1 at the expected cleavage site, resulting in Sf-caspase-1 activation; and 4) SfDronc was strongly inhibited by the baculovirus caspase inhibitor SpliP49, but not by the related protein AcP35. These results indicate that SfDronc is an initiator caspase involved in caspase-dependent apoptosis in S. frugiperda, and as such is likely to be responsible for the initiator caspase activity in S. frugiperda cells known as Sf-caspase-X.  相似文献   

8.
Although a number of cell adhesion proteins have been identified as caspase substrates, the potential role of differentiation-specific desmosomal cadherins during apoptosis has not been examined. Here, we demonstrate that UV-induced caspase cleavage of the human desmoglein 1 cytoplasmic tail results in distinct 17- and 140- kDa products, whereas metalloproteinase-dependent shedding of the extracellular adhesion domain generates a 75-kDa product. In vitro studies identify caspase-3 as the preferred enzyme that cleaves desmoglein 1 within its unique repeating unit domain at aspartic acid 888, part of a consensus sequence not conserved among the other desmosomal cadherins. Apoptotic processing leads to decreased cell surface expression of desmoglein 1 and re-localization of its C terminus diffusely throughout the cytoplasm over a time course comparable with the processing of other desmosomal proteins and cytoplasmic keratins. Importantly, whereas classic cadherins have been reported to promote cell survival, short hairpin RNA-mediated suppression of desmoglein 1 in differentiated keratinocytes protected cells from UV-induced apoptosis. Collectively, our results identify desmoglein 1 as a novel caspase and metalloproteinase substrate whose cleavage likely contributes to the dismantling of desmosomes during keratinocyte apoptosis and also reveal desmoglein 1 as a previously unrecognized regulator of apoptosis in keratinocytes.  相似文献   

9.
10.
The MET tyrosine kinase is the hepatocyte growth factor/scatter factor (HGF/SF) receptor, which elicits multiple biological responses in epithelial cells, including cell survival. We previously demonstrated that in stress conditions, the MET receptor is cleaved by caspases within its juxtamembrane region, generating a pro-apoptotic intracellular fragment of 40 kDa. The caspase cleavage site at aspartic acid D1000 is adjacent to tyrosine Y1001, which when phosphorylated upon MET activation, is involved in CBL recruitment, allowing receptor ubiquitination and down regulation. Scanning mutagenesis of the MET juxtamembrane region led us to demonstrate that V999 and D1000 are essential for the caspase cleavage, while D1000 and Y1001 are essential for CBL recruitment. By examining whether overlapping of these sites leads to a functional interference, an inverse relationship was found between generation of p40 MET and phosphorylation of MET, with a direct involvement of phosphorylated Y1001 in protecting MET against its caspase cleavage. A molecular modeling analysis of caspase 3 interaction with the juxtamembrane region of MET confirmed that phosphorylation of this tyrosine is not compatible with its recognition by active caspase 3. These data demonstrate a direct protection mechanism of an activated phosphorylated MET receptor, against its caspase-dependent cleavage.  相似文献   

11.
12.
Surviving apoptosis   总被引:4,自引:0,他引:4  
The concept that cells subjected to chromatin cleavage during apoptosis are destined to die is being challenged. The execution phase of apoptosis is characterized by the activation of effector caspases, such as caspase-3, that cleave key regulatory or structural proteins and in particular activate apoptotic nucleases such as the caspase activated deoxyribonuclease (CAD). It is apparent that caspases of this type may become active both through non-apoptotic processing and potentially within cells that exhibit apoptotic morphology but are subsequently able to survive. In such systems caspase suppressor molecules, the inhibitors of apoptotic proteins or IAP's, may rescue cells from apoptotic nuclease(s) attack initiated by transient caspase activation. The MLL gene is involved in leukemogenic translocations in ALL and AML and is a target of nuclease cleavage during apoptosis. Translocations initiated at the site of apoptotic nuclease attack within MLL have been identified and may offer a model, with clinical relevance, for DNA damage mediated by the apoptosis system in cells destined to survive. The specificity of apoptotic cleavage combined with the potential for recovery from the execution phase of apoptosis suggests a novel and pathogenic role for apoptosis in creating translocations with leukemogenic potential.  相似文献   

13.
14.
The retinoblastoma tumour suppressor protein RB is cleaved by caspases during apoptosis. Here we have mutated the caspase cleavage site in the carboxy terminus of the murine Rb protein in the mouse germ line to create the Rb-MI allele. After endotoxic shock, expression of Rb-MI inhibits apoptosis in the intestines, but not in the spleen, and promotes the survival of male mice. Fibroblasts expressing Rb-MI protein are protected from apoptosis induced by the tumour-necrosis factor-alpha type I receptor (TNFRI) but remain sensitive to cell death induced by DNA damage. Correspondingly, the release of cytochrome c and the activation of caspase-3 induced by TNFRI, but not by DNA damage, are defective in cells expressing Rb-MI. Our results highlight the importance of Rb cleavage in TNFRI-induced apoptosis.  相似文献   

15.
Cell death by apoptosis can be caused by the DNA mutagen UV light whose exposure causes the direct activation of both the caspase 9 regulated cell damage intrinsic pathway and the caspase 8 regulated plasma membrane extrinsic pathway. We determined that increased activity of the plasma membrane phospholipid scramblase, PLSCR1, amplified UV mediated apoptosis primarily through the activation of the intrinsic apoptotic pathway. The caspase 8 inhibitor z-IETD-fmk was not as effective an inhibitor of PLSCR1 augmented UV induced apoptosis compared to treatment with caspase 3, caspase 9, or pan-caspase inhibitors. The inability of the caspase 8 inhibitor to decrease UV induced apoptosis was dependent on PLSCR1, as UV induced apoptosis was decreased by a similar amount in the control cells in the presence of inhibitors of caspase 8, caspase 9, caspase 3, or the pan-caspase inhibitor. PKC-delta directly phosphorylates human PLSCR1 resulting in increased PLSCR1 scramblase activity. PKC-delta can also be activated by caspase mediated cleavage resulting in the release of a constitutively active kinase domain. We observed that replacing the PKC-delta phosphorylation site of PLSCR1 with an alanine did not affect the ability of PLSCR1 to enhance UV induced apoptosis implying that PKC-delta does not directly phosphorylate PLSCR1 to increase plasma membrane scramblase activity during apoptosis. Cells transfected with a PLSCR1 mutant that contained an alanine substitution at its known PKC-delta phosphorylation site underwent UV induced apoptosis at a level similar to those transfected with wild type PLSCR1. The combined results indicate that UV exposure in cells possessing PLSCR1 increases apoptosis primarily by enhancement of the intrinsic apoptotic pathway, and also imply that the increased apoptosis observed upon exposure to UV light is not through direct phosphorylation of PLSCR1 by PKC-delta.  相似文献   

16.
新近的研究揭示:caspase蛋白酶在细胞凋亡中起着死亡执行者的重要功能.一些蛋白相继被证明在细胞凋亡中可被caspase特异切割,其中参与DNA损伤修复过程的聚ADP核糖聚合酶(PARP)以及DNA依赖的蛋白激酶(DNA-PK),在细胞凋亡过程中被caspase选择性切割具有特殊的功能意义.为探索与DNA-PK催化亚基有较高同源性,含有caspase切割位点,且功能上目前也被认为是感受DNA损伤和参与信号传导途径的ATM(Ataxiatelang-iectasiamutated)蛋白,是否在凋亡过程中也可被切割而降解?应用体外转录与翻译系统获得ATM蛋白的PI3K结构域,同时通过建立无细胞反应体系获得含caspase活性的细胞抽提液,将两者在体外共同保温.结果发现:ATM蛋白与caspase-3能免疫共沉淀,ATM蛋白的PI3K结构域可被caspase-3特异切割,并观察到辐射诱发细胞调亡中ATM蛋白的降解.从而进一步证实了DNA损伤修复的抑制,促进细胞凋亡的发生.  相似文献   

17.
18.
Reorganization of the actin cytoskeleton occurs during apoptosis. We found that actin-binding and Src homology 3 (SH3)-domain-containing proteins cortactin, hematopoietic-specific protein 1 (HS1), and hematopoietic progenitor kinase 1-interacting protein of 55 kDa (HIP-55, also called SH3P7 and Abp1) were degraded in a caspase-dependent manner during apoptosis. Cortactin, HS1, and HIP-55 were direct substrates of caspase 3. Cortactin and HS1 have two clusters of potential caspase cleavage sites; one is in their actin-binding domains, and the other is close to their carboxy-terminal SH3 domains. HIP-55 has one caspase recognition site, EHID(361). The HIP-55 (D361A) mutant was resistant to caspase cleavage. Cleavage of HIP-55 by caspases dissociated its actin-binding domain from its SH3 domain. The cleavage of these actin-binding and SH3 domain-containing proteins may affect cell signaling to and from the actin cytoskeleton and may be involved in the morphological change of cells during apoptosis.  相似文献   

19.
Apoptosis is an important cell suicide program which involves the caspases activation and is implicated in physiological and pathological processes. Poly(ADP-ribose) polymerase (PARP) cleavage is often associated with apoptosis and has been served as one hallmark of apoptosis and caspase activation. In this study, we aimed to determine TGF-beta1-induced apoptosis and to examine the involvement of caspases and its relationship with PARP cleavage. TGF-beta1 induces strong apoptosis of AML-12 cells which can be detected by DNA fragmentation, FACS, and morphological assays. Z-VAD-fmk, a selective caspase inhibitor, partially inhibits the TGF-beta1-induced apoptosis; but has no effect on TGF-beta1-induced DNA fragmentation and PARP cleavage. However, BD-fmk, a broad-spectrum caspase inhibitor, completely suppresses TGF-beta1-induced apoptosis, but unexpectedly does not inhibit TGF-beta1-induced PARP cleavage. Furthermore, Z-VAD-fmk treatment is able to completely inhibit the daunorubicin-induced apoptosis in A-431 cells, but only slightly blocks the daunorubicin-induced PARP cleavage, whereas BD-fmk can inhibit both daunorubicin-induced apoptosis and PARP cleavage completely. In addition, we observed that both TGF-beta1-induced apoptosis and PARP degradation in AML-12 cells can be completely blocked by inhibiting the protein synthesis with cycloheximide. These results demonstrate for the first time that TGF-beta1-induced caspase-dependent apoptosis is associated with caspase-independent PARP cleavage that requires the TGF-beta1-induced synthesis of new proteins. The results indicate that caspase-3 is not a major caspase involved in TGF-beta1-induced apoptosis in AML-12 cells, and is not required for apoptosis-associated DNA fragmentation. The results also suggest that PARP cleavage may occur as an independent event that can be disassociated with cell apoptosis.  相似文献   

20.
Several novel protein kinase C (PKC) isozymes have been identified as substrates for caspase-3. We have previously shown that novel PKCepsilon is cleaved during apoptosis in MCF-7 cells that lack any functional caspase-3. In the present study, we show that in vitro-translated PKCepsilon is processed by human recombinant caspase-3, -7, and -9. Tumor necrosis factor-alpha (TNF) triggered processing of PKCepsilon to a 43-kDa carboxyl-terminal fragment, and cell-permeable caspase inhibitors prevented TNF-induced processing of PKCepsilon in MCF-7 cells. PKCepsilon was cleaved primarily at the SSPD downward arrow G site to generate two fragments with an approximate molecular mass of 43 kDa. It was also cleaved at the DDVD downward arrow C site to generate two fragments with molecular masses of 52 and 35 kDa. Treatment of MCF-7 cells with TNF resulted in the activation of PKCepsilon, and mutation at the SSPD downward arrow G (D383A) site inhibited proteolytic activation of PKCepsilon. Overexpression of wild-type but not dominant-negative PKCepsilon in MCF-7 cells delayed TNF-induced apoptosis, and mutation at the D383A site prevented antiapoptotic activity of PKCepsilon. These results suggest that cleavage of PKCepsilon by caspase-7 at the SSPD downward arrow G site results in the activation of PKCepsilon. Furthermore, activation of PKCepsilon was associated with its antiapoptotic function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号